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Has the time come to move from petaflops (on simple benchmarks) 
to petadata per unit of time and power (on sophisticated benchmarks)?  
 
The race to build ever-faster supercomputers is on, with more contenders than ever before. But, 

the current goals set for this race may not lead to the fastest computation for particular 

applications.  

 
Introduction 
 
The supercomputer community is now facing an interesting situation: Systems do exist, 
which, for some sophisticated applications, and some relevant performance measures, 
demonstrate an order of magnitude higher performance [Weston2011, Lindtjorn2011, 
Oriato2010], compared to the top systems from the Top 500 Supercomputers list 
[Top500web1994], but are not on that list, because their LINPACK performance is poor.  
 
Typical applications of such systems are: (a) geo-mechanical simulations based on 
sparse matrix algorithms, which do not scale beyond a few nodes on conventional 
systems [Lindtjor2011], or (b) financial stochastic PDEs [Weston2011], and (c) 
high resolution (70Hz) seismic modeling in Oil&Gas industry [Oriato2010]. 
 
Relevant performance measures for which the above mentioned performance ratio 
improvements apply are: (a) performance per watt, (b) performance per cubic foot, or 
(c) performance per monetary unit (dollar, yen, yuan, euro, etc.). 
 
The above-mentioned systems are often times based on a kind of dataflow approach.  
 
A creator of the Top 500 Supercomputers list rightfully claimed that this list sheds light 
on only one dimension of modern supercomputing [ACM2011a], which is a relatively 
narrow one. This paper tries to induce thinking about alternative performance measures 
for ranking, possibly ones with a much wider scope [ACM2011b]. This short 
communication is not offering a solution; it is offering a theme for brainstorming.  
 
 
Having said all the above, the remaining text concentrates on the following issues: (a) 
rationales (what are the evolutionary achievements that may justify a possible paradigm 
shift in the ranking domain), (b) justification (what are the numerical measurements that 



require rethinking), (c) suggestions (what are the possible avenues leading to potential 
improvements of the ranking paradigm). As usual, we conclude by: (a) restating the 
contribution of this short paper, (b) specifying to whom all this might be of benefit, and 
(c) opening possible directions for future research. 
 
 
Rationales 
 
For data flow systems, utilization of a relatively slow clock (even if deep pipelining is 
used) is typical, while the entire data flow is completed more efficiently. This is because 
the data flow approach enables low clock frequency, which allows for low power 
dissipation. Slow clock is not a problem for Big Data computations, since the speed of 
computation depends on pin throughput and local memory size/bandwidth inside the 
computational chip. In fact, opposite to popular belief, even if data flow is implemented 
using FPGA chips, in spite of the fact that general purpose connections inside FPGA 
chips bring a slowdown, the clock would not be slow because of the use of FPGAs - pin 
throughput and local memory size/bandwidth are the problem; not the computational 
unit speed. Therefore, if counting is oriented to performance measures correlated with 
clock speed, these systems perform poorly. However, if counting is oriented to 
performance measures sensitive to the amount of data processed, these systems may 
perform richly (see Figure 1). This is the first issue of importance.  
 

 
     Figure 1: Performance of Maxeler-accelerated Finite Difference Modeling, using a large 
scale system based on MAX2 cards. Source: [Oriato2010] 

 
The second issue of importance is related to the fact that, due to their lower clock 
speed, systems based on a kind of a data flow approach consume less power, less 
space, and less money, compared to systems driven by a fast clock (see Table 1 for 
support of this claim). 



 
In addition to the above said, the third issue of importance is that systems based on a 
kind of data flow approach perform poorly on relatively simple benchmarks, which are 
typically not rich in the amount and variety of data structures. However, they perform 
fairly well on relatively sophisticated benchmarks, rich in the amount and variety of data 
structures (see Table 2).  
 
All these three issues are further elaborated in the text to follow. 
 
Streaming dataflow systems have the potential to retire a result every clock cycle. As 
such, given a certain number of output pins on a chip, dataflow computation can 
generate a large amount of results for a given clock frequency. Conversely, in order to 
achieve a certain performance level, dataflow can result in very low clock frequency for 
the given speed of computation. Consequently, if counting is oriented to performance 
measures correlated with clock speed, data flow computing looks very unappealing. 
However, if counting were oriented to performance measures sensitive to the amount of 
processed data, the conclusions would end up being different.  
 
The sheer magnitude of the data flow parallelism can be used to overcome initial speed 
disadvantage. Indeed operating at lower frequency has the advantage of reducing the 
overall power. In order to achieve maximum acceleration the kernel application is 
compiled into a dataflow engine. Optimization creates a static dataflow machine by 
unrolling loops and inserting pipeline points at each stage of the data flow. The resultant 
array structure nowadays can be 500 pipeline stages deep, or even deeper, in future. 
Ideally in the static dataflow form, data can enter each stage of the pipeline every cycle. 
If, after this instantiation of the data flow engine, there is still additional silicon and pin 
bandwidth available on the accelerator, it may be possible to realize a second, third, or 
fourth instantiation on the same accelerator directly increasing the parallelism and the 
performance, for less power. 
 
Low clock frequency results in low power consumption, and [Weston2011] shows that 
the measured speedups (31x and 37x) were achieved while reducing the power 
consumption of the 1U compute node (see Tables 1 and 2). Combining power and 
performance measures is a challenge that is already starting to be addressed by the 
Green500 list. However, evaluating radically different models of computation such as 
dataflow, remains yet to be addressed, and especially in the context of total cost of 
ownership. 
 
 

 
Table 1: Power usage published by J. P. Morgan [Weston2011] for 1U compute nodes when idle 

(no program running) and while processing (the credit derivatives risk calculation). The essential 
point here is that the accelerated system runs X times faster (X denotes the speedup), and even 

takes a bit less power. 



