
New state-recognition patterns for conformance testing of finite state machine

implementations

Monika Kapus-Kolar

Jožef Stefan Institute, Department of Communication Systems, Jamova 39, SI-1111 Ljubljana, Slovenia

Abstract

Standards are of little value without conformance testing. Systematic testing relies on a formal model of the system

under test. In black-box conformance testing of reactive systems, the system is often assumed to be an implementation

of a given finite state machine and to possess no more states than the machine. The key activity in the interpretation of

an input/output sequence observed (or, in test construction, planned to be observed) on the system is then to recognize

the visited states as states of the specification machine. In the interpretation, one applies various state-recognition

patterns (SRPs). The stronger the SRPs available, the shorter the test can be. In the paper, three traditional SRPs are

generalized to two much stronger, but still relatively easy to apply SRPs. The SRPs are then generalized even further,

to an extremely strong and general SRP interesting also as a template from which further practically interesting SRPs

can be developed simply by specialization.

Keywords: Conformance testing, Deterministic finite state machine, State recognition.

1. Introduction

1.1. Preface

A standard is a document specifying the properties

which an object must possess if it is to conform to the

standard. Such a specification, however, is of little value

if one does not know how to test whether an object con-

forms to it or not. Conformance testing is so central to

the standardization process that it is itself subject of in-

tensive standardization. The International Organization

for Standardization has so far published 79 standards on

the subject, of which as many as 66 have been issued by

its Joint Technical Committee for Information Technol-

ogy (IT). Particularly important is conformance testing

in the field of communication protocols [1], for which

the development of public services started already in

the eighties [2], with utmost importance especially for

safety-critical applications, e.g. railway signalling [3],

and security-critical application, e.g. firewalls [4].

IT standards specify various kinds of hardware, soft-

ware and hybrid objects. Regardless of whether such an

object is self-standing or a part of another, one is actu-

ally interested only in its behaviour towards its environ-

ment, e.g. towards its users and peers. When testing an

Email address: monika.kapus-kolar@ijs.si (Monika

Kapus-Kolar)

IT system or a part of it for conformance with a stan-

dard, it is, hence, appropriate to regard it as a reactive

system [5] and desirable to know how to test it as a black

box. In such testing, the topic of our paper, one assumes

that the only way to affect the behaviour of the system

under test (SUT) is to offer it signals from its input al-

phabet and that the only way to observe its behaviour

is to observe which signals from its output alphabet it

produces in response.

1.2. Reactive systems as DFSM implementations

In conformance testing, one assumes that the SUT

should ideally be a specific machine M, the specifica-

tion machine (SM), but is actually one of the machines

from the adopted set of the expected implementations

of M. The SM can be the model which the pertinent

standard defines for the SUT, but more often, it is an

abstraction of the model, for one does not want it to

be too complex. In any case, it is desirable that the SM

and its expected implementations are given formally, for

only then the testing process can profit from advanced

formal methods and tools [6].

In the paper, we adopt the very common assump-

tion that the SM and its implementations are deter-

ministic finite state machines (DFSMs), all defined on

the same input alphabet and the same output alphabet.

Preprint submitted to Computer Standards & Interfaces October 25, 2011

s
1 s

3
s
2

b / 1

b / 1

b / 1a / 1

a / 0a / 0

Figure 1: An example DFSM

A DFSM is a machine possessing a finite number of

states in which it might reside, among them its initial

state. Upon receiving a specific input when in a spe-

cific state, it executes the corresponding transition, i.e.,

generates the corresponding output and then enters the

corresponding next state (possibly the same as the state

before the transition). The example DFSM [7] in Fig. 1

has states s1, s2 and s3, with s1 the initial state, accepts

inputs a and b and responds with outputs 0 and 1.

When a specific sequence of inputs is applied to a

DFSM in a specific state, the DFSM responds with the

corresponding sequence of outputs and thereby executes

the corresponding input/output sequence (IOS). For ex-

ample, when the input sequence aba is applied to the

state s2 of the DFSM in Fig. 1, the DFSM executes the

IOS a/0b/1a/0. The IOSs which a DFSM is able to ex-

ecute from a specific state constitute the language of the

state.

1.3. Checking sequences

IOSs are the central concept of black-box testing.

One provokes and observes them on the SUT and then

tries to interpret their observation as a proof that the

SUT is non-faulty, i.e., that its initial state has the same

language as the initial state of the SM. If for a set of

IOSs, observation of its members on the SUT allows

construction of such a proof, the set is a complete test

suite (CTS). The members of a CTS are by definition

IOSs executable on the SM and supposed to be exe-

cutable from the initial state of the SUT. One favours

CTSs which are a small set of short IOSs. Of particular

interest are CTSs comprising a single IOS, a so called

checking sequence (CS), for they are applicable also if

the SUT does not possess the reliable reset capability or

its reset into the initial state is an undesirable (e.g. time

consuming) operation.

The difficulty of CS construction highly depends on

the nature of the SM and its expected implementations.

One, hence, typically makes the following assumptions,

without which the existence of a short CS is highly im-

probable:

1. The SM possesses a distinguishing set (DS), i.e.,

a set which for every state s of the SM comprises

such an IOS z̄s in the language of s, the response

to an input sequence x̄s, that for every two different

states s and s′ of the SM, x̄s and x̄s′ have a common

prefix to which SM in the two states responds with

two different output sequences. For example, the

SM in Fig. 1 has a DS {a/1, a/0a/1, a/0a/0}.

