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Abstract

E-LOTOS is a standard process-algebraic language for formal speci�cation of real-time concurrent and reactive

systems. Its originally de�ned semantics is based on interleaving of events. In the present paper, we propose an

enhanced kind of event structures and show how to employ them to give E-LOTOS processes a branching-time

true concurrency semantics. The proposed event structures can model real-time processes with data handling and

excel in concise representation of event renaming and synchronization.
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1. Introduction

E-LOTOS [4,15], an enhanced successor of LO-
TOS [3,1], is one of the standard languages for for-
mal speci�cation of real-time concurrent and reac-
tive systems. According to the operational seman-
tics given in [4], an E-LOTOS speci�cation charac-
terizes a process by its readiness to engage into var-
ious kinds of atomic instantaneous events, where
all internal process events are by de�nition anony-
mous and all concurrent events are represented as
interleaved. That reects the fact that LOTOSwas
originally intended for speci�cation of \temporal
ordering of observational behaviour" [3], where the
possibility of simultaneous events was neglected.

1 Tel.: +386 14773531; fax: +386 14262102.
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Such characterization of a process often fails to
provide suÆcient information for its further re�ne-
ment. For example, when re�ning an event into
a process, one must know the relations of causal-
ity and conict in which the event is engaged, be-
cause at least some of the events constituting its
re�nement are supposed to inherit them [6]. One
might also want to identify events which are truly
concurrent, so that their execution may be dele-
gated to di�erent concurrent components of a sys-
tem. Hence, it is convenient to model a process by
its events and their relationships, i.e. by its event
structure.
With their detailed representation of process be-

haviour, event-structure models are ideal not only
for re�nement of events, but also for re�nement of
their relationships, necessary, for example, when
designing a distributed implementation of a pro-
cess, i.e. re�ning the relationships into a coordina-
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tion protocol [14]. On the other hand, event struc-
tures refrain from modelling process architecture,
following the idea that grouping of events into sub-
processes is, like their assignment to gates, just
a matter of interpretation [10]. Hence, an event
structure is indeed just a collection of events and
relationships, i.e. a set of orthogonal process prop-
erties.
The syntactic and semantic simplicity makes

event structures easy to use and ideal for incre-
mental design. Elements of an event structure may
be added and removed at will, although it is advis-
able to take care that the structure stays within
a class which can be easily manipulated with the
available tools (e.g. to avoid causal ambiguity
[16]). As increasingly more powerful manipula-
tion tools are available, we in this paper limit our
attention to the expressiveness of event structures.
A process-algebraic speci�cation describes a set

of elementary processes and their hierarchical com-
position. Elementary processes often correspond
to individual events and composition operators
provide information on their relationships. The
problem is that when the operands of a composi-
tion operator are themselves compound processes,
the relationships between their constituent events
are described only implicitly. To overcome the
problem, process-algebraic languages are being
furnished with event-structure semantics.
For LOTOSwithout data, an event-structure se-

mantics was proposed in [11]. The semantics was
extended to timed processes [9], and subsequently
employed [2] (still without data) for ET-LOTOS
[12], a predecessor of E-LOTOS. In the present pa-
per, we propose an event-structure semantics for
E-LOTOS.
The proposed true concurrency semantics for

E-LOTOS is not the only contribution of the pa-
per. Perhaps even more important is the newly
developed kind of event structures, which we name
enhanced event structures, because in the name
E-LOTOS, \E" stands for \enhanced". Enhanced
event structures can model real-time processes
with data handling and excel in concise represen-
tation of event renaming and synchronization.
The paper is organized as follows: In Section 2,

we study the intuitive semantics of E-LOTOS pro-
cesses and gradually develop a kind of event struc-

tures suÆciently expressive for their elegant mod-
elling. Section 3 contains a detailed discussion of
event-structure semantics of elementary E-LOTOS
processes and of individual process composition
operators. Section 4 concludes the paper.

2. Enhanced event structures

2.1. Events

The main objects in an event structure E are its
events e, collected in anE. An e represents atomic,
instantaneous execution of some tasks. Hence, it
can be seen also as a boolean variable jumping from
false (e has not yet occurred) to true (e has already
occurred).
The elementary events of an E-LOTOS process

B, i.e. the potential events of its elementary sub-
processes, with no doubt correspond to the event
concept de�ned above, and as such qualify for in-
clusion into E of the event structure modelling B.
The past practice has been to also include into E
the compound events of B [11,9,2], i.e. interactions
of its subprocesses. We �nd the approach contra-
intuitive, because in the original E-LOTOS seman-
tics, the behaviour of a B in no way depends on
how its already executed elementary events have
synchronized. In other words, while aB remembers
the occurrence of its elementary events, it does not
remember the occurrence of its compound events.
Therefore, we propose that the members of E are
exactly the potential elementary events of themod-
elled B. Thereby, the size of E is kept proportional
to the number of the elementary subprocesses ofB,
while otherwise it could grow exponentially with
the number of the parallel compositions speci�ed
for the processes.

2.2. Preconditions and their triggers

An e can occur only if it is currently logically en-
abled, i.e. if it has not been disabled or if all its dis-
ablings have been cancelled. In E-LOTOS, an e in
a B might be disabled from the beginning or upon
the occurrence of a disabling e0, while cancellation
of a disabling, i.e. enabling or re-enabling of e, re-
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quires appropriate values of the input parameters
of B and/or execution of a set of events whose oc-
currence and the data they have generated justify
the cancellation.
In LOTOS or ET-LOTOS, an already enabled e

might be disabled, but is never re-enabled. Hence,
enabling and disabling of events, i.e. the relations of
causality and conict, are two separate issues. In E-
LOTOS, its suspend/resume operator introduces
resolvable conicts. Examples of event structures
capable to model resolvable conicts are [5,13,7],
but none of them addresses data and time.
Trying to represent enabling and disabling of

events in an integratedmanner, we observe that for
every E-LOTOS event e, there exists a (possibly
empty) set of preconditions, constraints expected
to be satis�ed just before the occurrence of e. In an
E , let preconditions � be objects of a special kind,
collected in a �. For an e, let �(e) list the associ-
ated �. For a �, let E(�) list the e with � in �(e).
For every � and e inE(�), we introduce a boolean

trigger �(e; �) and de�ne that e is logically enabled
if for every � in �(e), �(e; �) is false or � is true. Be-
sides, if a �(e; �) is false just before the occurence
of e, it must be false also just after it. Hence, a
�(e; �) indicates a disabling of e for which � is the
cancelling condition. The approach is a generaliza-
tion of that in [5].

