
On ”Exploring alternatives for transition verification”

Monika Kapus-Kolar

Jožef Stefan Institute, Department of Communication Systems, Jamova 39, SI-1111 Ljubljana, Slovenia

Abstract

Duan and Chen (doi:10.1016/j.jss.2009.05.019) proposed two methods for constructing an input/output sequence

(IOS) whose execution on an implementation N of a given deterministic finite state machine (DFSM) M tests that N

can be interpreted as a DFSM properly implementing every individual state and transition of M. This paper shows

that the methods and three earlier similar methods potentially introduce cyclic dependencies between the essential

segments of the produced IOS, meaning that the IOS might fail to be a complete test under the default interpretation.

It then proposes modifications provably preventing such cycles. All the methods assume that M is completely specified

and strongly connected and possesses a distinguishing set and that N has at most as many states as M.

Keywords: Conformance testing, Deterministic finite state machine, Checking sequence, Distinguishing set.

1. Introduction

Duan and Chen [3] proposed two methods for con-

structing an IOS whose execution on an implementa-

tion N of a given DFSM M tests that N can be inter-

preted as a DFSM properly implementing every indi-

vidual state and transition of M. The first method is to

use the method of Ural & al. [9] or one of its subsequent

derivatives [1, 4, 5, 8] with the additional possibility to

employ in transition implementation tests (TITs) also

the so-called γ-sequences. The second method is the

method of Ural and Zhang [10] enhanced with the pos-

sibility of employing γ-sequences in TITs.

This paper shows that the methods and three earlier

similar methods [1, 8, 11] potentially introduce cyclic

dependencies between the essential segments of the pro-

duced IOS, meaning that the IOS might fail to be a com-

plete test under the default interpretation. It then pro-

poses modifications provably preventing such cycles.

All the methods assume that M is completely specified

and strongly connected and possesses a distinguishing

set (DS) and that N has at most as many states as M.

The paper is organized as follows. A practitioner

interested exclusively in more proper use of a specific

method can go immediately to the pertinent subsection

of Section 5, in which the proposed modifications are

Email address: monika.kapus-kolar@ijs.si (Monika

Kapus-Kolar)

summarized as straightforward instructions in the lan-

guage of the source paper of the method. Sections 2 to

4 are intended for readers seeking deeper understand-

ing of the methods and their problems. Section 2 in-

troduces the basic notation and definitions. Section 3

gives an outline of the five methods and of the depen-

dencies which they introduce. It is actually a descrip-

tion and proof of an abstract method of which the con-

sidered methods are supposed to be specialisations. In

Section 4, we describe the weak points of the methods

and the proposed modifications in detail. Section 6 con-

cludes the paper.

2. Basic notation and definitions

Let ǫ denote an empty sequence. For a sequence σ =

o1 . . . ok, let |σ| denote its length k, seg(σ) the set of all

its segments oi . . .o j with 1 ≤ i ≤ j ≤ k, set(σ) the

set {o1, . . . , ok} and for every 0 ≤ i ≤ |σ|, p f (σ, i) its

prefix o1 . . . oi. For two sequences σ = o1 . . . ok and

σ′ = o′
1
. . . o′

k′
, let σ ·σ′ denote the sequence o1 . . . oko′

1

. . . o′
k′

, whereas σ ≤ σ′ denotes that σ is a prefix of σ′.

For a sequence set Σ, let seg(Σ) denote ∪σ∈Σseg(σ).

DFSMs are machines exposed to inputs from their en-

vironment. An input is a member of the assumed uni-

versal input alphabet. A DFSM Q has a finite set st(Q)

of states in which it might reside, among them its initial

state init(Q). It also has a finite set tr(Q) of transitions

which it might execute. To execute a transition from a

Preprint submitted to Journal of Systems and Software October 19, 2011

specific state si means to accept an input x and conse-

quently issue the corresponding output y and enter the

corresponding next state s j. We denote such a transition

t as (si, s j, x/y). If Q has no transition (sk, s j, x/y) with

sk , si, we say that t is invertible.

An IOS is a sequence x1/y1 . . . xk/yk of k input/output

pairs. For such a z, let in(z) denote the input sequence

x1 . . . xk.

A transition sequence (TS) of a DFSM Q is a se-

quence (s1, s2, x1/y1) . . . (sk, sk+1, xk/yk) of transitions in

tr(Q). For such a τ, let init(τ) denote its initial state

s1, f in(τ) it final state sk+1 and lab(τ) its label x1/y1 . . .

xk/yk. An IOS z is a member of the language lan(si) of

a state si of a DFSM Q if Q has a TS τ with init(τ) = si

and lab(τ) = z. For a DFSM Q, let lan(Q) denote

lan(init(Q)) and ios(Q) the IOS set ∪si∈st(Q)lan(si).