2. For every two different states s and s′ of the SM,

there is an input sequence leading the SM from s

to s′.

3. The SUT has at most as many states as the SM.

Under the assumptions, adopted also for the rest of

the paper, the SUT is non-faulty exactly if it is an in-

stance of the SM. Moreover, for such an SUT, the con-

struction of a correctness proof from the IOS observed

as a proper response to a CS amounts to recognizing the

states which the SUT visits during the IOS execution as

states of the SM and thereby finding an instance of ex-

ecution for every SM transition. As an example, Fig. 2

shows an increasingly finer response interpretation for a

CS which we constructed [8] for the SM in Fig. 1. In the

figure, for each point of the CS execution, an inserted

set lists the indices of the SM states not yet eliminated

as the possible current state of the SUT. In the last line,

all the sets are singleton, so that one can see the initial

state and the final state of every transition executed, the

transitions including every transition of the SUT.

1.4. Contributions and organization of the paper

In CS construction, an interpretation plan for the cor-

responding IOS is virtually conceived in parallel with

the CS. The key decision in CS construction is, hence,

on which state-recognition patterns (SRPs) to rely for

the interpretation. The traditional methods supporting

(also) DS-based CS construction [9–23] rely for it on

just four SRPs. We present them in Section 3, as SRPs 1

to 4, after in Section 2 introducing the employed nota-

tion and definitions. In Section 4, we then propose four

new SRPs, SRPs 5 to 8, of which particularly SRP 8,

a generalization of the SRPs 2-7, is extremely strong.

With stronger SRPs, more input sequences can be rec-

ognized as CSs, meaning that with such SRPs, one can

potentially construct shorter CSs. In Section 5, we iden-

tify two possibilities for employing additional SRPs, of

any kind, in the existing CS-construction methods. Sec-

tion 6 comprises a discussion and conclusions.

The most innovative concept in the paper is that of

a distinguisher. The author first tried to publish it in a

wider paper submitted for review in April 2009. Un-

fortunately, the paper was rejected as too formal for the

typical reader, and subsequently archived as a techni-

cal report [24]. In the paper, distinguishers were de-

2

(1) a/1b/1b/1a/1b/1a/0a/0a/1a/0b/1a/0a/0

(2) {1}a/1{1, 2, 3}b/1{1, 2, 3}b/1{1}a/1{1, 2, 3}b/1{3}a/0{2}a/0{1}a/1{1, 2, 3}a/0{1, 2, 3}b/1{3}a/0{1, 2, 3}a/0

{1, 2, 3}

(3) {1}a/1{1, 2, 3}b/1{1, 2, 3}b/1{1}a/1{1, 2, 3}b/1{3}a/0{2}a/0{1}a/1{2, 3}a/0{1, 2, 3}b/1{3}a/0{2, 3}a/0{1, 2, 3}

(4) {1}a/1{1, 2, 3}b/1{3}b/1{1}a/1{1, 2, 3}b/1{3}a/0{2}a/0{1}a/1{2, 3}a/0{1, 2, 3}b/1{3}a/0{2, 3}a/0{1, 2, 3}

(5) {1}a/1{2, 3}b/1{3}b/1{1}a/1{2, 3}b/1{3}a/0{2}a/0{1}a/1{2, 3}a/0{1, 2, 3}b/1{3}a/0{2}a/0{1, 2, 3}

(6) {1}a/1{2}b/1{3}b/1{1}a/1{2}b/1{3}a/0{2}a/0{1}a/1{2, 3}a/0{1, 2}b/1{3}a/0{2}a/0{1, 2, 3}

(7) {1}a/1{2}b/1{3}b/1{1}a/1{2}b/1{3}a/0{2}a/0{1}a/1{2}a/0{1, 2}b/1{3}a/0{2}a/0{1}

(8) {1}a/1{2}b/1{3}b/1{1}a/1{2}b/1{3}a/0{2}a/0{1}a/1{2}a/0{1}b/1{3}a/0{2}a/0{1}

Figure 2: An increasingly finer interpretation of the IOS corresponding to the CS abbabaaaabaa of the SM in Fig. 1

fined for multi-port systems with no coordination be-

tween the testers controlling and observing individual

ports, such as the systems which Hierons targets in a

DS-based method for constructing synchronizable CSs

[25]. Along with the generalized distinguishers, the pa-

per proposed an SRP semantically equivalent to a slight

specialization of SRP 8 generalized to multi-port sys-

tems and context-dependent state recognition. While

the paper was in review, distinguishers of the restricted

kind defined below in Section 4.1 and SRP 5 were inde-

pendently discovered also by Dincturk [26] (more on his

work in Section 6). As he didn’t publish the results ei-

ther, the author was first made aware of his M.Sc. thesis

in October 2010, after inventing the SRP 8 in its present

form and reinventing SRP 5 as its specialization.