2.3. Postconditions and their triggers

In E-LOTOS, the exact manner in which a gate
event will occur (what its execution time and other
generated data will be) is not known in advance,
but there is in principle a constraint expected to be
satis�ed just after the occurrence, i.e. a postcon-
dition constraint. In an E , let postconditions � be
objects of a special kind, collected in a �. For an
e, let �(e) list the associated �. For a �, let E(�)
list the e with � in �(e).
For every � and e in E(�), we introduce a

boolean trigger �(e; �) and de�ne that just after
the occurrence of e, every � in �(e) with �(e; �)
true just before e must be true. Selectively trig-
gered postconditions facilitate full control of event
simultaneity, like the event structures proposed in
[13]. One might want to use them to selectively

restrict simultaneity of otherwise independent
events.
Example 1 To specify that an e1 must occur si-
multaneously with an e2 or an e3, but not with both,
one could introduce into �(e1) postconditions \e2^
e3", \e2� e3" and \false", with triggers \e2� e3",
\:e2 ^ :e3" and \e2 ^ e3", respectively.

2.4. Aging and urgency

In the following, the term \time" denotes the in-
ternal time of an evolving E or the modelled pro-
cess, i.e. the value of its clock, that starts from 0.
For simplicity, we assume that the time domain is
discrete. During the dynamic evolution of an E , the
ow of time is reected in the aging of its events.
Whenever the clock increases, so does the age a(e)
of every e currently in the state of idling. An e is
in the state of idling when it has not yet occurred,
but is logically enabled. When an e �nally occurs,
its aging stops, i.e. a(e) reaches its �nal value, the
relative execution time (RET) of e.
All idling events by de�nition age at the speed

of the clock, which an urgent event might freeze to
zero, trying to enforce occurrence before the par-
ticular time instant is over. For an e, let �(e) in-
dicate whether it is currently absolutely urgent,
while '(e) regulates its conditional urgency. An
idling e is willing to agewith a non-zero speed when
�(e) is false and e cannot immediately occur in a
manner satisfying '(e) as a postcondition. A '(e)
typically requires that e occurs under a name im-
plying its urgency.

2.5. Contexts

If an e belongs to a B, it also belongs to all
its superprocesses. Each such process represents a
di�erent context c, though the concept of a context
is more general than the concept of a process.
For an e, let C(e) list the contexts in which it is

embedded. A C(e) must be non-empty, so that it
contains at least ce, the home context of e. For a
c, let E(c) list its constituent e. We introduce no
a priori restriction on how E(c) and E(c0) may be
related in the case of (c 6= c0).
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2.6. Event names

When an e occurs, it occurs in every c in C(e),
under a speci�c namen(e; c), with n(e; ce) the basic
name of e. Event names n are objects of a special
kind, collected in an N . For an e, let N(e) list its
associated n. For every e0 6= e, N(e) and N(e0)
must be disjoint.
Among the names de�ned for an e in an E mod-

elling a processB, let n(e) denote the one by which
e presents itself to the environment of B, i.e. the
external name of e. An only member of an N(e) is
n(e) by de�nition.
Names n(e; c) of an e can be seen also as values

�nalized upon the occurrence of e. Referring to the
value of an n(e; c) without �rst checking or securing
that e has already occurred is not safe.
In E-LOTOS, an n(e; ce) often consists of sev-

eral parts, many of them interpreted as data vari-
ables set by e and inuencing execution of the re-
maining events, while the other n(e; c) represent
various renamings of e. As data generation is in E-
LOTOS con�ned to events, we de�ne that the only
data containers of an E , besides its input parame-
ters collected in an I , are its e (boolean variables
jumping from false to true), its n(e; c) and its a(e).

2.7. Meeting points

When an e occurs in a c, it occurs at one of the
meeting points of c, abstract places at which events
in E(c) can, if necessary, synchronize with respect
to c. While E-LOTOS process gates are an archi-
tectural concept, meeting points are just an auxil-
iary concept simplifying speci�cation of event syn-
chronization, which is itself just speci�cally inter-
preted event simultaneity and can as well be spec-
i�ed by triggered postconditions.
Meeting points m are objects of a special kind,

collected in an M . For a c, let M(c) list its con-
stituentm. For every c0 6= c,M(c) andM(c0) must
be disjoint.

2.8. Roles

When some events synchronize in an m, each of
them appears in a particular role. For example, in

a synchronization of some processes Bi, each par-
ticipating e from a Bi takes the role \a participant
from Bi".
Roles r are objects of a special kind, collected

in an R. For an m, let R(m) list the r available to
events e in synchronizations at m. For every m0 6=
m, R(m) and R(m0) must be disjoint. For an r in
R(m) of an m in an M(c), let E(r) list the e in
E(c) allowed to take the role, and N(r) the names
n(e; c) of e in E(r).
Nowwe are ready to degrade contexts from a pri-

mary concept into a derived structural property, so
that they completely loose the avour of processes.
For an n, m or r, let c(n), c(m) or c(r), respec-
tively, denote the context to which it belongs. We
de�ne that two elements of (N [M [R) belong to
the same context exactly if this can be inferred by
merely interpreting every (n 2 N(r)) as (c(n) =
c(r)) and every (r 2 R(m)) as (c(r) = c(m)). An
e is in an E(c) exactly if an n in N(e) belongs to
c. The resulting partitioning must satisfy all the
rules above, plus the implicit assumption that no
two members of an N(e) belong to the same con-
text, i.e. that for every e and c0 in C(e), n(e; c0) is
the only n in N(e) with (c(n) = c0).

