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Offline synchronization of signals from multiple
wireless sensors

Matjaž Depolli, Nina Verdel, and Gregor Kosec

To under 1 ms offset on average
(sampling time is 8 ms)

From higher than 100 ms 
offset on average 

Abstract— This study addresses the critical challenges of time syn-
chronization in wearable sensor networks, focusing on electrocar-
diogram (ECG) and inertial measurement unit (IMU) monitoring ap-
plications. In the era of continuous physiological and biomechanical
monitoring, accurate time synchronization of sensor data is critical.
Our research investigates the effectiveness of offline synchronization
method chosen for its flexibility and precision in addressing time-
related anomalies in environments where real-time processing of the
gathered data is not required. The synchronization method works
independently for each node without exchanging time-sync packets
among nodes, only among nodes and a central device. We present
a synchronization approach that has been designed to deal with
variable sampling frequency, random transmission delay and packet
loss. We demonstrate the efficiency of the approach with two different
example applications: long-term ECG monitoring and short-term IMU-
based gait analysis. The example applications use different strategies
for storing the sampled data and for exchanging time-sync packets.
Our results show that the proposed synchronization method is robust
and accurate. We identify the limit for accuracy to be in the commu-
nication software of the master device and sensor nodes. This study
contributes to the field of wearable sensor networks by presenting a
comprehensive synchronization method.

Index Terms— sensors, wireless, synchronization, Bluetooth, resampling, time alignment

I. INTRODUCTION

WEARABLE technology has revolutionized the field
of continuous physiological and biomechanical mon-

itoring in both clinical and sports settings [1], [2]. This
enables long-term tracking of an individual’s health and fitness
parameters, providing valuable insights for the early detection
and prevention of potential health issues. The advancements
in telecommunications have further enhanced this capability
by allowing wireless data transmission from miniature sensor
devices to personal terminals like smartphones and tablets,
enabling remote patient monitoring, medical support, remote
sports coaching, and virtual coaching. These technological
innovations have the potential to greatly transform wellness
approaches while making a significant impact on both the
healthcare and sports industries. [3]

Non-communicable diseases (NCD) contribute to a signif-
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icant number of global deaths, with cardiovascular disease
being the leading cause [4]. The prevalence of NCDs is
higher in low- and middle-income countries, highlighting the
importance of effective prevention and management strategies
[5]. Close monitoring and tracking of NCD occurrence and
progression are essential for developing effective interventions
and treatment approaches. Cardiovascular diseases encompass
various conditions, including cardiac arrhythmias such as ven-
tricular tachycardia or ventricular fibrillation, which contribute
to around 8% of cases [6]. The use of wearable continuous
ECG monitoring has proven effective in the early detection and
prevention of death caused by atrial fibrillation [7]. Since the
1960s, long-term ECG monitoring using Holter monitors has
been commonly used in medical practice. In recent years, there
has been significant progress in the development of wearable
ECG monitoring devices. These devices have evolved from
large wired systems to small wire-free wearables that are
more convenient for patients and cause minimal disruption to
daily activities. [8] This advancement aims to overcome the
limitations of conventional Holter monitors and provide a more
comfortable experience for users. One recent development in
this area is the PCARD mHealth platform, which introduces
a novel methodology for synthesizing 12-lead ECG measure-
ments using three concurrent differential ECG measurements
[9]. These readings can be obtained from three separate
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wearable sensor devices that are wirelessly connected to a
single smartphone. This capability of wearable ECG sensors
holds significant potential for expanding the availability of 12-
channel ECG measurement outside of healthcare facilities.

Moreover, engaging in regular physical activity is essential
for maintaining good health and a high quality of life while
also preventing the onset of non-communicable diseases. Run-
ning, in particular, stands out as an efficient and cost-effective
form of exercise. However, improper execution can result in
injuries that negatively impact individual’s overall well-being
and lead to increased healthcare expenses and demands on
the social support system [10], [11]. Coaching based on gait
analysis during running, both indoors and outdoors, has shown
promising potential in reducing the risk of injury.

Traditionally, gait analysis is conducted in a laboratory
settings using gold-standard equipment such as motion capture
system, force plates, and instrumented treadmills [12]. How-
ever, a subject’s running cycle may differ from their natural
stride under controlled laboratory conditions [13]. Recent
advancements in wearable sensors have made it possible to
assess gait more broadly in a natural, out-of-lab environment
at a relatively low cost compared to the standard measurement
methods. To ensure that athletes benefit from wearable sensors,
the sensors must be wireless, lightweight, and small in size
to prevent discomfort during running. Recently, one such
wearable device aimed at preventing running injuries has
been developed [14]. This device includes three IMU sensors
strategically positioned on the foot (two senors) and the pelvic
area.

Both wearable devices mentioned earlier require multiple
sensor nodes that communicate with a smartphone for signal
collection and processing. To ensure valuable information is
obtained from all the nodes, signals from each node must be
time synchronized [15]. While simple sensor nodes rely on
a quartz oscillator for internal time representation, with an
estimated accuracy of under 100 ppm [16], the smartphone’s
clock can be more accurate, depending on quartz oscillators
with active compensation from time sources available through
the Internet. When working as a system, the unaltered quartz
accuracy of the nodes leads to significant time drift during
long measurements; for instance, the discrepancy between the
smartphone and the sensor may be on the order of seconds
per day. Although this level of time drift can be acceptable
for long-term measurements on a single sensor, it does not
meet the requirements for taking multi-sensor measurements
that need to be synchronized between each other. Therefore,
a dynamic and adaptive strategy must be implemented to
synchronize the clocks of the sensor nodes with that of the
smartphone clock to allow for precise data synchronization.

There are two main methods for time synchronization [17]:
online and offline time synchronization. In online synchro-
nization, the involved nodes actively synchronize their clocks
during measurement [18], while in offline synchronization,
the involved nodes run on unsynchronized clocks and syn-
chronization occurs after the data collection [19]. Offline
synchronization has several advantages: it saves energy, which
is critical for battery-powered sensor nodes; the sensors do
not need to run complex synchronization algorithms in real

time, which saves computational resources; and the entire
data set is available to the synchronization algorithm during
post-processing, potentially leading to improved accuracy.
However, the drawback is that the measurements are only
accessible after the post-processing, which cannot happen
in real-time. Nevertheless, there are many different sports
and medical applications that do not require access to real-
time measurements and can benefit from the aforementioned
advantages. In medicine, such applications can include moni-
toring movement (kinematic data) in patients with Parkinson’s
disease [20], [21], in neurologically impaired individuals [22],
during lower rehabilitation [23], ECG monitoring, and more.
Additionally, in sports, lower limb kinematics can be mea-
sured offline, allowing fir the determination of asymmetries
related to performance and increased injury risk [24]–[27]
can be determined afterwards. Therefore, in the presented
study, we focus on applications that do not require the access
to measurements in real-time, and propose a new approach
for offline sensor synchronization. This proposed approach is
based on previous work done on the same PCARD mHealth
platform [28], [29], but it has been extended and generalized
in this study to accommodate different platforms as well.
However, in the discussion, our method will be compared to
an offline approach published by [19], and an offline real-time
synchronization approach used in PCARD mHealth platform.