If a DFSM Q for every state si in st(Q) and input x

possesses a transition t with init(t) = si and in(lab(t)) =

x, it is completely specified. If it for every two different

states si and s j in st(Q) possesses a TS τ with (init(τ) =

si) ∧ (f in(τ) = s j), it is strongly connected.

An IOS z is a unique IOS (UIO) of (a specific state si

of) a DFSM Q if si is the only state s in st(Q) for which

Q has a TS τ with (init(τ) = s) ∧ (lab(τ) = z). An IOS

z is a backward UIO (BUIO) of (a specific state si of) a

DFSM Q if si is the only state s in st(Q) for which Q

has a TS τwith (f in(τ) = s)∧ (lab(τ) = z). For a DFSM

Q, let uio(Q) denote its UIO set. For a z in uio(M), let

ts(z) denote the only TS τ of M with lab(τ) = z.

A DS of M is a set for every state si in st(M) com-

prising such a UIO zi that for every other state s j in

st(M), there is a k with (in(p f (zi, k)) = in(p f (z j, k))) ∧

(p f (zi, k) , p f (z j, k)).

A digraph G consists of a set vr(G) of vertices and

a set ed(G) of edges. Every edge in ed(G) is a (v, v′, l)

with v its initial vertex in vr(G), v′ its final vertex in

vr(G) and l its label. A walk of a digraph G is a sequence

(v1, v2, l1) . . . (vk, vk+1, lk) of edges in ed(G). For such a

w, let init(w) denote its initial vertex v1, f in(w) its final

vertex vk+1 and lab(w) its label. If for every 1 ≤ i ≤ k, li
is a sequence, lab(w) is l1 · . . . · lk. For a digraph G, let

wk(G) denote the set of all its walks.

A test is any IOS in ios(M) supposed to be observed

on N. A test z is complete, i.e., in(z) is a checking se-

quence, if z ∈ lan(N) implies lan(N) = lan(M).

3. An outline of the methods

The methods start by choosing a DS of M, call it D.

For a state si in st(M), let di denote the UIO in D ∩

lan(si), in the case of si = init(M) also called dinit.

A state si in st(M) is said to be properly imple-

mented in N, denoted as ok(si), if di ∈ uio(N). In

that case, let s′
i

denote the only state s in st(N) with

di ∈ lan(s). A transition t = (si, s j, x/y) in tr(M) is said

to be properly implemented in N, denoted as ok(t), if

ok(si) ∧ ok(s j) ∧ ((s′
i
, s′

j
, x/y) ∈ tr(N)). M is said to be

properly implemented by N, denoted as ok(M), if (dinit

∈ lan(N))∧ (∀si ∈ st(M) : ok(si))∧ (∀t ∈ tr(M) : ok(t)).

The generated test, call it z∗, is supposed to satisfy (z∗ ∈

lan(N)) ⇒ ok(M), where ok(M) by |st(N)| ≤ |st(M)|

implies lan(N) = lan(M).

To make z∗ complete, the methods secure dinit ≤ z∗

and that seg(z∗) comprises a sufficient set of special-

purpose subtests. Among the subtests, some are se-

lected for inclusion in advance, call the set of all such

tests A, and some during the construction of z∗, from a

pool, call it C, of candidate tests.

The primary purpose of the tests in A is to check

ok(si) for every state si in st(M). For that purpose, the

methods secure D ⊆ seg(A). On the other hand, the

purpose of each individual test in C is to check ok(t)

for a specific transition t in tr(M). Let Θ denote the set

of those transitions in tr(M) for which there are imple-

mentation tests (ITs) specified in C, with Θ′ denoting

the set tr(M) \Θ. For the transitions in Θ′, the set of the

specified candidate ITs is a subset C′ of seg(A). The

methods secure that every transition t in tr(M) has an IT

from C ∪ C′ in seg(z∗).

Every conceived specification of a candidate IT z

for a transition t in tr(M) is virtually a triplet (z, t, θ)

with θ the set of those transitions t′ in tr(M) on whose

ok(t′) the soundness of the TIT presumably depends. In

most cases, there are at least some t′ in θ for which the

soundness actually depends on ok(t′). Every such triplet

ξ, hence, introduces on tr(M) the dependency relation

{(t, t′)|t′ ∈ θ}, call it Rξ . Let Ξ denote the set of the

conceived triplets and R the cumulative dependency re-

lation ∪ξ∈ΞRξ.

The methods secure that every triplet (z, t, θ) in Ξ sat-

isfies (((A∪ {z}) ⊆ ios(N)) ∧ ∀t′ ∈ θ : ok(t′)) ⇒ ok(t).

Their proof for (z∗ ∈ lan(N))⇒ ok(M) is then virtually

as follows:

Proof. For every transition t in tr(M), choose in Ξ any

triplet (zt, t, θt) with zt ∈ seg(z∗). Order the transitions

in tr(M) into a sequence t1 . . . t|tr(M)| for every 1 ≤ i ≤

|tr(M)| satisfying θti ⊆ {t1, . . . , ti−1}.