2.9. Event occurrences

An E evolves by aging and by event occurrences
o. An o represents simultaneous occurrence of
events in a non-empty set E(o), where every e in
E(o) satis�es all its currently active pre- and post-
conditions. Two di�erent o and o0 of the same run
are by de�nition not simultaneous, but the fact
that they occur in succession does not imply that
they do not occur upon the same value of the clock.
An o consists of synchronizations s in a non-

empty set S(o). An s represents synchronized oc-
currence of events in a non-empty set E(s). An
E(o) is a disjoint union of E(s) with s in S(o).
For an s, let C(s) list the c in C(e) with e in

E(s). For every c in C(s), s activates an m(c; s) in
M(c), the m in which s occurs with respect to c.
For every e in E(s) and c in C(e), s activates an
r(e; c; s) in R(m(c; s)) with e in E(r(e; c; s)), the r
played by e in s with respect to c, where every r in
R(m(c; s)) corresponds to at least one r(e; c; s).
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In E-LOTOS, compound events are hierarchi-
cal compositions of elementary events, with event
composition a synonym for playing complementary
roles. Hence, let every s secure that for any two dif-
ferent e and e0 in E(s), there is a c in (C(e)\C(e0))
with (r(e; c; s) 6= r(e0; c; s)).
In E-LOTOS, every synchronization of events

involves uni�cation of their corresponding names,
that must include the name of the gate. Hence, let
every s secure that for every c in C(s), all n(e; c)
with e in E(s) and c in C(e) are set to the same
value in a domain statically de�ned by a�(m(c; s)),
the naming constraint of m(c; s).
In E-LOTOS, a compound event of a processB is

often synchronized also with the environment ofB,
in an implicitly present synchronization context.
Hence, let every s secure that all n(e) with e inE(s)
are set to the same value representing the external
name n(s) of s. With this restriction, we are able
to de�ne that the external name n(o) of an o is
the set of all n(s) with s in S(o). As two or more
members of an n(o) might be �nalized to the same
value, an n(o) might be �nalized to a multiset.

3. True concurrency semantics of

E-LOTOS processes

3.1. Preliminaries

Event structures and their attributes will be,
wherever necessary to avoid ambiguities, decorated
with the name of the E-LOTOS process for which
they have been de�ned.
For an E-LOTOS e, let Be denote the smallest

B comprising it. Whenever an e is introduced into
EBe

during its construction, let n(e; ce) and an me

whose R(me) is an freg whose N(re) is fn(e; ce)g
be introduced by default.
In an EB , let every �(e) comprise at least �(e),

the naming and timing constraint of e. The defaults
for a �(m), a �(e), a '(e), a �(e; �) and a �(e; �) are
\true", \false", \false", \true" and \true", respec-
tively. E, N , M , R, � and �, respectively, consist
exactly of the e, n, m, r, � or � introduced explic-
itly or present by default. I by default just covers
the needs of EB for input data.

3.2. E-LOTOS event names

An E-LOTOS n(e; c) is a vector of one or more
�elds. Depending on whether the �rst �eld is �nal-
ized to i, to Æ, to a G from a universe G, or to an X
from a universe X , n(e; c) presents e as an anony-
mous unobservable action, as a successful termi-
nation, as an action on gate G, or as an exception
signal X . The other �elds of n(e; c) represent the
data carried by e in the context c. The data �elds
and their sub�elds may themselves be vectors of
�elds.
To facilitate access to individual �elds of an n,

each �eld F is associated with a key K uniquely
identifying it among the components of the vector
to which it belongs. The default key of the k-th
component of a vector is \$k". By writing \K )
F" instead of \F", one explicitly shows that K is
a key to F .
Example 2 For an n �nalized to a \G(1; (false;
2))", complete revealing of the default keys of its
�elds gives \$1 ) G; $2 ) ($1 ) 1; $2 ) ($1 )
false; $2 ) 2))". The default unique global identi-
�er of the value \false" is \n:$2:$2:$1".
For an E-LOTOS process B, EB is partitioned

into a �B , a �B and an AB , respectively listing
the potential successful termination events, excep-
tion events, and true or dummy actions, i.e. the e
for which �(e)Be

sets n(e; ce) to a Æ(: : :), to an ex-
ception name, or to none of the two.

3.3. Data expressions

In many cases, the E-LOTOS dynamic seman-
tics requires evaluation of a data expression. In
some cases, it is foreseen that the evaluation might
terminate by an exception, i.e. unsuccessfully. For
all the cases, it is appropriate to foresee that the
evaluation might as well block the system without
previously signalling an exception, e.g. by engag-
ing into an in�nite computation. For all the other
cases, we implicitly assume that the evaluation suc-
cessfully produces a value of the expected type. In
particular, successful evaluation is assumed for ev-
ery boolean expression acting as a constraint. If a
constraint is not explicitely speci�ed, it is by de-
fault \true".
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3.4. Terminations

The E-LOTOS dynamic semantics extensively
refers to the readiness of a B to immediately
successfully terminate or signal an exception [4].
Therefore, we introduce for every EB a dynamic
attribute Trm de�ned as follows: When the evolv-
ing EB is ready to immediately exhibit successful
termination or an exception of B, the value of
Trm is the pending termination name, i.e. a Æ(: : :)
or an X(: : :), otherwise the value is \none".
Whenever the value of Trm is a Æ(Data), Data

is of the form \V1 ) V al1; : : : ; Vk ) V alk", where
V1 to Vk are the members of BndB , the set of the
variables that B might bind on its way towards
successful termination, and V al1 to V alk are their
respective values upon the successful termination
of B. For a B, let OkB indicate whether it might
successfully terminate. If it is false,BndB is empty.
For every EB , Trm will be explicitly constructed
as a function of its input parameters, its event oc-
currences, the data generated by the past events,
and the current age of the pending events.

3.5. Inaction

\stop" denotes inaction, i.e. a B that neither
exhibits any o nor blocks the clock [4]. It is appro-
priate that in EB, E is empty.
Ok is false. Trm is \none".

3.6. Time block

\block" denotes time block, i.e. a B exhibiting
no o, but blocking the clock [4]. An appropriate EB
is as follows:
There is a dummy e with �(e) \true" responsi-

ble for blocking the clock. As e is not supposed to
occur, �(e) is \false", implying that e is in AB .
Ok is false. Trm is \none".