The proposed methodology requires no trigger signal for the
sensor nodes and no inter-nodal communication of time-sync
packets. It works by converting sensor time to reference time
for each involved sensor node separately, which makes it scale
well with the number of sensors. The only requirements for
sensors are that they keep their own local time and that they
frequently exchange time-sync packets with a single master
device.

II. PROBLEM STATEMENT

Keeping accurate time, which is necessary for synchronizing
events measured on different devices, is not trivial. Suppose a
theoretical case in which each of the sensor nodes samples a
signal at an accurate predetermined sampling frequency, packs
several samples into communication packets, and transmits
these packets at a constant rate over a perfect communication
channel with no delay. Under these ideal conditions, the
sampling time of each sample would be perfectly determined
on the receiving end, making the synchronisation of multiple
parallel measurements a trivial task. The actual situation dif-
fers from the ideal; wireless sensors rely on wireless commu-
nication, which introduces uncertainty in packet transmission.
This type of communication is susceptible to packet loss,
and transmission delays. The latter are seemingly random and
occur due to the implementation of communication protocols,
that sacrifices the user’s ability to control some aspects of the
communication, such as the exact time of packet transmission,
for the overall ease of use.

Sensor node internal clocks depend on quartz oscillators.
Although these oscillators are reasonably accurate, they are
subject to slight variations in frequency due to changes in
temperature, aging, or manufacturing disparities. Over time,
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these small discrepancies can accumulate, leading to signifi-
cant time dependent drift on a single node and discrepancies
in the time reported by different nodes.

Both, the uncertainty related to the communication channel
and variation in the accuracy of all involved clocks, result
in the data packets being received at unpredictable times
even if they were sent at regular and predetermined intervals
according to the transmitting device. The above mentioned
properties of sensor nodes creates the following challenges of
keeping the devices synchronized:

• variable clock frequency,
• random delay,
• packet loss.
Random delays are shown in Figure 1 as the differences

between the ideal case and reality, and packet losses are
marked with grey crosses.

Fig. 1. An illustration of the timestamps sequences. Black circles
– idealistic case with no transmission delays, cyan circles – realistic
case where received timestamps are delayed, gray crosses – missing
packets.

A. Tracking time
Time synchronization between the sensor nodes and the

master device is essential. Without synchronized time-stamps,
data from different sensor nodes might not be comparable or
might provide misleading information regarding the timing and
sequence of the monitored events. While time synchronization
can be achieved through real-time clock synchronization, this
paper does not address that option. Instead, the proposed
method relies on collecting time-related data for offline clock
synchronization after the measurements have been completed.
In the offline synchronization approach, the relation between
the clocks or the function to translate time measured by one
clock into the time measured by another is approximated
from the available data. The minimal data required to support
synchronization of two devices is a list of tuples comprising
associated timestamps taken by the two involved clocks, Fig.
2:

• Timestamp one: This is recorded by device one, using
device’s local clock, just prior to making a transmission
to device two. This timestamp is transmitted to device
two either on its own or along with measurement sample
that corresponds to the timestamp.

• Timestamp two: Upon receipt of timestamp one, device
two takes its own timestamp immediately and records
both timestamps.

These tuples provide critical data points. By analyzing the
differences between timestamp one and timestamp two across
multiple tuples, it’s possible to determine the degree of clock
drift and offset between the two clocks.

Transmit timestamp one

Device 1 Device 2

D
e
la

y

Take a measurement sample

Take timestamp one

Receive the timestamp

Take timestamp two

Record both timestamps

Fig. 2. A step of linear regression performed on a real measurement.
Range of the displayed time is manually selected

Note that in the presented theory, either device can serve as
a master device or as a sensor node.

B. Signal sampling

Consider an idealistic sequence of timestamp tuples, where
there are no delays between the recorded timestamps of each
tuple and the samples are equidistant. In this idealistic case,
the sampling frequency, denoted as fs, is defined as follows:

fs =
1

ts
, (1)

where ts represents the sampling period also called the
sampling time, i.e., the time between two samples observed
by the master device. Consequently, for the i-th sample in the
sequence, the reference time t(i) at which it was taken can be
expressed as:

t(i) =
i

fs
+ tstart, (2)

where tstart is the measurement start time. However, sampling
is based on the local clock of the sensor with a given
resolution. The resolution of the sensor clock is called a tick,
and the clock is usually simplified to the point it comprises
only a tick counter. To implement sampling with frequency fs,
the length of a tick ttick is known in advance and the sampling
time is converted into a tick count ns:

ns =
ts

ttick
. (3)

Then the ith sample time can be expressed in sensor time
n(i) as a function of variables available to the sensor:

n(i) = nsi+ nstart, (4)

where nstart is the measurement start time expressed in sensor
clock ticks. Finally Equations 2 and 4 can be combined to
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express the reference time as a linear function of sensor time:

t(n) = tstart +
n− nstart

nsfs
, (5)

where n now acts as a general sensor clock reading and does
not need to equal any actual reading n(i). Eq. 5 represents the
result of time synchronization as considered in the presented
work, a function that transforms readings of time relative to
the sensor clock into time relative to the reference clock.

Note that ns must be an integer, since ttick represents the
resolution of the sensor clock, and cannot be further divided.
For the same reason, the sensor clock frequency defined by the
clock resolution must also be an integer multiple of sampling
frequency. Also note that so far all the equations apply only
to the ideal case with perfect clocks.

C. Variable clock frequency
The first challenge in time synchronization is the variable

clock frequency, which affects both the sensor nodes and the
master device. This variability arises from fluctuations in the
respective clocks, whether due to physical changes or software
influences. As a result, the sampling frequency changes over
time, and these variations must be accounted for.

The clock on the sensor node is often not robust and can be
influenced by factors such as temperature changes or battery
level fluctuations. The same applies to the master device
if it is similarly a simple device like the sensor. However,
the master device is typically more sophisticated (e.g., a
smartphone or PC) with a more stable clock, allowing it to
serve as a reference. Although generally more accurate than
sensor clocks, the smart device clock is not entirely infallible;
it may experience minor variations due to fluctuations in
external factors such as the ambient temperature. To maintain
accuracy, it requires constant synchronization with Internet
time. Therefore, while the smart device clock is reliable and
usually has a lower margin of error than the sensor node clock,
its frequency remains subject to slight fluctuations and periodic
adjustments.

Varying sampling frequency could be expressed in Eq. (5),
but we avoid such formulation, since our proposed solution
handles it differently. We consider the sampling frequency to
be constant for some short periods of time and we formulate
the equations with this in mind - equations are only applicable
for short intervals.