2. Notation and definitions

A transition of a DFSM is an (s, x/y, s′) with s its

initial state, x the applied input, y the executed out-

put and s′ its final state, in the following also called

δ(s, x). A transition sequence (TS) of a DFSM is a se-

quence (s1, x1/y1, s2) . . . (sm, xm/ym, sm+1) of its consec-

utive transitions. For such a sequence τ̄, let st(τ̄) denote

its state sequence s1 . . . sm+1, in(τ̄) its input sequence

x1 . . . xm, out(τ̄) its output sequence y1 . . . ym, ios(τ̄) its

IOS x1/y1 . . . xm/ym, init(τ̄) its initial state s1 and f in(τ̄)

its final state sm+1.

If for a DFSM M and an IOS z̄ which it can execute,

init(τ̄) is for every TS τ̄ of M with ios(τ̄) = z̄ the same

state, an s, z̄ is in M a unique IOS (UIO), of s. If for a

DFSM M and an IOS z̄ which it can execute, f in(τ̄) is

for every TS τ̄ of M with ios(τ̄) = z̄ the same state, an

s, z̄ is in M a backward UIO (BUIO), of s.

In the following, let {s1, . . . , sn} denote the state

set of the SM, with s1 the initial state, and N

the state index set {1, . . . , n}. An interpreted IOS

(IIOS), such as those in Fig. 2, is then a sequence

I1x1/y1I2x2/y2 . . . Imxm/ymIm+1 with x1/y1 . . . xm/ym a

non-empty IOS (the interpreted IOS) and with Ii ⊆ N

for every 1 ≤ i ≤ m+1. For such an IIOSω, let in(ω) de-

note the input sequence x1 . . . xm, out(ω) the output se-

quence y1 . . . ym, ios(ω) the IOS x1/y1 . . . xm/ym, init(ω)

the state set {si|i ∈ I1}, f in(ω) the state set {si|i ∈ Im+1}

and st(ω) the set of all state sequences si1 . . . sim+1
with

i j ∈ I j for every 1 ≤ j ≤ m + 1.

We say that a TS τ̄ matches an IIOS ω, denoted as

µ(τ̄, ω), if (ios(τ̄) = ios(ω)) ∧ (st(τ̄) ∈ st(ω)). For an

IIOS ω, let µ(ω) denote that the SUT has a TS τ̄ with

µ(τ̄, ω).

3. The traditional state-recognition patterns

In DS-based CS construction, one starts by adopting

a DS D of the SM as the primary state recognizer, i.e.,

by deciding that an SUT state s will be recognized as a

specific SM state si, with the corresponding IOS in D in

the following called di, only if D is a DS also of the SUT

(so that one knows that the SUT has exactly n states) and

the SUT can execute di from s. This is below formalized

in SRP 1, with which one can establish the required on-

to-one correspondence between the SM states and the

SUT states. The SRP, in combination with the SRP 2,

explains how in Fig. 2, with D = {a/1, a/0a/1, a/0a/0},

line (2) was devised from line (1).

SRP 1. If the SUT for every i in N has a TS τ̄i with

ios(τ̄i) = di, then

1) for every i in N, with di an xi
1
/yi

1
. . . xi

mi
/yi

mi
, µ({i}

xi
1
/yi

1
N . . .Nxi

mi
/yi

mi
N), and

2) for every TS τ̄ of the SUT, with ios(τ̄) an x1/y1 . . .

xm/ym, µ(τ̄,Nx1/y1N . . .Nxm/ymN).

The remaining traditional SRPs are intended for rec-

ognizing the initial state or the final state of an SUT

transition as a specific previously recognized SUT state.

The second SRP formalizes recognition of a state by

an outgoing IOS. Informally, it says that if in a specific

3

state si, the SUT once responded to a specific input se-

quence x̄ with a specific output sequence ō, then when-

ever the SUT responds to x̄ with an output sequence

different from ō, one knows that the state just before

the application of x̄ was not si. The SRP explains, for

example, how in Fig. 2, line (3) was devised from line

(2), after in line (2) observing that in s1, the SUT once

responded to a with 1.

SRP 2. If

1) µ(τ̄, ω) for a TS τ̄ of the SUT and an IIOS ω =

I1x1/y1I2 . . . Imxm/ymIm+1 and

2) µ(ω1) for an IIOS ω1 = {i}x1/y
′
1
I′
2
. . . I′mxm/y

′
mI′

m+1

with y′
1
. . . y′m , y1 . . . ym,

then µ(τ̄, (I1 \ {i})x1/y1I2 . . . Imxm/ymIm+1).

The third SRP formalizes recognition of a state by an

incoming IOS and its source state. Informally, it says

that if from a specific state si, a specific input sequence

x̄ once took the SUT to a state in a set S , then whenever

the SUT executes x̄ from si, the resulting state is in S .

The SRP explains, for example, how in Fig. 2, line (4)

was devised from line (3), after in line (3) observing that

from s1, ab once took the SUT to s3.

SRP 3. If

1) µ(τ̄, ω) for a TS τ̄ of the SUT and an IIOS ω =

{i}x1/y1I2 . . . Imxm/ymIm+1 and

2) µ(ω1) for an ω1 = {i}x1/y1I′
2
. . . I′mxm/ymI′

m+1
,

then µ(τ̄, {i}x1/y1I2 . . . Imxm/ym(Im+1 ∩ I′
m+1

)).