3.7. Successful termination

An \exit(Bnds)" denotes a B whose only event
is a conditionally urgent successful termination
Æ(Data) leading to a time block, where Data de-

notes the variable bindings speci�ed by Bnds [4].
An appropriate EB is as follows:
There are an e with '(e) \true", the success-

ful termination event, and a dummy e0 with �(e0)
\true" responsible for blocking the clock after the
occurrence of e.
�(e) requires that n(e; ce) is �nalized to Æ(Data).

�(e0) is \false".
As e0 is supposed to be guarded by e, �(e0) con-

tains a � \e".
Ok is true. Bnd lists the variables bound by

Bnds. Trm is \if :e then Æ(Bnds) else none

endif".
Example 3 \exit(V1 ) 1; V2 ) V3)" speci�es a
B executing a Æ(Data) in whichData consists of the
constant 1 and the value of the input parameter V3
being assigned to variables V1 and V2, respectively.
In EB, �(e) requires that n(e; ce) is an \F1(V1 )
F2; V2 ) F3)" with F1, F2 and F3 �nalized to Æ, 1
and the value of V3, respectively.

3.8. Assignment

A \Ptr := Expr" basically denotes a B whose
only event is a conditionally urgent successful ter-
mination Æ(Data) leading to a time block, with
Data representing the variable bindings produced
when the expressionExpr is successfully evaluated
and its value is matched to the pattern Ptr [4]. It
might, however, happen that the evaluation does
not terminate or terminates by raising of an excep-
tion. In such a case, B is equivalent to \block" or
to the exception raising, respectively. An appropri-
ate EB is as follows:
There are an e with '(e) \true", the successful

termination event, an e0 with '(e0) \true", the ex-
ception event, and a dummy e00 with �(e00) \true"
responsible for blocking the clock after the occur-
rence of e or e0 or when the evaluation of Expr is
non-terminating.
�(e) requires that n(e; ce) is �nalized to Æ(Data)

with Data representing the bindings produced
when Ptr is matched to the value of Expr, if suc-
cessfully computed. �(e0) requires that n(e0; ce0) is
�nalized to the exception raised by Expr, if any.
�(e00) is \false".
�(e) contains a � true exactly when the evalu-
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ation of Expr successfully terminates. �(e0) con-
tains a �0 true exactly when the evaluation ofExpr
raises an exception. �(e00) contains a �00 true ex-
actly when (e_ e0) or when the evaluation of Expr
is non-terminating.
Ok is true exactly ifExprmight successfully ter-

minate. In that case, Bnd lists the variables bound
by Ptr.
Trm is equivalent to \Æ(Data)" when (� ^ :e),

to the pending exception name when (�0^:e0), and
to \none" otherwise.
Example 4 \(?V1; ?V2) := if V4 then (1; V3) else
raise X(V4) endif" speci�es a B that, depending
on V4, sets variable V1 to 1 and variable V2 to the
value of the input parameter V3, or raises excep-
tion X(V4). In EB, Trm is equivalent to \if e _ e0

then none elseif V4 then Æ(V1 ) 1; V2 ) V3)
else X(V4) endif".

3.9. Delay

A \wait(Expr)" basically denotes a B whose
only event is a conditionally urgent successful ter-
mination \Æ()" leading to a time block and not ex-
ecutable before the age determined by the value of
the expression Expr [4]. It might, however, hap-
pen that the evaluation of Expr does not termi-
nate or terminates by raising of an exception. In
such a case, B is equivalent to \block" or to the
exception raising, respectively.
Without loss of generality, we assume that when-

ever B is enabled, the input parameters of Expr
secure its successful evaluation. If this is not the
case, rewrite B into \any : any := Expr;B",
where \;" is the operator of sequential composition
described in Section 3.16. The dummy assignment
\any : any := Expr" will implement the \block"
or the exception raising of Expr, if any, and enable
B only in the case of successful evaluation ofExpr.
With the assumption, an appropriate EB is the

E of \exit()" (see Section 3.7) modi�ed as follows:
�(e) additionally requires that a(e) is �nalized to
a value not less than the value of Expr.
Ok is true.Bnd is empty. Trm is \if :e^(a(e) �

Expr) then Æ() else none endif".

3.10. Internal action

\i" denotes a B executing an immediate i() fol-
lowed by \exit()" [4]. An appropriate EB is the E
of \exit()" (see Section 3.7) enhanced as follows:
There is an e00 with '(e00) \true", the internal

action. �(e00) requires that n(e00; ce00) is �nalized to
i().
As e is supposed to be guarded by e00, �(e) con-

tains a �0 \e00".
Ok is true. Bnd is empty. Trm is \if e00 ^ :e

then Æ() else none endif".

3.11. Exception signalling

A \signal X(Expr)" basically denotes a B im-
mediately issuing an exception signalX(Data) fol-
lowed by \exit()", where Data is the value of the
expression Expr [4]. It might, however, happen
that the evaluation of Expr does not terminate or
terminates by raising of an exception. In such a
case, B is equivalent to \block" or to the excep-
tion raising, respectively.
Without loss of generality, we assume that when-

ever B is enabled, the input parameters of Expr
secure its successful evaluation. If this is not the
case, rewrite B into \any : any := Expr;B".
With the assumption, an appropriate EB is the E

of \i" (see Section 3.10) modi�ed as follows: �(e00)
requires that n(e00; ce00) is �nalized to X(Data)
with Data the value of Expr.
Ok is true. Bnd is empty. Trm is \if :e00 then

X(Expr) elseif :e then Æ() else none endif".