D. Random delay
Random delays, as explained before, can occur during

wireless communication. Actual relation between reception
and transmission times is represented by the blue circles in
Figure 1, and can be contrasted to the ideal relation (equality)
represented by black circles. Real reception timestamps (times-
tamps taken immediately upon reception of a wireless data
packet) are higher than transmission timestamps (timestamps
taken immediately before triggering a transmission) by some
positive delay. This delay is composed of several parts that
are constant in duration: the time it takes the sensor to
pack the timestamp for transmission, the time it takes the

communication packet to be transmitted between the devices,
the time it takes the receiving device to unpack packets and
take its own timestamps. However some parts are of variable
duration and these represent the source of variability of the
delay.

Initially, there are wait times in buffers on both the trans-
mitting and receiving software, required by the operating
systems or the communication protocols. Additionally and
most importantly, wireless communication protocols such as
Bluetooth Low Energy (BLE) do not transmit messages imme-
diately when they become available but only during allowed
time intervals, which are not known on the application layer
of software and can thus not be predicted. Messages fully
prepared for transmission simply wait until the first allowed
time interval is reached.

To mathematically describe the effect of random delays,
we introduce a random variable ξ to Eq. (5). This variable
represents the random delay, and as a result, the time of arrival
of the n-th sample tRD

i (n) is now expressed as follows:

tRD(n) = tRD(n) + ξ(n) (6)

= tstart +
n− nstart

nsfs
+ ξ(n).

E. Packet loss
The packets lost in transmission are another common issue

in wireless communication and can significantly impact ap-
plication performance due to the absence of expected data.
In the worst case, packet loss may cause some essential
synchronization data to be lost. In the context of the proposed
time synchronization, packet loss is generally a severe event,
it only causes less data to be available for synchronization
procedure, which may negatively impact the accuracy. Single
packet losses with the frequency of one lost per hundreds
of received packets has a negligible impact, however, acute
packet loss in some time interval can cause synchronization
accuracy to decrease within that time interval.

III. PRINCIPLES OF SYNCHRONIZATION METHODOLOGY

To achieve offline synchronization, synchronization data
(metadata) has to be collected in addition to the measurement
data. The presented approach assumes that synchronization
data is analysed only after the measurement completes. As
described in subsection II-A, the minimal required data for
synchronization consists of the associated timestamps from
sensor and master device, and can be collected on either of
the devices. Since synchronization data is collected on one of
the devices, only an unidirectional data transfer is required for
the purpose of synchronization and can furthermore be mixed
with the data transfer required for signal samples collection
or other data transfers. While not required by the method,
synchronization data is usually collected at predetermined
intervals, such as every second, or with every transmitted
data packet. There are no further requirements imposed on
the synchronization data.

In subsection III-A we shall first focus on the case where
synchronization data is included in every packet of signal sam-
ples and is collected by the master device. In subsection III-D

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3519905

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



AUTHOR et al.: OFFLINE SYNCHRONIZATION OF SIGNALS FROM MULTIPLE WIRELESS SENSORS 5

we shall explain the difference with the case where sensor
devices collect synchronization data instead, and a dedicated
wireless data channel is established for synchronization data.

Synchronization starts with the procedure in which clocks
of sensor nodes are aligned with the reference time; the
timestamps for samples are translated from the tick counts
of the local sensor clock to reference clock, represented by
the master device’s clock and expressed in seconds. This
translation is called time alignment and it alone addresses
all the presented synchronization challenges (random delay,
variable sampling frequency, and packet loss), the details of
which are described in subsection III-B.

Next, it is assumed that the measurement is valid only when
data is available for all the sensors. Therefore, a common
time interval is selected in which data from all sensor nodes
is available and data collected by some sensors either before
or after this interval is discarded. The obtained time interval
is then sampled with the desired final sampling frequency
to get equidistant timestamps, as described in more detail in
subsection III-B.2.

Finally, the signals of each node are interpolated to obtain
their values at the obtained timestamps and generate resampled
signals. This is the final result of our proposed method and is
described in subsection III-C.

At this point, the accuracy of results cannot be verified
in general case. However, experiments can be designed to
produce highly correlated data on multiple sensors. Synchro-
nization can be verified on the measurements from such an
experiment using cross-correlation, with a procedure described
in subsection III-E.

A. Example applications

In this paper, we present two different example applications,
one with ECG and one with IMU sensors. A photograph of
sensor nodes is presented in Figure 3. Regarding the synchro-
nization procedure, they differ in the direction in which the
synchronization data travel. In the first example application,
timestamps are sent from the sensor nodes (ECG sensors) to
the master device (Android smart phone), while in the second,
timestamps are sent from the master device (Android smart
phone) to the sensor nodes (IMU sensors).

For the ECG example, we use a system described in
Rashkovska et all [30], comprising a combination of the An-
droid application MobECG and a set of Savvy ECG sensors.
The properties of the latter are: the input is a single-channel
voltage in the mV range, the sampling frequency is 128 Hz, a
BLE connection is used for communication, and the communi-
cation packets are not acknowledged when received, resulting
in possible data loss. The primary communication the devices
is triggered by the sensor node and comprises communication
packets containing one timestamp and 14 samples. The packets
are created after a set of 14 samples is taken and forwarded to
a module that handles BLE communication. The timestamps
of the sensors correspond to the counters of the samples.
They start with 0 at the beginning of the measurement and
then increase by 14 with each packet. Missing packets are
detected by observing differences in the consecutively received

Fig. 3. Two sensor node types used in the study. On the top is the
IMU sensor node in a 3D printed case with and battery separated by
long wires, to be attached to the body separately to lower the sensor’s
mass. Below is the ECG sensor in its two-part injection molded case,
where each part of the case houses one of the electrodes, while the
larger part also houses the battery and electronics. The ECG sensor
measures about 12 cm in length.

timestamps. The frequency of the sensor clock characterized
by sample counter corresponds to the sampling frequency and
is 128 Hz.

For the IMU example, we use an experimental Android
application and an experimental IMU sensor based on STM
SensorTile, both of which are part of a research project. This
sensor samples three axes of linear acceleration, three axes
of angular acceleration and three axes of magnetometer and
records them locally on an SD card. The sensor’s firmware is
based on FreeRTOS and uses the kernel-based clock with a
resolution of 1 ms. The communication between the devices is
one-way, always from the smartphone to the sensor, and con-
tains either metadata for the sensor, which is recorded with the
measurement, or timestamps with nanosecond resolution for
offline time synchronization. The latter is triggered regularly
with a frequency of 1 Hz.

The ECG example and its direction of communication
serves as the base for the presented method in the following
sections.

B. Time alignment
The fundamental step in data synchronization involves map-

ping the time recorded by each involved clock to a single
reference time. This phase of synchronization has the largest
effect on the accuracy of the final synchronization of signals
within a single measurement.

The input consists of pairs of timestamps from the sen-
sor clock and the reference clock. The sensor clock is a
monotonically increasing integer counter, denoted as n(i), and
the reception time of the reference clock, i.e., the reference
timestamp, is denoted as tRD(i). The sequence of tuples
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(
n(i), tRD(i)

)
is valid for i ∈ [1, N ], where N corresponds

to the total number of obtained time synchronization tuples in
the measurement. Typical relation between the timestamps is
plotted in Figure 4. Time alignment is applied individually for
each sensor data in three steps explained below.