The last SRP, employed in [16, 22], formalizes recog-

nition of a state by an outgoing IOS and its destination

state. Informally, it says that if from a specific state si, a

specific input sequence x̄ once took the SUT to a state in

a set S , then whenever the SUT executes x̄ and thereby

enters a state outside S , one knows that the state just be-

fore the application of x̄ was not si. The SRP explains,

for example, how in Fig. 2, line (6) was devised from

line (5), after in line (5) observing that from s3, b once

took the SUT to s1.

SRP 4. If

1) µ(τ̄, ω) for a TS τ̄ of the SUT and an IIOS ω =

I1x1/y1I2 . . . Imxm/ymIm+1 and

2) µ(ω1) for an ω1 = {i}x1/y
′
1
I′
2
. . . I′mxm/y

′
mI′

m+1
with

I′
m+1
∩ Im+1 = ∅,

then µ(τ̄, (I1 \ {i})x1/y1I2 . . . Imxm/ymIm+1).

4. Four new state-recognition patterns

4.1. Distinguishers

For two IIOS ω1 and ω2, let di f (ω1, ω2) denote that

there exist two IIOSs ω′
1

and ω′
2

with ω′
1

a prefix of

ω1, ω′
2

a prefix of ω2, in(ω′
1
) = in(ω′

2
) and (out(ω′

1
) ,

out(ω′
2
))∨ (f in(ω′

1
)∩ f in(ω′

2
) = ∅). The convenience of

a di f (ω,ω′) is that it for every two TSs τ̄ and τ̄′ of the

SUT with µ(τ̄, ω) and µ(τ̄′, ω′) implies init(τ̄) , init(τ̄′)

and, hence, τ̄ , τ̄′.

The SRPs 2-4 are all of the general form (µ(τ̄, ω) ∧

(∧1≤i≤kµ(ωi))) ⇒ µ(τ̄, ω
′) with ios(ω′) = ios(ω) and

st(ω′) ⊆ st(ω), but restrict k to 1 and init(ω1) to sin-

gleton sets. The second restriction means that one can-

not profit from an observed IOS unless the state from

which it has been executed is precisely recognized. As

a motivation for developing SRPs which work without

the restrictions and are, hence, potentially stronger, we

give two examples of interpretation which follows the

same template, but with k = 3 and init(ω1), init(ω2) and

init(ω3) not singleton.

Example 1. If µ(τ̄, ω), µ(ω1), µ(ω2) and µ(ω3) for a TS

τ̄ of the SUT and the IIOSs

ω = {1, 2, 3, 4}a/0{1, 2, 3, 4}b/2{1, 2, 3, 4},

ω1 = {1, 2, 3}a/0{1, 2, 3, 4}b/0{1, 2},

ω2 = {1, 2, 3}a/0{1, 2, 3, 4}b/0{4} and

ω3 = {1, 2, 3}a/0{1, 2, 3, 4}b/1{4},

then µ(τ̄, {4}a/0{1, 2, 3, 4}b/2{1, 2, 3, 4}). �

Example 2. Take the same ω1, ω2 and ω3 as in Exam-

ple 1. If µ(ωi) for 1 ≤ i ≤ 3 and µ(τ̄, ω) for a TS τ̄ of the

SUT and the IIOS

ω = {1, 2, 3}a/0{1, 2, 3, 4}b/1{1, 2, 3, 4},

then µ(τ̄, {1, 2, 3}a/0{1, 2, 3, 4}b/1{4}). �

In both examples, the implication results from the fact

that the IIOSs ω1, ω2 and ω3 match three different TSs

τ̄′ of the SUT with init(τ̄′) in the set S = {s1, s2, s3} and

in(τ̄′) = ab, meaning that the SUT has no other such TS

and that each of the TSs starts in an unknown, but differ-

ent state in S . So if in(τ̄) = ab and out(τ̄) = 02, init(τ̄)

is not in S (Example 1). Besides, if init(τ̄) ∈ S and

in(τ̄) = ab, τ̄ is one of the three TSs, with out(τ̄) = 01

implying that it is the one matching ω3, so that f in(τ̄) =

s4 (Example 2).

The set {ω1, ω2, ω3} is what we call a distinguisher,

which we define as a non-empty IIOS set ∆ satisfying

the following:

1) The set ∪ω∈∆init(ω), call it init(∆), is of the size |∆|.

2) For every ω in ∆, di f (ω,ω′) for every other IIOS ω′

in ∆.

4

Lemma 1. If µ(ω) for every ω in a distinguisher ∆, the

SUT has for every ω in ∆ exactly one TS τ̄ with µ(τ̄, ω)

and among the TSs, there is for every state in init(∆)

exactly one starting in the state.

Proof. As µ(ω) for every ω in ∆, one can for every

ω in ∆ select a TS τ̄ω with µ(τ̄ω, ω). For every ω

in ∆, µ(τ̄ω, ω) implies init(τ̄ω) ∈ init(ω). For every

two different ω and ω′ in ∆, we have, by di f (ω,ω′),

init(τ̄ω) , init(τ̄ω′), implying |{init(τ̄ω)|ω ∈ ∆}| = |∆|.

With {init(τ̄ω)|ω ∈ ∆} ⊆ init(∆) and |init(∆)| = |∆|,

this implies {init(τ̄ω)|ω ∈ ∆} = init(∆), which implies

that for every ω in ∆, exactly one state qualifies for

init(τ̄ω), and for every state s in init(∆), ∆ comprises

an ω with init(τ̄ω) = s. So if for an ω in ∆ also µ(τ̄, ω),

init(τ̄) = init(τ̄ω) and, by in(τ̄) = in(τ̄ω), τ̄ = τ̄s. Be-

sides, if for an s in init(∆), with init(τ̄ω) = s for an ω in

∆, also init(τ̄ω′) = s for an ω′ in ∆, then ω = ω′.