3.12. Gate action

A \G Ptr1@Ptr2[Cnst]" denotes a B willing to
execute an action named G(Data), on the gate G,
with the data Data matching the pattern Ptr1,
with a RET T imematching the pattern Ptr2, with
Data and T ime satisfying Cnst [4]. The action is
not urgent, but if it does occur, it is followed by an
\exit(Bnds)" with Bnds specifying that the data
carried by the Æ event represents the variable bind-
ings produced when Data and T ime are matched
to Ptr1 and Ptr2, respectively.
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An appropriate EB is the E of \exit(Bnds)" (see
Section 3.7) enhanced as follows:
There is an e00, the gate action. �(e00) requires

that n(e00; ce00) is �nalized to aG(Data) withData
matching Ptr1, that a(e

00) is �nalized to a T ime
matching Ptr2, and that Data and T ime satisfy
Cnst.
As e is supposed to be guarded by e00, �(e) con-

tains a �0 \e00".
n(e; ce) has a named �eld for every variable

bound by e00. For each of the �elds, �(e) requires
that it is �nalized to the same value as the cor-
responding �eld of n(e00; ce00 ) (if the variable is
bound by Ptr1) or as a(e00) (if the variable is
bound by Ptr2).
Ok is true exactly if Cnst is satis�able. In that

case, Bnd lists the variables bound by Ptr1 or
Ptr2. Trm is \if e00^:e then Æ(Bnds) else none
endif".
Example 5 \G(?V1 : int)@?V2[(V1 = 4) ^ (V2 <
V0)]" speci�es a B with a gate action G(4) with a
RET less than V0, the only input parameter of B.
The action binds V1 to 4 and V2 to the RET.
In EB, �(e00) requires that n(e00; ce00 ) is an

\F1(F2)" with F1, F2 and a(e00) �nalized to G, 4
and a time value less than V0, respectively.
�(e) requires that n(e; ce) is an \F1(V1 ) F2; V2

) F3)" with F1, F2 and F3 �nalized to Æ, to the
same value as \n(e00; ce00):$2:$1", and to the same
value as a(e00), respectively.
Trm is \if e00^:e then Æ(V1 ) n(e00; ce00):$2:$1;

V2 ) a(e00)) else none endif".

3.13. Event renaming

A \rename Ren in B1 endren" denotes a B

behaving asB1 with its events renamed as speci�ed
by the renaming Ren, that is basically intended
for renaming gate actions into gate actions and
exceptions into exceptions [4]. We assume that the
semantics of the renaming operator is as proposed
in [8], i.e. thatRen is a relation between the old and
the new names possibly de�ning for a gate action
multiple alternative presentations. For exceptions,
successful terminations, internal actions and gate
actions which it does not e�ect,Ren is by de�nition
a function.

An appropriate EB is EB1
enhanced as follows:

For every e in (A [ �), one adds an n(e)B and
an me whose R(me) is an freg whose N(re) is
fn(e)Bg. Besides, �(e) additionally requires that
n(e)B1

and n(e)B are related as speci�ed by Ren.
OkB is OkB1

. BndB is BndB1
. TrmB returns

the result of TrmB1
renamed as speci�ed by Ren.

Example 6 \rename action G(?V1 : nat) isG
0(

?V2 : nat)[V1 � V2 < V3] in B1 endren" speci�es
a B behaving as B1 with every action G(V1) with a
natural V1 less than V3, an input parameter of B,
allowed to present itself with any new name G0(V2)
with a natural V2 between V1, inclusively, and V3.
In EB, �(e) for e in (A[�) additionally requires

that in the case of n(e)B1
�nalized to aG(V1) with a

natural V1 less than V3, n(e)B is �nalized to one of
the expected G0(V2), while otherwise, it is �nalized
to the same value as n(e)B1

.
Suppose that B1 executes a compound event s

consisting of elementary events e1 and e2 with
n(e1)B1

and n(e2)B1
�nalized to G(1), while V3

is 3. For each ei, the candidate values for n(ei)B
are G0(1) and G0(2). The semantics of EB secures
that n(e1)B and n(e2)B are �nalized to the same
value (see Section 2.9), the n(s)B related to n(s)B1

exactly as speci�ed by the renaming.

3.14. Action hiding

A \hide Hid in B1 endhide" denotes a B be-
having as B1 with its gate actions selectively con-
verted into internal actions, where the selection is
speci�ed by Hid [4]. The hiding operator renames
the actions into i() and makes them urgent. If only
the renaming is considered, B is equivalent to a
\ren Ren in B1 endren".
An appropriate EB is the E of \ren Ren in B1

endren" (see Section 3.13)modi�ed as follows: For
every e for which the renaming introduces a new
name n(e; c), '(e) is extended with \_(n(e; c) =
i())".
OkB is OkB1

. BndB is BndB1
. TrmB is TrmB1

.

3.15. Nondeterministic assignment

A \Ptr := any Type[Cnst]" basically denotes
a B executing an immediate i() which matches
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the pattern Ptr to a nondeterministically selected
value of the type Type satisfying Cnst and is fol-
lowed by an \exit(Bnds)" with Bnds specifying
that the data carried by the Æ event represents the
variable bindings produced by the matching [4]. It
might, however, happen that no such value exists,
so that B is equivalent to \block".
An appropriate EB is the E of a \hide G in

GPtr1@!0[Cnst] endhide" with G a dummy gate
and Ptr1 \Ptr : Type" (see Sections 3.12 and 3.14)
modi�ed as follows: For the e00 representing the
hidden action on gate G, �(e00) is \true".

3.16. Sequential composition

A \B1;B2" denotes a B executing B1 and B2

in a sequence, with B2 assuming control when B1

becomes ready for successful termination [4]. An
appropriate EB is constructed as follows:
Step 1: To secure that Æ events of B provide a

value for every V in BndB , Æ events of B2 are en-
hanced with information on bindings inB1. In EB2

,
one adds for every e in � an n(e)B and an me

whose R(me) is an freg whose N(re) is fn(e)Bg.
Besides, �(e) additionally requires that whenever
n(e)B2

is �nalized to a Æ(Data), n(e)B is �nalized
to a Æ(Data0) with Data0 providing a value for ev-
ery V in BndB , where the value is \V " for V in
(BndBnBndB2

) and as in Data for V in BndB2
.

Step 2: To make the variable bindings produced
by B1 available to B2, every reference to a V

in BndB1
is in EB2

and in TrmB2
replaced by

\TrmB1
:$2:V ".