 
 

 
Table 2: MaxNode-1821 vs. Eight Core Xeon Server speedup (referred to as X in Table 1), taken 

from a J.P. Morgan study [Weston2011]. 

 
 
Justification 
 
Performance of an HPC system depends on the adaption of a computational algorithm 
to a scientific problem, discretization of the problem, mapping onto data structures, 
mapping onto representable numbers, the dataset size, the quality of the 
implementation, and the suitability of the underlying architecture compared to all the 
other choices in the spectrum of design options. In light of all these choices, how does 
one evaluate a computer system’s suitability for a particular task such as climate 
modeling or genetic sequencing?  
 
To shed more light on the above question, one can start from the following statement: If 
one runs LINPACK (a relatively simple benchmark dealing with matrix/vector 
multiplication) on a highly ranked Top 500 system (for example, one that offers a limited 
public remote access [Tianhe2011]), one obtains the performance of P Petaflops. If one 
runs the same benchmark on a modern dataflow system (for example, one used by a 
number of banking, geo-physics, and petrol companies - one such example, but not the 
only one, is [Maxeler2011], which is programmed in a variant of the Java language), 
one obtains the performance of P/M Petaflops, where M could be a relatively large 
number, greater than one. If one recalculates the obtained results for another 
performance measure (the amount of data processed (D) per unit of time and unit of 
power and unit of money, or similar), one obtains the performance ratio of D/m, where 
M>m, and m is also greater than one. In other words, for LINPACK, an Intel node might 
have an equal or better performance (measured in Petaflops) than a MaxNode; 
however, for several real applications, execution time for the same MaxNode is 
significantly smaller.  
 
 
If one runs a relatively data intensive workload (e.g., order of gigabytes) used in banking 
environments [Weston2011]), and compares the same two systems for the same 
performance measure (data, per unit of time, per unit of power) the advantage is in 
favor of a modern data flow system, in the ratio of η:1, where η is a relatively small 
number higher than one.  
 
If one runs a highly data intensive workload (e.g., order of terabytes) used by 
geophysicists [Lindtjorn2011]), and compares the same two systems for the same 
performance measure (data, per unit of time, per unit of power, or per unit of money) the 



advantage is again in favor of the modern data flow system, in the ratio of n:1, where n 
is a relatively large number higher than one (n>η). 
 
If one runs an extremely data intensive workload (e.g., order of petabytes) used by 
petrol companies [Oriato2010]), and compares the same two systems for the same 
performance measure (data, per unit of time, per unit of power) the advantage is 
considerably in favor of the modern data flow system, in the ratio of N:1, where N is a 
relatively large number higher than one (N>n>η). 
 
Obviously, the dataflow approach is favourized if a more complex performance measure 
is used. It is further on favourized if more complex benchmarks are used. The first issue 
refers to major user concerns (processing duration and electricity bill). The second issue 
refers to major user needs (complex applications and purchase costs).  
 
Yet at the end of the day, a decision has to be made as to which computer system to 
construct for a given scientific challenge, or more typically, for a wide range of scientific 
challenges. If indeed one machine needs to serve the entire scientific community of a 
country, and the machine is evaluated based on LINPACK, it may well be suboptimal for 
many of the scientific challenges. Even if we assume that it is the optimal machine given 
the set of applications, the question is whether a set of smaller, and perhaps to some 
extent specialized, custom machines for each algorithmic domain would not be able to 
serve the community in a more efficient way and give the tax payer more scientific 
progress for less money.  
 
 
Suggestions 
 
This short communication does not suggest that the Petaflops count be eliminated, but 
rather that a data centric measure could shed some more light on other aspects of HPC 
systems. One idea is to look at Petabytes per second per cubic foot per Watt for a 
particular algorithm and dataset size. 
 
 
 
Of course, financial considerations play a major role in computing. However, it is 
unreasonable to include non-transparent and ever negotiated pricing information into an 
engineering measure. We know that the cost of computer systems is dictated by the 
cost of the chips and the cost of the chips is a function of chip area.  
So, adding a measure of performance per computational chip area could encapsulate 
intrinsic underlying costs of the various approaches. 
 
Finally, the real test of a computer system lies in the hands of users. However, typically 
such users do not get to tell the whole story when publishing papers, due to obvious 
restrictions. If there were a way to capture the user experience in an objective fashion, 
this could really help with concise evaluation of computer systems. Yet, there does exist 
a solution to address the user satisfaction challenge: simply, if one purchases a system 



that later on turns out not to be the right one, one does not purchase a new system of 
that same sort, and looks around for novel solutions. 
 
 
Conclusions 
 
The findings of this paper are of interest to those supercomputing users who wish to 
minimize not only the purchase costs, but also the maintenance costs, for a given 
performance requirement. Also to those manufacturers of supercomputing oriented 
systems who are able to deliver more for less, but are using unconventional 
architectures [Stojanovic2011]. 
 
Topics for future research include the ways to incorporate the price/complexity issues 
and also the satisfaction/profile issues. The ability issues (availability, reliability, 
extensibility, partition ability, programmability, portability, etc.) are also of importance for 
future of any ranking effort. 
 
In conclusion, whenever a paradigm shift happens in computer technology, computer 
architecture, or computer applications, a new approach has to be introduced. The same 
type of thinking, as the one presented in this paper, happened at the time when GaAs 
technology was introduced for high-radiation environments, and had to be compared 
with silicon technology, for a new set of relevant architectural issues. Solutions which 
ranked high until that moment, suddenly obtained new and relatively low ranking 
positions [HelbigMilutinovic1989]. 
 
 
 
 
 
 
 
 
Box  
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