1) Random delay: Random delay is the first challenge to be
addressed. To achieve time alignment, linear regression [31] is
first used to fit a linear function to the input data tuples. The
result is the predicted reference time t̂(n), which acts as an
approximation to the true but unobtainable t(n) from Eq. 7,
and is shown as an orange linear function in Figure 4.

Fig. 4. A step of linear regression performed on a real measurement.
Range of the displayed time was manually selected. (a) Timestamps
as received by the device. (b) Reference time prediction with linear
regression

Although Figure 4 seems to indicate that linear regression
deals effectively with the random delay, it is actually not
precise enough, and errors in the order of milliseconds remain.
To see the errors in more detail, a different visualization is
required. In Eqs. 5 and 7, variables t(n), ξ(n) and fs can
be substituted by their approximations t̂(n), ξ̂(n) and f̂s. The
resulting equations:

t̂(n) = t̂start +
n− nstart

nsf̂s
, (7)

tRD(n) = t̂start +
n− nstart

nsf̂s
+ ξ̂(n), (8)

can then be combined to express random delay as the differ-
ence between estimated and received reference timestamp:

ξ̂(n) = t̂(n)− tRD(n). (9)

The delay is visually informative, so we plot it to verify the
effectiveness of the time alignment procedure. We show the
delay after several steps of the proposed method in Figure 5.
Top subfigure shows the delay after the first step, i.e. the linear
regression. To be able to analyse the calculated delay, we list
the physical properties that the random delay should exhibit:

• It cannot be negative, since the timestamp from reference
clock cannot be received before it has been obtained;
therefore its lower bound is 0.

• Its upper bound is unknown, but may be almost arbitrarily
high since the conditions for wireless transfer may be
arbitrarily bad.

• The conditions for wireless transfer can vary with time,
therefore the delay is not expected to be stationary.

From the delay just after linear regression in Figure 5, we can
see two issues. Time alignment by linear regression creates the
impermissible negative delays, and a visible trend in delays.
The latter is caused by the non stationary input data which
manifests as the non stationary resulting delay (much higher
variability of the delay at the start than at the end of the
measurement).

To improve the results of linear regression, i.e., remove the
mentioned issues, we perform a non-linear optimization as
an iterative procedure described below and demonstrated in
Figure 5. The subject to optimization are variables t̂start and
f̂s. Input to ith iteration of the procedure is the i-th linear
transformation:

t̂i(n) = t̂i,start +
n− n0

nsf̂i,s
, (10)

with the initial values (that is t̂0,start and f̂0,s), obtained
from the linear regression as described above. The iterative
procedure is executed until the linear transform does not
change within a single iteration:

1) Calculate delays ξi(n) = t̂i(n)− tRD(n) (Figure 5).
2) Find pivot samples ξ1/3 and ξ3/3 of the measurement,

i.e. samples with lowest delay ξ in the 1st and 3rd

thirds of the measurement, respectively (green dots in
Figure 5). Then calculate the required adjustment of
current iteration represented as the linear coefficient of
the line that connects the two pivot samples: ki,e =

ξ3/3−ξ1/3
t(ξ2/3)−t(ξ1/3)

(Black line in (Figure 5)).
3) Fix the estimated sampling frequency in the equation for

the linear transformation: f̂i+1,s = f̂i,s + 1/ki,e.
4) Eliminate negative delays by offsetting the linear trans-

formation: t̂i+1,start = t̂i,start + min(ξ̂i(n))

The resulting delays after the last step are plotted in Figure 5
to demonstrate the achieved improvement of single iteration
of the proposed algorithm. Note that although not visible in
Figure 5, after one iteration, the delays may not be strictly
positive and some trend may remain in the delays.

2) Variable sampling frequency and packet loss: After deal-
ing with the random delay, the packet loss and variable
sampling frequency need to be addressed. We minimize the
effect of both these challenges by means of decomposing
a long measurement into short blocks and applying time
alignment on each block separately.

On a long enough time scale, the relation between the two
clocks is not linear, since both clocks experience substantial
drifts. A demonstration of the resulting long-term relationship
between clocks expressed in form of the delay after applying
linear transformation is shown in Figure 6. Although a simple
linear relation is insufficient to fully explain it, the observed
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Fig. 5. Estimated reference clock delay as it changes throughout the
one iteration of the non-linear optimization. (a) Delays calculated in step
1 (as in Figure 4). (b) Pivots and adjustment calculated in step 2. (c) The
results of steps 3 and 4 of iteration visualized as delays calculated in the
next iteration.

relation is not overly complex and a piece-wise linear function
can express it with sufficient accuracy. To prepare for a
piece-wise linear approximation, the synchronization tuples
are partitioned into blocks with time alignment performed on
individual blocks instead on the whole measurement.

The process involves dividing the measurement into M
blocks, denoted as Bm, where m = [1,M ]. Each block covers
a limited range of input synchronization tuples: B1 = [b0, b1],
B2 = [b1+1, b2], ..., BM = [bM−1+1, bM ], where b0 = 1 and
bM = N . In addition to serving as a base for the piece-wise
linear function construction, blocks also serve in eliminating
some of the packet loss. Significant number of lost packets
from a single sensor within a short time frame could introduce
errors if used in the time alignment procedure. Therefore parts
of measurement with significant number of missing packets are
marked as bad blocks and later skipped in time alignment.

In the ECG example application presented here, packets
of wireless transmission comprise timestamp and 14 ECG
samples, loss of a packet incurs loss of both, a timestamp and
ECG data. Since in this example, data with frequent intervals
of missing samples are not fit for analysis, they are discarded.
Skipping bad blocks is thus not problematic, time alignment
is skipped only on intervals where data is also discarded.
A different approach might be needed in cases where all
the recorded data should be retained. An option would be

extrapolating data from neighbouring blocks or allowing bad
blocks to cover longer temporal interval, but regardless of the
approach, the accuracy of the achieved synchronization would
necessarily be lowered for bad blocks.

Fig. 6. Delay calculated from the reception and transmission times-
tamps with the assumption of linear relation between clocks. Random
delay in packet reception is visible as well as clock long-term drift (local
minima in delays vary with time).

Two processes are used for decomposition into continuous
blocks: quality decomposition and frequency decomposition.
These methods ensure that the blocks consist of contiguous
and uninterrupted data that is free of packet loss.

The quality decomposition process focuses on partitioning
the synchronization tuples into good and bad blocks. To clus-
ter synchronization tuples into blocks, the procedure assigns
packet 1 to the first block. This block is now considered open,
since its lower bound is set (to 1), but upper bound is yet
unknown. Then, iterating through synchronization tuples in
order, the procedure examines each pair of consecutive tuples
i and i + 1, and calculates the time interval between them
(we shall name it ∆t(i, i+ 1)). If ∆t(i, i+ 1) is greater than
a pre-defined parameter tpause max, then packet i is set as
the upper bound of the open block, and the block is thus
closed. New block is opened with lower bound set to i+1. If
∆t(i, i+ 1) < tpause max nothing happens and the procedure
continues. After the last packet has been processed, the last
open block is closed with it upper bound set to packet N .