Step 3: To prevent premature enabling of B2,
every�B2

(e) is extended with a � true exactlywhen
TrmB1

returns a Æ(: : :).
Step 4: To prevent the occurrence of Æ events of

B1 (they must be \trapped" and handled by B2),
�(e) is for every e in �B1

changed into \false".
Step 5: The constituent objects of the obtained

EB1
and EB2

are promoted into objects of EB .
OkB is (OkB1

^ OkB2
). If it is true, BndB is

(BndB1
[BndB2

).
When TrmB1

returns a Æ(: : :), TrmB returns the
result of TrmB2

. Otherwise, it returns the result
of TrmB1

.
Example 7 Take a B of the form \B4;B3" where

B4 is \B1;B2", B1 is \wait(2)", B2 is \?V1 := 0"
and B3 is \?V2 := V1 + 1". Let e1 to e3 be the Æ
events of B1 to B3, respectively.
TrmB1

is \if :e1 ^ (a(e1) � 2) then Æ() else
none endif". TrmB2

is equivalent to \if :e2 then
Æ(V1 ) 0) else none endif". Constructing EB4

,
one adds precondition \:e1^(a(e1) � 2)" for every
e in EB2

. TrmB4
is equivalent to \if :e1 ^ (a(e1)

� 2) ^ :e2 then Æ(V1 ) 0) else none endif".
�(e3)B3

requires \n(e3)B3
= Æ(V2 ) (V1 + 1))".

Constructing EB, one provides e3 with a new exter-
nal name n(e3)B and enhances �(e3) with \n(e3)B
= Æ(V1 ) V1; V2 ) (V1+1))", that is subsequently
enhanced into \n(e3)B = Æ(V1 ) TrmB4

:$2:V1;
V2 ) (TrmB4

:$2:V1 + 1))".
�B3

is extended with precondition \:e1^(a(e) �
2)^:e2" for every e inEB3

. TrmB3
is equivalent to

\if :e3 then Æ(V2 ) (V1 + 1)) else none endif"
and enhanced into \if :e3 then Æ(V2 ) (TrmB4

:

$2:V1+1)) else none endif". TrmB is equivalent
to \if :e1 ^ (a(e1) � 2) ^ :e2 ^ :e3 then Æ(V1 )
0; V2 ) 1) else none endif".

3.17. Variable declaration

A \var V1 : Type1 := Expr1; : : : ; Vk : Typek :=
Exprk in B1 endvar", where all \:= Expri" with
Vi not an input parameter of Bi are optional, de-
notes a B representing B1 with the listed variables
Vi, of type Typei, internalized and initialized to
the value of Expri [4].
Without loss of generality, we make the follow-

ing assumptions, which one should try to satisfy
exactly in the given order:
1) No Expri refers to V1 to Vk. If an Expri does

refer to a Vj , i.e. to the input parameter Vj of B,
change \Vj := Exprj" into a \V

0
j := Exprj" with

V 0
j a distinct new name, and in B1, every reference

or assignment to Vj into a reference or assignment,
respectively, to V 0

j .
2) All Expri are void. If an Expri is not, change

\Vi : Typei := Expri" into \Vi : Typei" and en-
hance B1 into \?Vi := Expri;B1".
With the assumptions, an appropriate EB is EB1

enhanced as follows:
For every e in �, one adds an n(e)B and an me

whose R(me) is an freg whose N(re) is fn(e)Bg.
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Besides, �(e) additionally requires that whenever
n(e)B1

is �nalized to a Æ(Data), n(e)B is �nalized
to a Æ(Data0) with Data0 representing Data with
the bindings of variables V1 to Vk removed.
OkB is OkB1

. BndB is (BndB1
nfV1; : : : ; Vkg).

TrmB returns the result of TrmB1
, except in

the case of successful termination, when it returns
the result with the bindings of variables V1 to Vk
removed.

3.18. Exception handling

A \trap exceptionX1(Inp1) is B1 endexn : : :

exceptionXk(Inpk) isBk endexn exit Inpk+1 is

Bk+1 endexit in Bk+2 endtrap", where the
\exit : : : endexit" part is optional, denotes a B

which basically executes Bk+2, but if Bk+2 be-
comes ready for a trapped successful termination
or exception, control is transferred to the corre-
sponding handler Bi, with Inpi specifying how the
data carried by the termination of Bk+2 is inter-
preted as input data of Bi [4]. When an exception
in Bk+2 is handled, all the bindings produced by
Bk+2 before the exception are ignored.
Without loss of generality, we make the follow-

ing assumptions, which one should try to satisfy
exactly in the given order:
1) The \exit : : :" part is not void. If it is, enhance

it into \exit is exit() endexit".
2) There is no Inpi binding a V from a BndBj

.
If an Inpi does bind such a V , of a type Type, let
Inpi bind a new V 0 instead and enhance Bi into
\var V : Type := V 0 in Bi endvar".
3) Every BndBi

with (i � (k + 1)) and OkBi
is

BndB . If a V is missing in a BndBi
, enhance Bi

into \?V := V ; Bi".
With the assumptions, an appropriate EB is con-

structed as follows:
Step 1: To implement the required transfer of

data fromBk+2 to the handlers of its terminations,
every reference to a V bound by an Inpi is in EBi

and in TrmBi
replaced by the value of V expressed

as a function of TrmBk+2
as speci�ed by Inpi un-

der the assumption that TrmBk+2
returns a termi-

nation activating Bi.
Step 2: To prevent premature enabling of the

termination handlers, every �Bi
(e) with (i � k+1)

is extended with a �i true exactly when TrmBk+2

returns a termination enabling Bi.
Step 3: To prevent the occurrence of the termi-

nations of Bk+2 trapped in B, �(e) is for every e
in (�Bk+2

[�Bk+2
) extended with the requirement

that n(e)Bk+2
is not �nalized to a name of such a

termination.
Step 4: The constituent objects of all the ob-

tained EBi
are promoted into objects of EB .

OkB is ((OkBk+1
^ OkBk+2

) _ 9i � k:OkBi
). A

V is in BndB if it is in a BndBi
with (i � k). If

(OkBk+1
^ OkBk+2

), a V is in BndB also if it is in
BndBk+1

, or if it is in Bndk+2 and its binding in
Bk+2 is not trapped by Inpk+1 [15].
When TrmBk+2

returns a termination handled
by a Bi, TrmB returns the result of TrmBi

. Oth-
erwise, it returns the result of TrmBk+2

.