4.2. Interpretation With General Distinguishers

The SRPs 2-4 rely on the distinguisher {ω1}. The be-

low defined SRPs 5 and 6 generalize the SRPs 2 and 4

and the SRP 3, respectively, to general distinguishers.

They are, respectively, the SRPs on which the Exam-

ples 1 and 2 rely.

SRP 5. If

1) µ(τ̄, ω) for a TS τ̄ of the SUT and an IIOS ω =

I1x1/y1I2 . . . Imxm/ymIm+1 and

2) µ(ω′) for every ω′ in a distinguisher ∆ with di f (ω,

ω′) for every ω′ ∈ ∆,

then µ(τ̄, (I1 \ {i|si ∈ init(∆)})x1/y1I2 . . . Imxm/ym Im+1).

SRP 6. If

1) µ(τ̄, ω) for a TS τ̄ of the SUT and an IIOS ω =

I1x1/y1I2 . . . Imxm/ymIm+1 and

2) µ(ω′) for everyω′ in a distinguisher∆ with init(ω) ⊆

init(∆),

then µ(τ̄, I1x1/y1I2 . . . Imxm/ym(Im+1 ∩ I)) with I =

∪(ω′∈∆)∧¬di f (ω,ω′)Iω′ with Iω′ for ω′ in ∆ defined as I′
m+1

if ω′ is an I′
1
x1/y1I′

2
. . . I′mxm/ymI′

m+1
. . . and as N other-

wise.

The SRPs 5 and 6 are reasonably simple to apply, be-

cause when they on the basis of a distinguisher refine a

µ(τ̄, ω) into a µ(τ̄, ω′), they let ω′ differ from ω only in

the first or the last element, respectively. The follow-

ing example indicates that interpretation can go beyond

that, even without distinguishers.

Example 3. For a TS τ̄ of the SUT, µ(τ̄, {1}a/0{1, 2, 3}

a/0{2}) implies µ(τ̄, {1}a/0{2, 3}a/0{2}) simply because

τ̄ = (s1, a/0, s1)(s1, a/0, s2) would mean that the SUT is

in s1 able to react to a in more than one way, which is,

by the assumption that it is deterministic, not the case.

�

The reasoning in the example is an instance of the

following SRP:

SRP 7. If

1) µ(τ̄, ω) for a TS τ̄ of the SUT and an IIOS ω =

I1x1/y1I2 . . . Imxm/ymIm+1 and

2) for a 1 ≤ p ≤ m + 1 and a q ∈ Ip, there are for

every state index sequence i1 . . . im+1 in st(ω) with

ip = q some 1 ≤ j < k ≤ m with ((i j, x j) = (ik, xk))∧

((y j, i j+1) , (yk, ik+1)),

then µ(τ̄, I1x1/y1I2 . . . (Ip \ {q}) . . . Imxm/ymIm+1).

The next example indicates the need for an even

stronger SRP.

Example 4. If µ(τ̄, ω), µ(ω1) and µ(ω2) for a TS τ̄ of

the SUT and the IIOSs

ω = {1}a/0{2, 3}a/0{2, 3}a/0{1, 2, 3},

ω1 = {2}a/0{1, 2} and

ω2 = {3}a/0{1, 3},

one can, as {ω1} and {ω2} are distinguishers, deduce

µ(τ̄, ω′) for the IIOS

ω′ = {1}a/0{2, 3}a/0{2, 3}a/0{2, 3},

but only with the following reasoning beyond the

SRPs 2-7: If f in(τ̄) = s1, st(τ̄) ∈ st(ω) implies that

st(τ̄) is s1 s2s2 s1 or s1 s2s3 s1 or s1 s3s2 s1 or s1 s3s3 s1. But

it cannot be s1 s2 s2s1 or s1s3 s3 s1, for this would im-

ply that the SUT is not deterministic, and it cannot be

s1 s2s3 s1, for this would contradict µ(ω1), and it cannot

be s1s3 s2 s1, for this would contradict µ(ω2). f in(τ̄) = s1

is, hence, impossible. �

The reasoning in the example is an instance of the be-

low defined SRP 8, which allows synergetic exploitation

of the SUT determinism and any number of distinguish-

ers and simultaneous reduction of multiple elements of

the IIOS to which the considered TS is matched. To un-

derstand the ideas behind the SRP, please, read its proof,

which is also a proof of its specializations SRPs 2-7.

SRP 8. For a TS τ̄ of the SUT, an IIOS ω with ios(ω) an

x1/y1 . . . xm/ym and an IIOS ω′ with ios(ω′) = ios(ω)

and st(ω′) ⊂ st(ω), µ(τ̄, ω) implies µ(τ̄, ω′) provided

that for every state sequence si1 . . . sim+1
in st(ω)\ st(ω′),

5

1) there are some 1 ≤ j < k ≤ m with ((i j, x j) = (ik,

xk)) ∧ ((y j, i j+1) , (yk, ik+1)) or

2) for a 1 ≤ j ≤ m and a distinguisher ∆ with

si j
∈ init(∆), µ(ω′′)∧ di f ({i j}x j/y j{i j+1} . . . {im}xm/ym

{im+1}, ω
′′) for every ω′′ in ∆.