At this stage, blocks are identified but unmarked. To sep-
arate bad blocks from good, we introduce a new threshold
value, tgood min as the minimum length of a good block. Block
Bm with bounds [bm − 1, bm] is therefore considered good if
∆t(bm−1,bm) ≥ tgood min; otherwise it is marked as bad.

The second process is frequency decomposition, and its
task is to subdivide the previously obtained good blocks into
shorter blocks of a specified length, denoted as ttarget, which
should be approach the maximal time in which the estimated
clock drift can be considered linear for the selected hard-
ware. In this process, each good block longer than ttarget is
subdivided into ⌈tblock/ttarget⌉ blocks of approximate length

tblock
⌈tblock/ttarget⌉ (tuples with nearest receipt time are used as
boundary points). The resulting good blocks are appropriate
for piece-wise time alignment, which is able to follow the
clock drifts.

Selection of values tpause max, tgood min, and ttarget should
be done empirically, relying on trials conducted on measure-
ments with noticeable irregularities. Generally, they should be
setup to balance maximizing block length for optimal time
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alignment with limiting block length to capture changes in
clock frequencies. In our ECG example, we used the following
values: tpause max = 1 s, tgood min = 10 s, and ttarget =
1800 s.

After partitioning completes, the time alignment is per-
formed for good blocks and is skipped for bad blocks to obtain
a piece-wise linear clock transformation function.

3) Sampling time estimation: So far, the proposed method
worked with synchronization tuples only – which are fewer
in number than the sensor sample packets. In this step, the
obtained piece-wise linear transformation is applied on all the
data samples that are covered by good blocks. When this step
is complete for all sensor nodes comprising the measurement,
the obtained aligned timestamps are all relative to a common
clock, and can be considered synchronized.

C. Resampling
An additional, optional step may be applied depending on

the application requirements. In some cases, it is necessary
for the signals originating from various sensors to be sampled
at same times, which is not inherently achieved after time
alignment. The only way to create a common time axis for all
signals in a measurement is through signal resampling. With
resampling, first the values for sampling times are calculated
using a common time interval for all sensors and for a desired
resampling frequency. Various resampling methods exist [32],
differing primarily in the interpolation techniques used to
estimate the signal value between existing samples. In the
presented study, we use a spline interpolation methods with
cubic polynomials.

D. Alternative example application
The procedure described above refers to the ECG example

application, but there are several important differences for the
IMU example application. The first is that from the set of
described time anomalies, only random delays are observed
in the IMU case. The reason is that the measurements in this
example application are short, lasting from several minutes to
half an hour. As such they do not need to be divided into blocks
and all the available synchronization data can be used for the
time alignment. Although we detected no cases of packet loss
in IMU example, which might be because of the laboratory
setting, some packet loss would be tolerable just as it was in
the ECG example.

The second difference is that the direction of wireless data
transmission; it is reversed, compared to the ECG example. In
the IMU example, the sensor nodes receive reference times-
tamps from master device, and in such a case the reference
timestamps t(i) are taken before sensor timestamps n(i).
Because the timestamp on sensor node is recorded after the
reference timestamp, the order of terms in the delay definition
needs to be reversed:

ξ̂(n) = tRD(n)− t̂(n). (11)

This is the only change required in the presented method.
Note that in our IMU example, aside the synchronization

metadata, also the signal samples are stored on the sensor

nodes instead of the master device. This does not play a role
in the synchronization, however, it does require one to upload
the signals from all the sensor nodes to a common device
before attempting synchronization.

To summarize, the only requirement is that the definition
of delay is positive, regardless of the direction in which the
synchronization tuples travel. Therefore, the time alignment
and with it the whole synchronization procedure are applicable
either if the timestamps that require alignment are taken before
or after the reference timestamps, which covers all possible
cases of time synchronization with simple synchronization
primitives consisting of only two timestamps.

E. Verification of time alignment

To evaluate the accuracy of the time alignment, it is usually
necessary to compare the aligned signal with a known signal
value. The cross-correlation between signals can be used as a
tool for comparison [33]. Suppose that all the data has been
resampled at time points t1, t2, ..., tm, the first sensor records
values p1, p2, ..., pm, and the second sensor records values
q1, q2, ..., qm. To compare signals, the task is to determine
the displacement k ∈ Z that maximizes the cross-correlation,
calculated as p1q1+k + p2q2+k + ... Since the sampling time
tsampling – the difference between successive time points, is
defined by the resampling frequency, we can calculate the
error of synchronization as the apparent delay between the
two signals: k tsampling. Accuracy can then be considered
the absence of error. To track the accuracy as a function
of time, one can perform cross-correlation not on the whole
measurement but rather on a rolling window to get estimates
of local errors.

Since we do not have a possibility of generating a signal
synchronized with the reference (smartphone) clock in our
example applications, we do not posses the means to determine
errors in the absolute sense, as defined above. We use relative
errors instead, which means that we cross-correlate signals
from two separate sensor nodes. Mathematically, relative er-
rors between synchronization results a and b are the difference
between absolute errors for a and b. As a combination of two
components, relative errors may either mask or amplify the
components making them inferior to absolute errors in this
respect. However, relative errors are actually a better measure
of the synchronization accuracy for the task that the proposed
method was designed for. That task is preparing signals from
different sensor nodes for further analysis that requires them
to be synchronized between each other, and not to an absolute
time.

Both of the example applications use three sensor nodes,
which creates three possible pairs of synchronization results
for comparison. Although the third error can be calculated by
subtracting the other two errors, we analyse all three errors to
make their spread clearer in visualizations.

IV. RESULTS

In the Results section, we present the experimental setup,
experiments, and results of the proposed synchronization
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method for the two previously defined examples. The ap-
proaches to synchronization differ between the examples, since
the examples themselves are quite different from each other.
In the first example, timestamps are sent from the ECG sensor
to the phone. Measurements are long and synchronization
faces all three challenges mentioned earlier, i.e., random delay,
packet loss, and variable sampling frequency. In the second
example, on the other hand, timestamps are sent from the
phone to the IMU sensors, measurements are short, and
synchronization faces only random delay in transmission.

A. Experimental setup

To generate ECG and acceleration signals, we use simple
generator setups with readily available components based
on Arduino (a development board that houses 8-bit micro-
controller intended for rapid prototyping). More specifically,
the ECG signal is replicated by an Arduino-based signal
generator that approximates the ECG by transposing multiple
short sine waves on a DC carrier signal, with the patter
repeating periodically once per second. The generator uses
only resistors and capacitors in addition to the Arduino board.
This generator is subject to some clock drift and its clock is
not synchronized with that of the sensors or the smartphone
that records measurements, so the true timing of the ECG
signal is unknown but is also not required. All three sensors
are connected to the same signal source and the same Android
device via a Bluetooth LE wireless connection (Figure 7).

Fig. 7. A scheme for simultaneous artificial ECG signal measurement
with 3 sensors.