Suppose that z∗ ∈ lan(N), which implies (A ∪ {zt |t ∈

tr(M)}) ⊆ ios(N) and, by dinit ≤ z∗, dinit ∈ lan(N). By

(A ⊆ ios(N)) ∧ (D ⊆ seg(A)) ∧ (|st(N)| ≤ |st(M)|),

ok(si) for every si in st(M).

2

If for an 1 ≤ i ≤ |tr(M)|, ok(t j) for every 1 ≤ j < i,

((A∪ {zti }) ⊆ ios(N)) ∧ ∀1 ≤ j < i : ok(t j) by θti ⊆ {t1,

. . . , ti−1} implies ((A∪ {zti }) ⊆ ios(N)) ∧ ∀t ∈ θti : ok(t)

and, hence, ok(ti). For every 1 ≤ i ≤ |tr(M)|, ok(ti),

hence, follows by induction, implying ok(t) for every t

in tr(M).

The proof has a weak point. It can happen that an un-

fortunate choice of triplets in its first step prevents com-

pletion of its second step, because of a cycle in R. If

R is acyclic, however, the proof is sound. The methods

virtually assume that R is acyclic, but in the next sec-

tion, we for each of them give an example where this is

not true, meaning that they cannot be trusted in the gen-

eral case. As a remedy, we then propose modifications

provably making R acyclic.

4. The weak points of the methods and suggestions

for modification

4.1. Introduction

Section 4 is organized as follows. In Section 4.3,

we describe the TIT types which the methods virtually

use, after in Section 4.2 describing the UIOs and BUIOs

which they use for state recognition within TITs. Sec-

tion 4.4 explains how to read the digraph which the

methods allowing Θ′ , ∅ construct as an encoding of

the TITs conceived for the members of Θ′. Section 4.5

explains how to read the digraph which the considered

methods construct as an encoding of the TITs conceived

for the members of Θ. Section 4.6 shows that each of

the methods sometimes specifies a cycle in R. The mod-

ifications which we propose as a remedy are described

and proven sufficient in Section 4.7.

4.2. The employed kinds of UIOs and BUIOs

In the source papers of the methods, the members of

D andD itself are not given any special names, whereas

the members ofA are called α-sequences, α′-sequences

or α-elements. The methods construct members of A

as concatenations of, as they call them, T -sequences -

selected members of uio(M) owning a member ofD as

a prefix. Call the set of the employed T -sequences T .

Recall that A ⊆ ios(N) implies that every di in D is

in N a UIO of s′
i
. Besides, the methods secure that for

every IOS z in T , seg(A) comprises a z · z′ with z′ ∈ D,

and that every IOS in A has a member ofD as a prefix

and a member of T as a suffix. Consequently, the IOSs

in D ∪ T ∪ A are within TITs useful both for forward

and for backward state recognition.

Some of the methods [1, 3, 8] use for state recognition

within TITs also members z of uio(M) conceived as a

γ-sequence, i.e., as a z′ · z′′ with z′′ ∈ D and z′, call it

ip(z) - the invertible prefix of z, the label of a non-empty

TS of M consisting exclusively of invertible transitions.

Let Γ denote the set of the γ-sequences conceived for

application within ITs for transitions inΘ. Let Γ′ denote

the set of the γ-sequences z with ip(z) a true suffix of a

member of T .

Let U denote the superset of Γ comprising also ev-

ery other auxiliary UIO conceived for application within

ITs for transitions inΘ (in the only one among the meth-

ods which allows arbitrary UIOs for the purpose [11],

the set of their input sequences is called U). Let Z de-

note the setD∪T ∪A∪U ∪ Γ′.

To trust that a UIO z of a state si of M is in N a UIO

of s′
i
, the methods require ok(t) for the transitions t in a

subset of tr(M) which we call req(z), with req(U) de-

noting ∪z∈Ureq(z). For a z inZ, they virtually compute

req(z) as follows:

1. If z ∈ (D∪ T ∪A), req(z) = ∅.

2. If z ∈ (Γ ∪ Γ′), req(z) comprises every transition

(si, s j, x/y) in tr(M) with x ∈ set(in(ip(z))).

3. If z ∈ (U\Γ), req(z) comprises every transition (si,

s j, x/y) in tr(M) with x ∈ set(in(z)).

To trust that a BUIO z of a state si of M is in N a

BUIO of s′
i
, the methods require ok(t) for the transitions

t in a subset of tr(M) which we call breq(z). For a z in

Z, they virtually compute breq(z) as follows:

1. If z ∈ (T ∪A), breq(z) = ∅.

2. If z ∈ (D \ T), breq(z) = set(ts(z)).

3. If z is an ip(z) · z′ in Γ ∪ Γ′, breq(z) = breq(z′).

4. If z ∈ (U \ Γ), breq(z) = req(z).

4.3. The employed kinds of TITs

In the methods, every IT for a transition t in tr(M) is

conceived as a tit1(τ, t, τ′), as we call the first TIT type,

or as a tit2(τ, τ′, t, τ′′), as we call the second TIT type.