Proof. If ¬µ(τ̄, ω′), µ(τ̄, ω) implies that st(τ̄) is a se-

quence si1 . . . sim+1
in st(ω) \ st(ω′) and, hence, satisfies

one of the two conditions stated in the SRP.

1) If st(τ̄) satisfies the first condition, τ̄ is a TS contra-

dicting the assumption that the SUT is deterministic.

2) If st(τ̄) satisfies the second condition, si j
∈ init(∆)

by Lemma 1 implies that for an ω′′ ∈ ∆, the SUT

has a TS τ̄1 with µ(τ̄1, ω
′′) and init(τ̄1) = si j

. On

the other hand, (ios(τ̄) = x1/y1 . . . xm/ym) ∧ (st(τ̄) =

si1 . . . sim+1
) implies that the SUT has a TS τ̄2 with

init(τ̄2) = si j
and µ(τ̄2, ω

′′′) for the IIOS ω′′′ =

{i j}x j/y j{i j+1} . . . {im}xm/ym{im+1}. We, hence, have

init(τ̄1) = init(τ̄2), but this by µ(τ̄1, ω
′′) ∧ µ(τ̄2, ω

′′′)

contradicts the assumed di f (ω′′′, ω′′).

In the proof, we recognized the two conditions as two

alternative reasons for dismissing a candidate state se-

quence. A simple way for further generalization of the

SRP is, hence, to define additional such reasons.

5. Two possibilities for employing additional SRPs

in the existing CS-construction methods

If Fig. 2, we interpreted an IOS corresponding to

an entire CS. In the construction of such an IOS, one

gradually constructs, interprets and finally connects its

special-purpose segments, in the following called tests.

Example 5. For the SM in Fig. 1, we repeat our sys-

tematic construction [8] of the IOS interpreted in Fig. 2.

First we choose d1 = a/1, d2 = a/0a/1 and d3 =

a/0a/0. We adopt the IOSs as tests and interpret them

as follows, concluding that the states of the SUT are s1,

s2 and s3:

{1}a/1{1, 2, 3}

{2}a/0{1}a/1{1, 2, 3}

{3}a/0{2, 3}a/0{1, 2, 3}

Hence, the testing of δ(s2, a) = s1 in the SUT is se-

cured. We introduce the test a/0a/0a/1 for δ(s3, a) = s2

in the SUT, because one can then delete its subtests

a/0a/0 and a/0a/1. The test a/1 is preserved, as the

only one which is in the SM an UIO of s1 and, hence,

appropriate for recognizing the initial state of the SUT.

Our tests, interpreted, are then:

{1}a/1{1, 2, 3}

{3}a/0{2}a/0{1}a/1{1, 2, 3}

We introduce the test a/1b/1a/0a/0 for verifying that

a/1b/1 is in the SUT a BUIO of s3, because then one

can easily construct a test for δ(s3, b) = s1 in the SUT,

which in turn makes a/1b/1a/0a/0 a test for δ(s1, a) ,

s3 in the SUT. Consequently, the test a/1 can be deleted.

Our tests, interpreted, are then:

{3}a/0{2}a/0{1}a/1{1, 2, 3}

{1}a/1b/1{3}a/0{2}a/0{1}

We introduce the test a/1b/1b/1a/1 for δ(s3, b) = s1

in the SUT. Our tests, interpreted, are then:

{3}a/0{2}a/0{1}a/1{1, 2, 3}

{1}a/1{1, 2}b/1{3}a/0{2}a/0{1}

{1}a/1{1, 2}b/1{3}b/1{1}a/1{1, 2, 3}

We introduce the test a/1a/0 for δ(s1, a) , s1 in the

SUT, thereby completing the testing of δ(s1, a) = s2 in

the SUT. Our tests, interpreted, are then:

{3}a/0{2}a/0{1}a/1{2}

{1}a/1{2}b/1{3}a/0{2}a/0{1}

{1}a/1{2}b/1{3}b/1{1}a/1{2}

{1}a/1{2}a/0{1}

Hence, the testing of δ(s2, b) = s3 in the SUT is se-

cured. Besides, it is safe to assume that a/1a/0 is in the

SUT a BUIO of s1. So we introduce a/1a/0b/1a/0a/0

as a test for δ(s1, b) = s3 in the SUT, consequently delet-

ing the subtest a/1a/0. Our tests, interpreted, are then:

{3}a/0{2}a/0{1}a/1{2}

{1}a/1{2}b/1{3}a/0{2}a/0{1}

{1}a/1{2}b/1{3}b/1{1}a/1{2}

{1}a/1{2}a/0{1}b/1{3}a/0{2}a/0{1}

It remains to find a short IOS which is in the SM an

UIO of s1 and comprises each of the tests as a segment.