The IMU measurement was performed with three IMU sen-
sors that were physically connected to each other and formed
a rigid package. The package was placed on a device that
applied short acceleration pulses controlled by the Arduino.
The pulses were generated once every 10 seconds by rotating a
servo motor arm in one direction for 50 milliseconds and then
back to its starting position. The servo motor that was used
did not reach its designated rotation in such short time interval
but it did produce maximum accelerations that it was capable
of. Similarly to the ECG example, the IMU pulse generator is
subject to some clock drift, its clock is not synchronized with
that master device, and the true timing of the IMU signal is
unknown. The linear acceleration in the axis of the pulses was
extracted from the measurement to test the synchronisation of
the sensors.

Since both of our example applications (ECG measurement
and gait measurement with IMU sensors) require the use of
three concurrent measuring sensors, we replicated the use of
three sensors in our laboratory configuration. Thus we have
three concurrent samples available in both cases, which we can
use to estimate the accuracy of the time alignment method.

B. Synchronization of time in wireless ECG
measurement

The following results show the evaluation of the proposed
methodology for the experiment with the ECG example.

A 93-hour concurrent measurement was performed with
three sensors. 93 hours was actually the time in which the first
sensor depleted its battery while the remaining two sensors
would be able to continue measurement for several more
hours. All signals were received by a single Android smart-
phone where they were stored separately and later transferred
to a personal computer for processing. To determine synchro-
nization accuracy as a function of time, the synchronization
error was calculated once per second of measurement (i.e. for
each interval of the artificially generated ECG signal) for all
three pairs of synchronization results.

1) Before synchronization: In Figure 8, the raw signals of
the measurement are shown. About 250 ms of the signal from
all three ECG sensors is shown after more than 77 hours
of signal measurement. This particular interval was selected
for visualization, since the largest synchronization errors were
measured on it. The time offset between the signals is obvious
from the figure and illustrates the need for synchronization in
multi-sensor ECG systems to ensure accurate analysis.

Fig. 8. Raw unmodified signals from the ECG sensors. The signal of
the first sensor is shown in blue, that of the second in orange and that
of the third in green.

The graphical representation of the signals takes into ac-
count the last received timestamp before the start of the
interval in focus. It is assumed that the sampling is uniform,
based on a predetermined default frequency. We observed this
approach to typically show a delay of 50 to 100 milliseconds
between the signals. This latency is characteristic of BLE tech-
nology, which is largely responsible for the time discrepancies
observed in the described plotting technique. If we observed
only the received signal without the reference timestamps, we
would find that after 77 hours of measurement, sensor clocks
have differed by about 1.3 s.

2) Time alignment: After data acquisition, synchronization
was performed as described in Section III. In the first phase,
the time alignment was performed. In Fig. 9 the ECG signals
after individual time alignment are presented. It can be seen
that the synchronization between the various sensors has been
improved and is now ≈ 2 ms between Sensors 1 and 3 for
the interval shown, while Sensors 2 and 3 are almost perfectly
synchronized.

3) Resampling: In Fig. 10 the signals from all three sensors
are shown after time alignment and resampling with cubic
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Fig. 9. Signals from ECG sensor after individual time alignment.

spline interpolation. There is no further improvement in syn-
chronization at this point of the procedure, signals have only
been resampled with frequency of 2000 Hz to aid verification
process. In a real use case, eg. as described in [9], [34],
the signals would potentially be resampled with a frequency
similar to the original sampling frequency and then linearly
combined.

Fig. 10. Aligned ECG sensor signals after cubic spline interpolation
and resampling.

4) Verification: Figure 11 (a) shows a histogram representing
the distribution of synchronization errors shown in millisec-
onds, for the three sensor pairs. The horizontal axis indicates
the magnitude of the synchronization error, while the vertical
axis indicates the absolute frequency of these errors within
the data set. The three synchronization errors are color-coded.
The original sampling time is represented by a dashed line and
serves as a reference against which the synchronization of the
sensors is evaluated. The frequency distribution is strongly
skewed towards the lower end of the synchronization error
spectrum, with a pronounced peak at the beginning of the
spectrum, indicating that minimal synchronization deviations
close to zero milliseconds prevail for all sensor pairs. It can
be observed that the absolute frequency of synchronization
errors is mostly within a 1.5 millisecond. The spread of errors
indicates where the limitations of the presented time alignment
method lie. Errors so much lower than the sampling time
are acceptable for the ECG example application. The offset
of errors from zero, however, can be explained only by an
external limitation of the method. We traced this offset and
found it originates in the files produced by the recording
software on Android. This software records signals from the
connected sensor nodes individually and stores the initial
timestamp, i.e. the sensor start time, which is different for
each sensor node, in millisecond resolution. Then it stores all

further timestamps relative to the measurement start time in
microsecond resolution. Thus, the remaining offset equals is
in the order of magnitude defined by the sensor start time,
that i 1 ms. We speculate that the accuracy of synchronization
would be further improved if the stored resolution of start time
was increased.

Figure 11 (b) shows the errors of time synchronization as
a function of time. The horizontal axis represents the time
over the entire measurements of 93 hours. While the graphs
show similar information as Figure 11 (a), they should also
demonstrate any temporal trend or pattern. For this example,
the graphs show no visible trend or pattern over time, the
distribution of errors seems stable over time. The limit of
error can be seen from this plot more clearly and is at the
2.2 millisecond mark.

Fig. 11. Accuracy of time alignment on the ECG example. Verification is
performed by cross-correlation between signals around individual peaks
in the data. (a) Distribution of errors. (b) Absolute error as a function of
time.

To illustrate the challenging nature of the input data for
ECG example we also analyse missing packet statistics. Wire-
less transmission packets cannot be received out of order
in this example, causing the timestamps of received packets
to be monotonically increasing. Missing packets can thus
be identified by detecting the anomalies in the difference
of sequentially received packets. The gathered statistics of
missing packets is shown in Figure 12 The amount of missing
data is about 0.02% for sensor 1, 10% for sensor 2, and 3%
for sensor 3. On one hand, up to 10% of data loss seems
quite high for a laboratory setting, but on the other hand, the
experienced data loss was not concentrated enough for any part
of any measurement to be marked as a bad block. Therefore
in the presented case, the algorithm managed to classify the
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whole measurement as good and then perform time alignment
on all of its parts.

Fig. 12. Statistics for the missing packets in ECG use-case. Longer
sequences of missing packets present can lead to loss of accuracy in
time alignment.

Data verification was performed only on the parts where
measurement was valid on the compared 100 ms interval by
all three sensors. Although individual sensor measurements
contain 90% of valid samples or more, the compound criterion
for data verification meant that comparison could be made only
on 40% of the 337471 recorded peaks. Despite expecting the
laboratory setting would provide for a larger portion of data
to be available for analysis, we find this value large enough
to be confident about the results.

C. Synchronization of time in wireless IMU measurement

The following results show the evaluation of the method-
ology described above for the IMU sensors. An 1 hour
concurrent measurement was performed with three sensors,
which is in line with capabilities of the sensor nodes but is
above the aimed 20 minutes long measurements for the real-
life sensor use. Each signal is recorded at the sensor node,
stored on the SD card, and later transferred to a personal
computer, where it undergoes synchronization processing.