For a tit1(τ, t, τ′), one assumes (τ · t · τ′ ∈ wk(M)) ∧

(lab(τ′) ∈ Z) ∧ ∃di ∈ D : (di ≤ lab(τ · t · τ′)) ∧ ∀t′ ∈

(set(τ) ∪ req(lab(τ′))) : ok(t′), so that tit1(τ, t, τ′) de-

notes a TIT whose specification is the triplet (lab(τ · t ·

τ′), t, set(τ) ∪ req(lab(τ′))).

For a tit2(τ, τ′, t, τ′′), one assumes (τ · τ′ · t · τ′′ ∈

wk(M))∧({lab(τ), lab(τ′′)} ⊆ Z)∧∀t′ ∈ (breq(lab(τ))∪

set(τ′) ∪ req(lab(τ′′))) : ok(t′), so that tit2(τ, τ′, t, τ′′)

denotes a TIT whose specification is the triplet (lab(τ ·

τ′ · t · τ′′), t, breq(lab(τ))∪ set(τ′) ∪ req(lab(τ′′))).

3

4.4. The candidate TITs specified for the members ofΘ′

Those of the methods which allow Θ′ , ∅ virtually

construct C′ in parallel with Θ′ and encode them in a

digraph G′
S

, the final version of a digraph GS [1, 8].

Every vertex v in vr(G′
S

) represents a transition, call it

tv, inΘ′ and virtually contributes to C′ every tit1(τ, tv, τ
′·

τ′′) which satisfies (lab(τ · tv · τ
′) ∈ T) ∧ (lab(τ′′) ∈ D)

and, depending on the method, τ′ = ǫ or lab(τ′·τ′′) ∈ Γ′.

4.5. The candidate TITs specified for the members of Θ

For transitions in Θ, the methods represent candidate

ITs as specific walks in a separate digraph, which we

call G. Of the five methods, only one, the second of

Duan and Chen [3], explicitly pursues subtest overlap-

ping. In it, G is called G∗ and has a slightly different

structure [3, 10] than in the remaining methods, which

call the digraph G′. Hence in the following, G∗ and

G′, respectively, denote G of the first and of the second

form.

G is the digraph in which the methods choose a walk,

call it w∗, and interpret it as a TS, call it τ∗, of M. For

G∗, z∗ is computed as lab(τ∗). For G′, f in(τ∗) is always

init(M) and z∗ is computed as lab(τ∗) · dinit.

The specialty of G∗ are edges whose label is an input

sequence preceded by a minus sign, call them negative

edges. Let ed+(G) denote the set of the non-negative

edges in ed(G). Every walk w of G consisting exclu-

sively of the edges in ed+(G) is a representation of a

specific TS of M, call it ts(w). In the case of ts(w) = ǫ,

init(ts(w)) is a state in st(M) known from the context

and f in(ts(w)) = init(ts(w)). If for an e in ed+(G), ts(e)

comprises just one element, call the transition t(e). To

simplify the discussion, we in the following pretend that

in G∗, lab(e) of every e in ed+(G) is, as in G′, lab(ts(e)),

although it is actually in(lab(ts(e))).

ed+(G) is the union of the following disjoint sets, for

E the edge set {(vi, v j, x/y)|(si, s j, x/y) ∈ tr(M)}:

1. The set of the edges representing individual tran-

sitions in Θ and supposed to be present in set(w∗).

We call it E′
C

(alternatively called EC if Θ′ = ∅), as

it is originally called in G′. In G∗, it is the set of

those edges which end in a vertex v∗
e,2

with e ∈ E.

2. The set of the edges e representing (as lab(e)) in-

dividual IOSs in A. We call it Eα′ , as it is origi-

nally called in G′. In G∗, it is the set of those edges

which end in a vertex v∗
ρ,2

with ρ < E.

3. The set of the edges e representing (as lab(e)) in-

dividual IOSs in T . We call it ET , as it is origi-

nally called in G′. In G∗, it is the set of those edges

which end in a v∗
e,β

vertex.

4. The set of the edges e representing (as lab(e)) in-

dividual IOSs in U. We call it EU (alternatively

called EΓ if U = Γ), as it is originally called in

G′. In G∗, it is the set of those edges which end in

a vertex v∗e,z with z < {1, 2, β}. Let ΘU denote the

transition set {t(e)| (e ∈ E′
C

)∧ ∃e′ ∈ EU : (f in(e) =

init(e′))}.

5. The set, call it E†, of the remaining edges in ed+(G)

representing individual transitions. In G′, E† is the

union of the sets originally called EC \ E′
C

and E′′.

In G∗, E† = E.

6. The set, call it Eǫ , of the edges e with lab(e) = ǫ.

For G∗, Eǫ is not clear from the source paper of the

method [3], but by analogy with the basic method

[10], it is virtually as described in Section 5.4.