One of such IOSs is the one interpreted in Fig. 2. �

In the example, only one sufficient set of tests was

constructed. More advanced CS-construction methods

[11–19, 21, 22] construct multiple sets and then use

global optimization to decide which of them to em-

ploy and how to pack its members into an IOS which

the SM can execute from s1. Although in the methods,

test set construction is mainly implicit and strongly en-

tangled with the activity of test selection and packing,

it is not impossible to see what the considered candi-

date test sets are [8]. They should better be constructed

and checked through interpretation explicitly, because

in some cases, they are not just non-optimal, but also

insufficient [8, 27], meaning that the constructed input

sequence might fail to be a CS. Through disentangling

test set construction and test selection and packing, one

also opens possibilities for further optimization of the

latter [8].

6

Once candidate test set construction is made explicit,

there are at least two possibilities for employing addi-

tional SRPs, of any kind. The first is for answering the

question whether a specific test set covers a specific test

goal, either a direct one, such as e.g. verification of a

specific transition, or an indirect one, such as e.g. ver-

ification that a specific IOS is an UIO or a BUIO of

the SUT and, hence, able to play the role in a subse-

quently constructed test. To a limited extent, the consid-

ered CS-construction methods already pose such ques-

tions explicitly. For example, Chen and Tekle [15, 16]

ask whether the tests primarily introduced for DS and

BUIO verification verify also a specific set of transi-

tions. Actually, asking such questions explicitly is re-

cently becoming a trend [8, 24, 26, 28], although so far

predominantly in methods without global optimization

[20, 23, 26].

Another possibility for employing additional SRPs is

in the construction of tests covering specific test goals

not yet covered by a specific candidate test set under

construction. One could, for example, check whether a

test proposed by an existing method really has to be in-

troduced in its full length. There is plenty of space also

for generalizing the template to which the current (even

the more advanced [15, 16, 18, 19, 22]) CS-construction

methods stick in the construction or recognition of tran-

sition tests [8]. Every such template must be proven to

cover the target goal and this is where additional SRPs

can help.

6. Discussion and conclusions

When interpreting IOSs observed or (in test construc-

tion) considered for observation on a DFSM implemen-

tation with no extra states, the central activity is recogni-

tion of the visited states. The traditional DS-based CS-

construction methods rely on just four SRPs, of which

three, the SRPs 2-4, are applicable also when the SM is

reduced, but has no DS.

The three SRPs all rely on a single IIOS as a wit-

ness. In this paper, we proposed the concept of distin-

guishers, IIOS sets which can be employed as collective

witnesses. Generalizing the SRPs 2 and 4 to general

distinguishers, we obtained SRP 5. The concept and the

new SRP were discovered, concurrently and indepen-

dently, also by Dincturk [26], who calls the SRP candi-

date elimination using incompatible sets. In his M.Sc.

thesis, he experimentally demonstrated that by relying

on the more general SRP, one can typically construct a

shorter CS. The reduction which he obtained for the CS

part constructed with the help of SRP 5 was about 30%.

In principle, any interpretation pattern facilitating

more general and, hence, finer state recognition poten-

tially facilitates construction of shorter CSs. Unlike

Dincturk, we generalized to general distinguishers also

SRP 3, obtaining the SRP 6. The application of SRP 6

is expected to be approximately as time consuming for

larger distinguishers as that of SRP 5, for both SRPs rely

on a single distinguisher. For the application of SRP 5,

Dincturk experimentally demonstrated that considera-

tion of distinguishers of the size up to 10 for larger SMs

requires approximately 20 times as much time as con-

sideration of singleton distinguishers only. This seems

a lot, but not for the cases where the size of the con-

structed CS really matters, e.g. because every test step

is somehow expensive and/or the CS is intended for ex-

tensive application.

After in SRP 7 formalizing state recognition through

forcing a contradiction with the SUT determinism, we

generalized the SRPs 2-7 to SRP 8, which formalizes

synergetic exploitation of the SUT determinism and any

number of distinguishers. Dincturk suggested such state

recognition implicitly, by suggesting trial and error as-

signment of SM states to states visited during the inter-

preted experiments. SRP 8 excels in abstractness, ob-

viousness of semantics and ease of further generaliza-

tion. It is therefore interesting primarily as a template

for developing, simply by specialization, further rela-

tively easy to apply SRPs complementing the currently

available.

An item for further study is also generalization of

SRP 8 to multi-port systems with no coordination be-

tween the testers controlling and observing individual

ports, for which we have already developed a partial so-

lution [24]. The ultimate challenge, however, is to ex-

tend the ideas to adaptive testing strategies, which are in

distributed testing or for a non-deterministic system of-

ten the only option [29, 30]. For a conclusion, we note

that the SRPs 5-8 are, like the SRPs 1-4, useful also in

the construction of non-singleton CTSs.

References

[1] ISO/IEC 9646: Information technology - Open Systems Inter-

connection - Conformance testing methodology and framework.

[2] J. Tenckhoff, Establishment of conformance test services in Eu-

rope, Computer Standards and Interfaces 7(1-2) (1988) 33-36.

[3] J.-H. Lee, J.-G. Hwang, D. Shin, K.-M. Lee, S. U. Kim, De-

velopment of verification and conformance testing tools for a

railway signaling communication protocol, Computer Standards

and Interfaces 31(2) (Feb. 2009) 362-371.

[4] A. X. Liu, M. G. Gouda, Firewall policy queries, IEEE Trans.

Parallel and Distributed Systems 20(6) (June 2009) 766-777.