Synchronization tuples are generated differently than in the
ECG example. Android smartphone app connects to the sensor
nodes, orders them to start sampling and then periodically,
every second transmits local time to the sensor nodes. All
communication is point-to-point and synchronization times-
tamps are taken separately for sensor node to pe as precise as
possible. As the sensor node receives synchronization packet,
it takes local timestamp, creates synchronization tuple and
stores it along the sensor data on the SD card.

In this example application, the typical measurement time is
too short for clock drift to be significant and the primary timing
challenge is the random delay. Although not as complex as the
first application, addressing random delays is still important to
ensure accurately synchronized data for effective gait analysis.

The measurements were performed with a sampling fre-
quency of 500 Hz. All three axes of acceleration from one
sensor are shown in Figure 13. As the figure shows, the
acceleration values vary considerably along the different axes.
Z-axis was the one that was acted on by the generator and is

therefore the only one further analysed, shown in all further
figures, used for peak identification and synchronization veri-
fication. The synchronization error was calculated once every
ten seconds around each detected peak.

Fig. 13. Three axes of the acceleration readings around one of the
identified peaks in data from the IMU use-case.

1) Before synchronization: Fig. 14 shows the original ac-
celeration signals of the z-axis before synchronization. After
23 seconds of signal measurement, about 40 ms long portion
of signals from all three sensor nodes are visible. Date was
plotted in the same way as ECG example above. Similar to
the ECG signals, a clear time offset can be seen between
the signals from all three sensors, indicating the need for
synchronization.

Fig. 14. Raw unmodified signals from the IMU sensors. The signal from
the first sensor node is shown in blue, from the second in orange and
from the third in green.

2) Time alignment: After the data acquisition was com-
pleted, the synchronization of the recorded signals was per-
formed as explained in Section III. In the first phase, the time
alignment was performed without partitioning into blocks. Fig.
15 shows the IMU signals after the individual time alignment.
Sensor 1 and Sensor 3 are in almost perfect alignment at the
shown moment in time, while signal from Sensor 2 deviates
slightly.

3) Resampling: Figure 16 shows the signals of all three
sensors after resampling with cubic spline interpolation at
5000 Hz. No additional improvements in synchronization are
expected from this procedure, but the synchronization errors
are visible better and the resulting signals can be used as input
to verification procedure.

4) Verification: Figure 17 is plotted in the same way as
Figure 11. Figure 17 (a) shows a histogram representing the
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Fig. 15. Signals from IMU sensors after individual time alignment.

Fig. 16. Aligned IMU sensor signals after cubic spline interpolation and
resampling.

distribution of synchronization errors in milliseconds, for the
three pairs of sensors. Again, the original sampling time is
represented by a dashed line. The magnitude of error is about
the same as in ECG example, however, since the sampling time
of the IMU example is much lower, synchronization error is
sometimes higher than sampling time.

Figure 17 (b) shows errors of time alignment as a function
of time for the three pairs of sensors. Unlike in the ECG
example, patterns are visible in the synchronization errors and
the spread of data points indicates the method is quite precise
but not accurate. I.e., the errors obtained on a single pair
of sensors are grouped closely together but are not always
close to 0. The offset from zero is again – similarly to the
ECG example – partly caused by using timestamps with 1
ms resolution on synchronization packets. The reason for the
1 ms resolution is different however, this time it is due to
the clock on the sensor only using 1 ms resolution. Error
is aggravated by the lack of synchronization data – only
one synchronization point per second is available while in
ECG example there is a synchronization point for every 14
samples, which sums to more than 9 per second at sampling
rate of 128 Hz. The resulting errors are also not linear
with time, indicating that sensor clock frequencies changed
unevenly during the measurement and piecewise-linear time
alignment would be required to eliminate this effect. Since the
number of synchronization points is so low, however, such an
approach would make even less points available for each linear
section which would likely result in higher errors. Avoiding
the partitioning into blocks is also in line with the intended
use of the IMU sensors however, which defines measurement
times to be only 20 minutes or less, which is 3 or more times
less than in our experiment.

Fig. 17. Accuracy of time alignment on the IMU example. Verification is
performed by cross-correlation between signals around individual peaks
in the data. (a) Distribution of errors. (b) Absolute error as a function of
time.

V. DISCUSSION

The main focus of our study was on the inherent challenges
of time synchronization in the context of wearable sensor
applications. The decision to employ offline synchronization
was driven by its suitability for the specific challenges and
conditions of our use cases.
The proposed method provided us with the flexibility to
meticulously analyse and correct time-related anomalies post
data collection, ensuring the highest degree of precision and
reliability in our findings. Through a careful investigation of
two different use cases – electrocardiogram (ECG) and inertial
measurement unit (IMU) monitoring — we aimed to explore
the effectiveness of our proposed solutions and understand
the limitations of existing technologies and methods. Our
research focuses on not only measuring the precision of time
synchronization, but also understanding the various factors that
contribute to this precision.

During our research, we have come across three distinct
time anomalies that greatly impact the synchronization of time
in wearable sensor networks: random delays, varying sampling
rates, and packet loss.

Random delay. The use of linear regression to apply a linear
transformation to the input data to correct for random delay
represents a significant step in our synchronization process.
However, its inability to handle non-stationary input data
required further refinements. By implementing a non-linear
optimization for the linear coefficient and offset correction,
we achieved satisfactory accurate time alignment.
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Variable sampling frequency and packet loss. The chal-
lenges posed by both packet loss and a changing sampling
frequency were addressed through the refinement of linear
relation between clocks into piece-wise linear relation. By
partitioning a long measurement into smaller, more manage-
able blocks and performing time alignment for each block, we
were able to effectively combat the effects of both challenges.
Our approach, which includes quality and frequency decom-
position, ensures that the resulting synchronization remains
accurate in long measurements where clock frequencies drift
considerably.

After conducting a review of both example applications,
we discovered that the presented synchronization method is
likely more accurate than the results demonstrate. The limits
of synchronization accuracy are most likely imposed by the
limited accuracy of the synchronization timestamps. Both
example systems could be redesigned in software and firmware
to improve synchronization accuracy.

Starting with the more accurate of the two, the ECG
example application, we examine the properties of timestamps
taken by the master device and the ECG sensor. Sensors work
with clock resolution equal to the sampling frequency, which
is 128 Hz in the presented case. Yet this resolution is not the
limiting one, since timestamps are generated with deterministic
procedure after a clock tick. While the length of this delay is
unknown, its deterministic nature makes it uniform across the
sensor nodes and across all taken timestamps, with precision
nearly equaling the precision of sensor hardware clock. The
limiting resolution is rather the one of the reference clock
taken by the master device. Measurements from different ECG
sensors start at slightly different times, due to measurement
start being communicated to them in series, thus they each
have different start time assigned. Master device software then
limits the synchronization accuracy to milliseconds by storing
only millisecond resolution for start times.