As originally in G′, let E′′ denote the set of those

edges in E† which potentially participate in a walk spec-

ifying a candidate TIT. For G∗, it is fair to say that E′′ is

E† ∩ set(w∗), because in the method which uses G∗, the

choice of E† ∩ set(w∗) is not arbitrary. Let Θ′′ denote

the set {t(e)|e ∈ E′′}.

G′ virtually specifies the following candidate TITs:

1. Every walk w of G′ which is of the form e1 ·w
′ ·e2 ·

w′′ ·e3 with ({e1, e3} ⊆ (Eα′∪ET ∪EU))∧(set(w′) ⊆

E′′) ∧ (e2 ∈ E′
C

) ∧ (set(w′′) ⊆ Eǫ) specifies the

candidate TIT tit2(ts(e1), ts(w′), t(e2), ts(e3)) and,

hence, contributes to Ξ the triplet (lab(w), t(e2),

breq(lab(e1)) ∪ set(ts(w′)) ∪ req(lab(e3))).

2. Every walk w of G′ which is of the form e1 · w
′ ·

e2 with (e1 ∈ (Eα′ ∪ ET ∪ EU)) ∧ (set(w′) ⊆

E′′) ∧ (e2 ∈ E′
C

) ∧ (f in(t(e2)) = init(M)) specifies

the candidate TIT tit2(ts(e1), ts(w′), t(e2), ts(dinit))

and, hence, contributes to Ξ the triplet (lab(w)·dinit,

t(e2), breq(lab(e1)) ∪ set(ts(w′))).

The method using G∗ assumes (T = D) ∧ (U = Γ),

implying breq(z) = ∅ for every z in U. Hence, G∗ vir-

tually specifies the following candidate TITs:

1. Every walk w of G∗ which is of the form e1 · w
′ ·

e2e3 with ({e1, e3} ⊆ (Eα′ ∪ ET ∪ EU))∧ (set(w′) ⊆

(E′′ ∪ Eǫ)) ∧ (e2 ∈ E′
C

) ∧ ∀di ∈ D : (di � lab(e2

e3)) specifies the candidate TIT tit2(ts(e1), ts(w′),

t(e2), ts(e3)) and, hence, contributes to Ξ the triplet

(lab(w), t(e2), set(ts(w′)) ∪ req(lab(e3))).

2. Every walk w of G∗ which is of the form e1e2

with (e1 ∈ E′
C

) ∧ (e2 ∈ (ET ∪ EU)) ∧ ∃di ∈ D :

(di ≤ lab(e1e2)) specifies the candidate TIT tit1(ǫ,

t(e1), ts(e2)) and, hence, contributes to Ξ the triplet

(lab(w), t(e1), req(lab(e2))).

4

4.6. Examples of cycles in R

Example 1. In Section 3.3 of the paper of Chen & al.

[1], the transition t = (s1, s2, a/0) of M0 is in Θ′, with

ts(d1) = tt′t for t′ the transition (s2, s1, b/1). The only

TIT considered for t is tit1(tt′, t, ts(d2)), contributing the

triplet (lab(ts(d1) · ts(d2)), t, {t, t′}), implying (t, t) ∈ R.

R fails to be acyclic because the method fails to include

into the initial version of GS an edge specifying the self-

dependency of t. The problem is present also in the

method of Tekle & al. [8] and in the first method of

Duan and Chen [3].

Example 2. In the paper of Chen & al. [1], the G′ in

Fig. 3 comprises the walk w = (v5, v
′
1
, T̄5)(v′

1
, v′

2
, a/2)

(v′
2
, v1, b/1)(v1, v

′
2
, T̄1) with ((v5, v

′
1
, T̄5) ∈ ET)∧ ((v′

1
, v′

2
,

a/2) ∈ E′′) ∧ ((v′
2
, v1, b/1) ∈ E′

C
) ∧ ((v1, v

′
2
, T̄1) ∈ ET),

with t((v′
1
, v′

2
, a/2)) the transition t = (s1, s2, a/2) and

with t((v′
2
, v1, b/1)) the transition t′ = (s2, s1, b/1). The

walk specifies the triplet (lab(w), t′, {t}), implying (t′,

t) ∈ R.

On the other hand, t is in Θ′, with the only candidate

IT the one from Example 1, implying (t, t′) ∈ R. R fails

to be acyclic because a specific transition in Θ′′, namely

t, is a member of Θ′. The problem is present also in

the method of Tekle & al. [8] and in the first method of

Duan and Chen [3].

Example 3. In the paper of Yalcin and Yenigün [11],

the G′ in Fig. 5 comprises the walk w = (v3, v
′
2
, T̄3)(v′

2
,

v′
3
, a/0)(v′

3
, v2, b/1)(v2, v

′
1
, T̄2) with ((v3, v

′
2
, T̄3) ∈ ET) ∧

((v′
2
, v′

3
, a/0) ∈ E′′)∧((v′

3
, v2, b/1) ∈ E′

C
)∧((v2, v

′
1
, T̄2) ∈

ET), with t((v′
3
, v2, b/1)) the transition t = (s3, s2, b/1)

and with t((v′
2
, v′

3
, a/0)) the transition t′ = (s2, s3, a/0).