[5] D. Harel, A. Pnueli, On the development of reactive systems, in

Logics and Models of Concurrent Systems (La Colle-sur-Loup,

7

1984), vol. 13 of NATO Adv. Sci. Inst. Ser. F Comput. Systems

Sci., Springer-Verlag, Berlin, 1985, pp. 477-498.

[6] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Der-

rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause,

G. Luettgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward, H.

Zedan, Using formal methods to support testing, ACM Comput-

ing Surveys 41(2) (2009).

[7] R. Anido, A. Cavalli, Guaranteeing full fault coverage for UIO-

based testing methods, Proc. IFIP Int’l Workshop Protocol Test

Systems, pp. 221-236, Sept. 1995.

[8] M. Kapus-Kolar, A Better Procedure and a Stronger State-

Recognition Pattern for Checking Sequence Construction, Jožef

Stefan Institute Technical Report #10574, 2010.

[9] F. C. Hennie, Fault detecting experiments for sequential circuits,

Proc. Fifth Ann. Symp. Switching Circuit Theory and Logical

Design, pp. 95-110, Nov. 1964.

[10] G. Gönenc, A method for the design of fault detection experi-

ments, IEEE Trans. Computers, 19(6) (June 1970) 551-558.

[11] A. Rezaki, H. Ural, Construction of checking sequences based

on characterization sets, Computer Communications 18(12)

(Dec. 1995) 911-920.

[12] H. Ural, X. Wu, F. Zhang, On minimizing the length of checking

sequences, IEEE Trans. Computers 46(1) (Jan. 1997) 93-99.

[13] K. Inan, H. Ural, Efficient checking sequences for testing finite

state machines, Information & Software Technology 41(11-12)

(Sept. 1999) 799-812.

[14] R. M. Hierons, H. Ural, Reduced length checking sequences,

IEEE Trans. Computers 51(9) (Sept. 2002) 1111-1117.

[15] J. Chen, R. M. Hierons, H. Ural, H. Yeningün, Eliminating re-

dundant tests in a checking sequence, Proc. IFIP Int’l Conf.

Testing of Communicating Systems, pp. 146-158, May-June

2005.

[16] K. T. Tekle, H. Ural, M. C. Yalcin, H. Yeningün, Generaliz-

ing redundancy elimination in checking sequences, Proc. Int’l

Symp. Computer and Information Sciences, pp. 915-925, Oct.

2005.

[17] R. M. Hierons, H. Ural, Optimizing the length of checking se-

quences, IEEE Trans. Computers 55(5) (May 2006) 618-629.

[18] H. Ural, F. Zhang, Reducing the length of checking sequences

by overlapping, Proc. IFIP Int’l Conf. Testing of Communicat-

ing Systems, pp. 274-288, May 2006.

[19] M. C. Yalcin, H. Yeningün, Using distinguishing and UIO se-

quences together in a checking sequence, Proc. IFIP Int’l Conf.

Testing for Communicating Systems, pp. 259-273, May 2006.

[20] A. Simão, A. Petrenko, Generating checking sequences for par-

tial reduced finite state machines. Proc. IFIP Int’l Con. Testing

of Software and Communicating Systems, pp. 153-168, June

2008.

[21] R. M. Hierons, G.-V. Jourdan, H. Ural, H. Yenigün, Using

adaptive distinguishing sequences in checking sequences, Proc.

ACM Symp. Applied Computing, pp. 682-687, March 2008.

[22] L. Duan, J. Chen, Exploring alternatives for transition verifica-

tion, J. Syst. Software 82(9) (Sept. 2009) 1388-1402.

[23] A. Simão, A. Petrenko, Checking sequence generation using

state distinguishing subsequences, Proc. IEEE Int’l Workshops

Software Testing, Verification, and Validation, pp. 48-56, April

2009.

[24] M. Kapus-Kolar, A Pragmatic Generic Test Sequence Construc-

tion Method With a Specialization for Checking Sequence Con-

struction, Jožef Stefan Institute Technical Report #10333, 2009.

[25] R.M. Hierons, Checking sequences for distributed test architec-

tures, Distributed Computing 21(3) (Sept. 2008) 223-238.

[26] M. E. Dincturk, A Two Phase Approach for Checking Sequence

Generation, M.Sc. Thesis, Sabancı University, August 2009.

[27] M. Kapus-Kolar, On ”Exploring alternatives for transition veri-

fication”, submitted for publication, 2011.

[28] A. Simão, A. Petrenko, Checking completeness of tests for fi-

nite state machines, IEEE Trans. Computers 59(8) (Aug. 2010)

1023-1032.

[29] R. M. Hierons, Reaching and distinguishing states of distributed

systems, SIAM J. Comput. 39(8) (Aug. 2010) 3480-3500.

[30] R. M. Hierons, Applying adaptive test cases to nondeterministic

implementations, Information Processing Letters 98(2) (April

2006) 56-60.

Monika Kapus-Kolar received her B.Sc. degree in

electrical engineering from the University of Maribor,

Slovenia, and her M.Sc. and Ph.D. degrees in com-

puter science from the University of Ljubljana, Slove-

nia. Since 1981 she has been with the Jožef Stefan In-

stitute, Ljubljana, where she is currently a researcher at

the Department of Communication Systems. Her cur-

rent research interests include formal specification tech-

niques and methods for the development of real-time,

concurrent and reactive systems [5].

8