3.19. Iteration

A \loop X in B0 endloop" basically denotes
a B executing an in�nite sequence of instances of
B0 [4]. It might, however, happen that the current
instance ofB0 becomes ready to signal an exception
X(: : :) andB consequently successfully terminates
by executing Æ().
Constructing an appropriate EB , one rewrites B

into a \trap exception X() is exit() endexn in

B00 endtrap" with B00 \B1;B2; : : :" with Bi in-
stances of B0, constructs EB00 and enhances it into
EB as described in Section 3.18. EB00 is constructed
as follows:
Step 1: Every reference to a V inBndB0 in an EBi

with (i > 1) is replaced by \TrmB1;:::;Bi�1
:$2:V ",

to make the variable bindings produced byBj with
(j < i) available to Bi.
Step 2: To prevent premature enabling of a Bi,

every �Bi
(e) with (i > 1) is extended with a �i

true exactly when TrmB1;:::;Bi�1
returns a Æ(: : :).

Step 3: To prevent the occurrence of Æ events of a
Bi, �(e) is for every e in a�Bi

changed into \false".
Step 4: The constituent objects of the obtained

EBi
are promoted into objects of EB00 .

OkB00 is false. TrmB00 returns the result of
to the TrmB1;:::;Bi

not returning a Æ(: : :) while
TrmB1;:::;Bi�1

does, if any, and \none" otherwise.
Let us note that originally, the most general
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kind of a breakable loop is \loop X : Type in B0

endloop", equivalent to \trap exceptionX(?V :
Type) is exit(V ) endexn in B00 endtrap" [4].
However, we �nd this construct incompatible with
the rest of the standard, because the process re-
turns a value, like a data expression would, while
E-LOTOS processes are in principle supposed to
return only variable bindings.

3.20. Case

A \case Expr is Ptr1[Cnst1] ! B1j : : : jPtrk
[Cnstk]! Bk endcase" basically denotes a B ex-
ecuting the �rst Bi amongB1 to Bk whose pattern
Ptri matches the value of the expression Expr in
a manner satisfying Cnsti [4]. If such a Bi does
not exist, B raises a special exception \Match()".
It might, however, happen that the evaluation of
Expr does not terminate or terminates by raising
an exception. In such a case, B is equivalent to
\block" or to the exception raising, respectively.
Without loss of generality, we make the follow-

ing assumptions, which one should try to satisfy
exactly in the given order:
1) Evaluation ofExpr always successfully termi-

nates. If this is not the case, rewrite B into \any :
any := Expr;B".
2) Evaluation of Expr always results in selection

of a Bi. If this is not the case, add another alter-
native \any : any ! (signal Match();block)".
3) There is no Ptri binding a V from a BndBj

. If
a Ptri does bind such a V , of a type Type, let Ptri
bind, and Cnsti restrict, a new V 0 instead, and en-
hanceBi into \var V : Type := V 0 inBi endvar".
4) Every BndBi

with OkBi
is BndB . If a V is

missing in a BndBi
, enhance Bi into \?V := V ;

Bi".
With the assumptions, an appropriate EB is con-

structed as follows:
Step 1: To implement the required transfer of

data from Expr to a Bi, every reference to a V

bound by a Ptri is in EBi
and in TrmBi

replaced by
the value of V expressed as a function of Expr as
speci�ed by Ptri under the assumption that Expr
returns a value activating Bi.
Step 2: Every �Bi

(e) is extended with a �i true
exactly when after successful evaluation of Expr,

Bi is the selected alternative.
Step 3: The constituent objects of the obtained

EBi
are promoted into objects of EB .

OkB is true exactly if it is possible that �i is true
for an i with OkBi

true. A V is in BndB if it is
possible that �i is true for an i with V in BndBi

.
TrmB returns the result of the TrmBi

with �i
true.

3.21. Choice

A \selB1[] : : : []Bk endsel" denotes aB running
processes Bi in parallel until an action selecting a
Bj occurs and permanently disables the other al-
ternatives [4]. The action may be the �rst event in
Bj or an auxiliary i() executed when Bj is ready
for a Æ(: : :) or an exception as its �rst event. The
pre�xing of potentially decisive termination events
with an i() is necessary for prevention of the time
nondeterminism which could otherwise result from
their trapping. Unlike [4], we do not insist that pro-
cesses Bi must be processes unable to successfully
terminate without previously executing an action
or signalling an exception.
Without loss of generality, we assume that every

BndBi
with OkBi

is BndB . If a V is missing in a
BndBi

, enhance Bi into \?V := V ;Bi". With the
assumption, an appropriate EB is constructed as
follows:
Step 1: In every EBi

, E is extended with an ei
with '(ei) \true", the auxiliary action for selecting
Bi. �(ei) requires that n(ei; cei) is �nalized to i().
Step 2:To secure that an auxiliary i() occurs only

when necessary, every �Bi
(ei) is extended with a

�i true exactly when TrmBi
returns a termination

and no e in the original ABi
has occurred so far.

Step 3: To secure that the �rst event in B is
not a Æ(: : :) or an exception, every �Bi

(e) with e

in (�Bi
[ �Bi

) is extended with a �0i true exactly
when an e0 in ABi

has already occurred.
Step 4: To secure that selection of a Bj perma-

nently disables every Bi with (i 6= j), every �Bi
(e)

is for every (j 6= i) extended with a �
j
i \false",

where every �(e; �ji ) is \�
0
j".

Step 5: The constituent objects of the obtained
EBi

are promoted into objects of EB .
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OkB is true exactly if anOkBi
is. A V is inBndB

exactly if it is in a BndBi
.

TrmB is equivalent to the TrmBi
with �0i true,

if any, and to \none" otherwise.

3.22. Choice over values

The event structure composition procedure from
Section 3.21 imposes no restrictions on the non-
empty set from which indexes i and j of the con-
stituent alternatives are drawn. Hence, the proce-
dure can be employed also as a concise descrip-
tion of the EB belonging to a B speci�ed as a
\choice Ptr[]B0 endch", i.e. behaving as if choos-
ing between alternatives BV al of the form \case
V al is Ptr ! B0 endcase" for V al ranging over
the values matching the pattern Ptr, and yet an-
other alternative \stop" [4].