The walk specifies the triplet (lab(w), t, {t′}), implying

(t, t′) ∈ R.

On the other hand, the G′ comprises the walk w′ =

(v3, v
′
2
, T̄3)(v′

2
, vU

3
, a/0)(vU

3
, v′

2
, b/1) with ((v3, v

′
2
, T̄3) ∈

ET) ∧ ((v′
2
, vU

3
, a/0) ∈ E′

C
) ∧ ((vU

3
, v′

2
, b/1) ∈ EU), with

t((v′
2
, vU

3
, a/0)) = t′ and with t ∈ req(b/1). The walk

specifies a triplet (lab(w′), t′, {t, . . .}), implying (t′, t) ∈

R. R fails to be acyclic because a specific transition

in Θ′′, namely t′, is a member of ΘU . The problem is

present also in the first method of Duan and Chen [3].

Example 4. In the paper of Yalcin and Yenigün [11],

the G′ in Fig. 5 comprises the walk w = (vU
3
, v′

2
, b/1)(v′

2
,

v3, b/0)(v3, v
′
2
, T̄3) with ((vU

3
, v′

2
, b/1) ∈ EU) ∧ ((v′

2
, v3,

b/0) ∈ E′
C

) ∧ ((v3, v
′
2
, T̄3) ∈ ET), with t((v′

2
, v3, b/0))

the transition t = (s2, s3, b/0) in breq(b/1). The walk

specifies a triplet (lab(w), t, {t, . . .}), implying (t, t) ∈ R.

R fails to be acyclic because for a specific edge e in EU

with breq(lab(e)) , ∅, f in(e) ∈ {init(e′)|e′ ∈ (E′
C
∪E′′)}.

The problem is present also in the first method of Duan

and Chen [3].

Example 5. If G∗ is the digraph which Duan and Chen

[3] partially present in Fig. 9 of their paper, wk(G∗)

comprises the walk w = (v∗
ρ0,1
, v∗
ρ0,2
, d0 · d1)(v∗

ρ0,2
, v1, ǫ)

(v1, v2, a/1)(v2, v
∗
e7,1
, ǫ)(v∗

e7,1
, v∗

e7,2
, b/0)(v∗

e7,2
, v∗

e7,β
, d0) of

G∗, with ((v∗
ρ0,1
, v∗
ρ0,2
, d0 · d1) ∈ Eα′) ∧ ((v∗

ρ0,2
, v1, ǫ) ∈

Eǫ) ∧ ((v1, v2, a/1) ∈ E) ∧ ((v2, v
∗
e7,1
, ǫ) ∈ Eǫ) ∧ ((v∗

e7,1
,

v∗
e7,2
, b/0) ∈ E′

C
) ∧ ((v∗

e7,2
, v∗

e7,β
, d0) ∈ ET), with t((v1, v2,

a/1)) the transition t = (s1, s2, a/1) and with t((v∗
e7,1
,

v∗
e7,2
, b/0)) the transition t′ = (s2, s0, b/0). If the walk is

a segment of w∗, so that (v1, v2, a/1) ∈ E′′, it specifies

the triplet (lab(w), t′, {t}), implying (t′, t) ∈ R.

On the other hand, the G∗ comprises the walk w′ =

(v∗
e3,1
, v∗

e3,2
, a/1)(v∗

e3,2
, v∗e3,γ

, b/0 · d0), with ((v∗
e3,1
, v∗

e3,2
,

a/1) ∈ E′
C

) ∧ ((v∗
e3,2
, v∗e3,γ

, b/0 · d0) ∈ EU), with t((v∗
e3,1
,

v∗
e3,2
, a/1)) = t and with t′ ∈ req(b/0 · d0). The walk

specifies a triplet (lab(w′), t, {t′, . . .}), implying (t, t′) ∈

R. R fails to be acyclic because a specific transition in

Θ′′, namely t, is a member of ΘU .

4.7. Proposed modifications

Modification 1. If not assuming Θ′ = ∅, modify the

G′
S

-construction procedure as follows (recall Exam-

ple 1), with Ξ′ denoting the set of all the triplets specify-

ing a tit1(τ, t, τ′ ·τ′′) with (lab(τ · t ·τ′) ∈ T)∧ (lab(τ′′) ∈

D) ∧ ((τ′ = ǫ) ∨ (lab(τ′ · τ′′) ∈ Γ′)):

1. Initialize vr(GS) to {vt,θ|∃(z, t, θ) ∈ Ξ′} and ed(GS)

to {(vt,θ, vt′,θ′ , ǫ)|({vt,θ, vt′,θ′} ⊆ vr(GS)) ∧ (t ∈ θ′)}.