The IMU example application demonstrated lower accuracy
compared to the ECG example. Timestamps in this example
are handled differently, with the reference timestamps from
master device received on the sensor and assigned the sensor
clock timestamp. Opposed to ECG example application where
taking timestamps is deterministic, the process of receiving
communication packets is not deterministic relative to the
sensor clock, therefore the sensor clock resolution limits the
precision. The IMU sensors’ clocks operate and are recorded
with 1 ms resolution, while the reference clock is recorded
with 1 ns resolution. The lower resolution represents the more
restrictive limit, thus synchronization is limited again to 1 ms
accuracy. However, Figure 17 suggests that the accuracy of
IMU sensor synchronization could be better than 1 ms imposed
by the sensor clock resolution. There is an additional differ-
ence relative to ECG example application, which could explain
the accuracy difference. Time alignment requires a large set
of timestamps to operate on, and its accuracy theoretically
improves as the number of available timestamps increases. The
presented IMU example applications produced exactly 1, while
ECG example application produces 9.143 timestamps per
second (128 samples per second ÷ 14 samples per timestamp).
Therefore, time alignment had 3600 timestamps available

for the one hour of IMU measurement, opposed to 10971
timestamps for the 20 minutes of ECG measurement (the
multi-day measurement is split into 20 minute blocks before
alignment). In IMU example application, there is about 3 times
less timestamps available, which should have a noticeable
effect on the time alignment accuracy.

A. Comparison to other methods

Regarding the requirements and obtained results, we can
be compare our proposed method to the method by Koo et
al. [19], who presented one of the most accurate approaches
that can be used on wearable modules. Their GPS-based
approach uses a standalone GPS module on each sensor node,
relying on the modules’ provided pulse-per-second signals
for precise time-stamping. Synchronization of signals is per-
formed offline from the obtained GPS-based timestamps. This
method achieves a standard deviation error of approximately
40.8 nanoseconds, offering superior accuracy compared to our
proposed method.

Comparing the two methods we see the following similari-
ties and differences. The methods are similar in that they both
store synchronization tuples along with the measurement and
use them for offline synchronization. Both methods require
processing of the timestamp tuples to obtain a piece-wise
linear function that describes the relation between reference
and sensor local clock.

While our proposed method requires wireless communica-
tion of timestamps, either to or from sensor nodes, method
by Koo works completely locally, on the sensors. While our
proposed method requires reference timestamps to be taken on
master device, the method by Koo rather requires additional
hardware to provide accurate reference clock on the sensor
nodes. With additional hardware, additional constraints appear.
The method is inherently limited by requirements such as
warm-up time, a clear view of the sky for reliable GPS signals,
a larger physical size of sensor nodes, and a higher power
consumption. This dependency can hinder effectiveness in
obstructed or indoor environments where GPS signal reception
is compromised. In contrast, our method provides a more
flexible solution that does not rely on any external hardware
and is effective in both indoor and outdoor environments.
The methods are clearly different enough to be applicable for
different types of sensor nodes.

Several other approaches for synchronization of multiple
sensor nodes exist, however, all depend on additional hardware
or additional communication between the nodes. Approaches
also differ according to the wireless technology that they are
applicable on. Thus, rarely a direct comparison of different ap-
proaches can be made. The ECG example application that we
worked with, however, already uses a different but compatible
synchronization approach. It is implemented in software for
real-time visualization of received data in Android application
[30].

The comparable approach is an offline method, relies on the
same synchronization data as our proposed method, however,
it works in real time. Even though it works in real time, we
shall not call this method online, since it does not synchronize
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clocks of the sensors but rather works with their frequency
drifts. The method adjusts each received synchronization
timestamp immediately upon receipt through Brown’s double
exponential smoothing.

Brown’s double exponential smoothing [35] is a time series
forecasting method that is particularly useful for dealing with
data that exhibit both trend and noise. The method achieves
this by applying two layers of smoothing: one for the level
and another for the trend. In the context of synchronizing a
series of timestamps, smoothing is used to predict package
submission time and transmission delay from package receive
time history. By iteratively updating the smoothed values
and trends, Brown’s double exponential smoothing efficiently
handles both short-term noise in communication delays and
long-term shifts in the sampling frequency, providing a robust
method for time series alignment.

Figure 18 shows the error of online (real-time) synchro-
nization for IMU data, which can be compared to Figure 17.
The results were obtained with the smoothing parameters set
to 0.01 for level smoothing and 0.0001 for trend smoothing.
These parameter values were obtained by a local optimization
procedure with a limited number of steps applied on the
shown data to avoid overfitting the values to particular data
set. The results suggest that the real-time method is effective,
with its errors nearing those of the proposed offline method.
However, the apparent drawbacks include a long warm-up
period, sensitivity to disturbances in input data (such as very
high delays in received timestamps), and the inability to
restrict the delay to positive values. Since the method performs
time alignment by estimating the mean communication delay,
it should also be susceptible to perturbances in the statistics
of the delay. These do not seem to be present in the IMU
example but were observed previously in the ECG example.

Figure 19 shows the results of real-time synchronization
on the ECG example application, where a larger and more
erratic error can be observed, compared to one obtained with
the proposed method. First, a pattern with a period of 6.17
hours is visible, which can be traced back to a pattern in the
statistical properties of the communication delay between the
smartphone and sensors, most notably sensor number 3. We
have not noticed nor analysed this pattern before, since our
proposed method filtered it out very successfully. Second, the
errors are not centered around 0 but at a rather large offset
(relative to the sampling time). The offsets can be attributed to
the mean values of communication differing among the sensor
nodes.

Most of the demonstrated drawbacks of the real-time
method are expected, since real-time methods can only use
history to estimate communication delays, while offline meth-
ods have also future synchronization data available at each
step. The emergence of pattern in error was not expected
and counter-measures could possibly be taken to reduce it.
Overall, the proposed method offers only minor benefits over
the real-time method in our IMU example in conditions
favourable to the real-time method, i.e. in complete absence of
wireless connection problems. In the ECG example, however,
the proposed method outperforms the real-time method, and
obtains more than an order of magnitude smaller error making

it more suitable for precise analysis of the collected data.

Fig. 18. Accuracy of the reference real-time sensor synchronization
method on the IMU example, verified by identifying peaks on mea-
surements and then comparing time alignment of individual peaks with
correlation. (a) Distribution of accuracy. (b) Accuracy as a function of
time.

VI. CONCLUSION

In this study, we presented and evaluated a new approach
for offline synchronization between multiple sensor nodes,
focusing on ECG and IMU sensors. There are two main
example applications: in the ECG application, timestamps are
sent from the sensor nodes to the phone, while in the IMU
application, timestamps are sent from the phone to the sensor
nodes. The proposed approach can handle both cases. Within
the synchronization process, challenges such as variable sam-
pling frequencies, random delays, and packet loss must be
considered. In this paper, we have detailed the methodology
to address the issues related to time synchronization and
demonstrated the effectiveness of our approach using different
phases of the synchronization method.
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