2. When removing vertices of GS to change it into an

acyclic G′
S

, the set to be maximized and adopted

as Θ′ is {t|∃vt,θ ∈ vr(G′
S

)}. The set of the triplets

which G′
S

contributes to Ξ is then {(z, t, θ)|((z, t,

θ) ∈ Ξ′) ∧ (vt,θ ∈ vr(G′
S

))}.

Modification 2. Secure (Θ′′ ∪ req(U)) ∩ (Θ′ ∪ ΘU) =

∅ (recall the Examples 2, 3 and 5), but, unlike the

first method of Duan and Chen [3], allow Θ′′ ∩

(∪z∈Γset(ts(ip(z)))) , ∅.

Modification 3. In G′, for every edge e in EU with

breq(lab(e)) , ∅, with f in(e) originally a v′
i
, change

f in(e) into vi, a vertex not in {init(e′)|e′ ∈ (E′
C
∪ E′′)}

(recall Example 4).

Theorem 1. The modifications secure (z∗ ∈ lan(N))⇒

ok(M).

Proof. With Mod. 3, every (z, t, θ) in Ξ satisfies (t ∈

Θ′)∨ (θ ⊆ (Θ′′ ∪ req(U))). Hence, by (Θ′′ ∪ req(U))∩

Θ′ = ∅, R comprises no (t, t′) with (t ∈ Θ) ∧ (t′ ∈ Θ′),

5

implying that any cycle involving a member ofΘ′ is one

comprising only members of Θ′, but with Mod. 1, there

is no such cycle.

Any cycle is, hence, in {(t, t′)|((t, t′) ∈ R) ∧ ({t, t′} ⊆

Θ)}. By (Θ′′∪req(U))∩ΘU = ∅, the relation comprises

no (t, t′) with t′ ∈ ΘU , implying that any cycle is in {(t,

t′)|((t, t′) ∈ R) ∧ ({t, t′} ⊆ (Θ \ ΘU))}. With Mod. 3 and

every (z, t, θ) in Ξ with t ∈ (Θ \ ΘU) satisfying θ ⊆ Θ′′,

this relation is, however, acyclic, because the methods

secure acyclicity of its superrelation {(t(e′), t(e))|∃e · w ·

e′ ∈ wk(G) : ((e ∈ E′′) ∧ (set(w) ⊆ (E′′ ∪ Eǫ)) ∧ (e′ ∈

E′
C

))}. Hence, the entire R is acyclic. The rest of the

proof is the proof from Section 3.

5. The modifications summarized by method

For each of the methods, the modifications are de-

scribed in the language of its source paper.

5.1. The method of Chen & al. [1] or Tekle & al. [8]

For a path P̄ in G, let dep(P̄) denote the set of those

edges in E whose input symbol is in the input portion of

label(P̄). Modify the computation of L as follows:

1. Initially, let VS comprise every vel,η for which there

is an i ∈ {1, . . . , n} with R̄i (alternatively called ρi

[1]) an e1 . . . eh with l ∈ {1, . . . , h} (alternatively

with l = h [1]) and η = {e1, . . . , el−1} ∪ dep(el+1 . . .

eh) and the edges el+1, . . . , eh nonconverging.

2. Initially, let ES comprise every (ve,η, ve′,η′) with

({ve,η, ve′,η′} ⊆ VS) ∧ (e ∈ η′).

3. When removing vertices of GS to change it into

an acyclic (V ′
S
, E′

S
), the set to be maximized and

adopted as L is {e|∃ve,η ∈ V ′
S
}.

Secure (v′
i
, v′

j
, x/y) < E′′ for every (vi, v j, x/y) in L.

5.2. The method of Yalcin and Yenigün [11]

Modify the definition of EU to {(vU
i
, v j, Ūi/λ(si, Ūi))|

(Ūi ∈ U) ∧ (s j = δ(si, Ūi))}. Secure (v′
i
, v′

j
, x/y) < E′′

for every (v′
i
, vU

j
, x/y) in EC .

5.3. The first method of Duan and Chen [3]

Let dep(Γ) denote the set of those edges in E whose

input symbol is in the input portion of the label of the

invertible path of a member of Γ.

If the basic method is that of Chen & al. [1] or Tekle

& al. [8], modify the computation of L as in Section 5.1

while also securing dep(Γ) ∩ L = ∅. Otherwise, let L

denote ∅.

Modify the definition of EΓ to EΓ = {((start(Wi))
γ,

(end(Wi))
′, γi)|γi is in Γ and owns a T -sequence as a

suffix} ∪ {((start(Wi))
γ, end(Wi), γi)|γi is in Γ and does

not own a T -sequence as a suffix}.

Modify the definition of EC to {(v′
i
, v
γ

j
, x/y)|((vi, v j,

x/y) ∈ (E \ dep(Γ))) ∧ (v
γ

j
∈ VΓ)} ∪ {(v′

i
, v j, x/y)|((vi, v j,

x/y) ∈ dep(Γ)) ∨ (v
γ

j
< VΓ)}.

Secure (v′
i
, v′

j
, x/y) < E′′ for every (vi, v j, x/y) in L

and (v′
i
, v
γ

j
, x/y) in EC , but not necessarily for every

(si, s j, x/y) in the invertible path of a member of Γ.

If the basic method is that of Hierons and Ural [4],

implement the correction from the Erratum [5].

5.4. The second method of Duan and Chen [3]

As G∗ comprises also the edges from E, whose label

is an input/output pair, we for the sake of compatibil-

ity assume that the label of any newly introduced edge,

originally defined as an input sequence (possibly pre-

ceded with a minus sign), is actually the corresponding

IOS (inheriting the minus sign, if any).

For dep(Γ) as in Section 5.3, modify the constraint for

creating a vertex v∗e,γi
with (e ∈ E)∧ (γi ∈ Γ)∧ (end(e) =

start(Wi)) to e < dep(Γ).

For the edges in G∗ labelled ε, we assume that they

include the following [10], with v∗ denoting the special

vertex of G∗ created as its root:

1. For every path ρ = (v0, vi, z) in A′, the edge (v∗, v∗
ρ,1
,

ε).

2. For every edge e in E with D0/λ(s0,D0) for ev-

ery edge (v∗
e,2
, v∗e,q, z) in G∗ a prefix of label(e)z, the

edge (v∗, v∗
e,1
, ε).

3. For every path ρ = (vi, v j, z) in A′, the edges (vi,

v∗
ρ,1
, ε) and (v∗

ρ,2
, v j, ε).

4. For every edge e = (vi, v j, z) in E, with δ(s j,D j)

an sk, the edges (vi, v
∗
e,1
, ε) and (v∗

e,β
, vk, ε) and for

every vertex v∗e,γi
in G∗ with γi ∈ Γ, the edge (v∗e,γi

,

end(Wi), ε).

Secure that the generated rooted path of G∗ ends in V

and traverses no edge in dep(Γ).

6. Final remarks

The idea of the considered methods is to include in

the constructed IOS a sufficient set of tests, specific seg-

ments whose observation on the system under test in the

context of the other tests implies specific desirable prop-

erties of the system. We believe that testing specialists

should concentrate primarily on identifying small can-

didate sets of short tests with a provably sufficient col-

lective power, for once a pool of such sets is available,

optimally deciding which of them and how the con-

structed IOS should cover is a routine task that requires

6

no domain-specific knowledge and can, hence, be left to

mathematicians. Only with such separation of concerns,

which the considered methods fail to achieve, test con-

struction becomes sufficiently transparent to be reliable

and truly opens to new, more efficient kinds of tests and

even to new deduction patterns for testing power assess-

ment [2, 6, 7].

References

[1] J. Chen, R. M. Hierons, H. Ural, H. Yenigün, Eliminating redun-

dant tests in a checking sequence, Proc. IFIP Int’l Conf. Testing

of Communicating Systems, pp. 146-158, May-June 2005.

[2] M. E. Dincturk, A Two Phase Approach for Checking Sequence

Generation, M.Sc. Thesis, Sabancı University, August 2009.

[3] L. Duan, J. Chen, Exploring alternatives for transition verifica-

tion, J. Syst. Software 82(9) (Sept. 2009) 1388-1402.

[4] R. M. Hierons, H. Ural, Reduced length checking sequences,

IEEE Trans. Computers 51(9) (Sept. 2002) 1111-1117.

[5] R. M. Hierons, H. Ural, Erratum: Reduced length checking se-

quences, IEEE Trans. Computers 58(2) (Feb. 2009) 287.

[6] M. Kapus-Kolar, A Better Procedure and a Stronger State-

Recognition Pattern for Checking Sequence Construction, Jožef

Stefan Institute Technical Report #10574, 2010.

[7] M. Kapus-Kolar, New state-recognition patterns for confor-

mance testing of finite state machine implementations, submit-

ted for publication, 2010.

[8] K. T. Tekle, H. Ural, M. C. Yalcin, H. Yenigün, Generalizing re-

dundancy elimination in checking sequences, Proc. Int’l Symp.

Computer and Information Sciences, pp. 915-925, Oct. 2005.

[9] H. Ural, X. Wu, F. Zhang, On minimizing the lengths of check-

ing sequences, IEEE Trans. Computers 46(1) (Jan. 1997) 93-99.

[10] H. Ural, F. Zhang, Reducing the length of checking sequences

by overlapping, Proc. IFIP Int’l Conf. Testing of Communicat-

ing Systems, pp. 274-288, May 2006.

[11] M. C. Yalcin, H. Yenigün, Using distinguishing and UIO se-

quences together in a checking sequence, Proc. IFIP Int’l Conf.

Testing for Communicating Systems, pp. 259-273, May 2006.

7