3.23. Suspend/resume

A \B0[X>B0", where it is assumed that B0 is a
process unable to signal an exception X(: : :) with-
out previously executing an action or signalling an-
other exception, denotes a B running \sel B0

0[]Bi

endsel" with B0
0 the current residuum of B0 (the

initial residuum of B0 is B0 itself) and Bi the cur-
rent one among the consecutive instances B1; B2;

: : : of B0 run by B, until an action resolves the
choice in favour of Bi and suspends B0 until an
X(: : :) is trapped in Bi and control is transferred
to \B0

0[X>B0" with Bi+1; Bi+2; : : : the remaning
instances of B0, so that B0 is resumed [4]. Bind-
ings made in the earlier instances of B0 are not
visible in its current instance. Note that unlike
in \sel B0[]B

0 endsel", every (even a non-initial)
Æ(: : :) or exception signal of B0 is pre�xed with its
own auxiliary i(), where the i() introducing suc-
cessful termination of B0 permanently disables the
current and the following instances of B0. Unlike
[4], we do not insist that B0 must be a process un-
able to successfully terminate without previously
executing an action or signalling an exception.
Without loss of generality, wemake the following

assumptions:
1) If OkB0

, BndB0
is BndB . If a V is missing in

BndB0
, enhance B0 into \?V := V ;B0".

2) If OkB0 , BndB0 is BndB . If a V is missing in
BndB0 , enhance B0 into \?V := V ;B0".
With the assumptions, an appropriate EB is con-

structed as follows:
Step 1: In EB0

, E is for every e in � extended
with an e0 with '(e0) \true", the auxiliary pre�x
of e. �(e0) requires that n(e0; ce0) is �nalized to i().
Step 2: To secure that the pre�x of an exception

signal inB0 occurs only when necessary, one in EB0

for every e in �, its pre�x e0 and � in �(e) replaces
e in E(�) with e0 and accordingly renames �(e; �)
into �(e0; �), so that e0 is logically enabled exactly
when e would originally be. As e0 may occur only
if e is not trapped, �(e0) is extended with a �e0

true exactly when �(e) upon logical enabling of e
provides a value for n(e)B0

.
Step 3: To secure that an exception signal in B0

occurs only after its pre�x, every �B0
(e) with e in

�B0
is extended with a �e \e

0" with e0 the pre�x of
e.
Step 4: In EB0

, E is extended with an eÆ with
'(eÆ) \true", the auxiliary pre�x of the successful
termination of B0. �(eÆ) requires that n(eÆ ; ceÆ ) is
�nalized to i().
Step 5: To secure that eÆ occurs when B0 would

originally successfully terminate, �B0
is extended

with a �Æ true exactly when TrmB0
returns a Æ(: : :).

Step 6: To secure that successful termination of
B0 occurs after eÆ, every �B0

(e) with e in �B0
is

extended with a �0Æ \eÆ", while the other members
of.
Step 7: For every instance Bi of B

0, EBi
is modi-

�ed as in Steps 1 to 3 in Section 3.21, so that an ei
representing an auxiliary pre�x i() is introduced.
Step 8: To secure that B0 properly suspends and

re-enablesB0, every �B0
(e) is for every instanceBi

of B0 extended with a �i0 true exactly when TrmBi

returns an X(: : :), where �(e; �i0) is true exactly if
an e0 in ABi

has already occurred.
Step 9: To prevent premature enabling of indi-

vidual instances of B0, every �Bi
(e) with (i > 1)

is extended with a �00i true exactly when TrmBi�1

returns an X(: : :).
Step 10: To prevent the occurrence of the

trappedX , every �(e) with e in a �Bi
with (i > 0)

is extended with the requirement that n(e)Bi
is

not �nalized to an X(: : :).
Step 11: To secure that exception pre�xes of B0
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suspend instances of B0 until the exception signal
occurs, every �Bi

(e00) with (i > 0) is for every e in
�B0

and its pre�x e0 extended with a �ei \e", where
�(e00; �ei ) is \e

0".
Step 12: To secure that eÆ permanently disables

instances of B0, every �Bi
(e) with (i > 0) is ex-

tended with a �Æi \false", where �(e; �Æi ) is \eÆ".
Step 13: The constituent objects of the obtained

EBi
are promoted into objects of EB .

OkB is (OkB0
_ OkB0 ). BndB is (BndB0

[
BndB0).
When a TrmBi

with (i > 0) and an e in the
enhanced ABi

true returns a value other than an
X(: : :), TrmB returns the value. If there is no such
i, TrmB returns the result of TrmB0

provided that
the result is an exception and there are an e in
�B0

and its auxiliary pre�x e0 such that (e0 ^ :e)
is true, or that the result is a Æ(: : :) and eÆ is true.
Otherwise, TrmB returns \none".

3.24. Parallel composition

A \par Dgr in Gts1 ! B1k : : : kGtsk ! Bk

endpar", where it is assumed that BndB1
to

BndBk
are pairwise disjoint, denotes a B running

B1 to Bk in parallel, synchronized as speci�ed
by Dgr and Gts1 to Gtsk [4]. For every Bi, Gtsi
lists the gates on which Bi synchronizes with its
peers. If the gate G on which a synchronization
occurs has its synchronization degree D de�ned in
Dgr, the event is a synchronization of exactly D

processes Bi with G in Gtsi, otherwise it is a syn-
chronization of all such processes. Every exception
signal of a Bi is pre�xed with an auxiliary i(). B
successfully terminates when all its constituents
do.
An appropriate EB is constructed as follows:
Step 1: For every e in a �Bi

, an auxiliary pre�x
e0 is introduced in the same manner as Steps 1 to
3 in Section 3.23 do for e in �B0

.
Step 2: To secure that every exception pre�x in

a Bi suspends every peer Bj until the exception
signal occurs, every �Bj

(e00) is for every e in a �Bi

with (i 6= j) and its pre�x e0 extended with a �ej
\e", where �(e00; �ej ) is \e

0".
Step 3: To secure that Æ events of B provide a

value for every V in BndB , Æ events of everyBi are

enhanced with wild cards for the missing bindings.
In EBi

, one adds for every e in � an ne represent-
ing a new n(e)Bi

, and an me whose R(me) is an
freg whose N(re) is fneg. Besides, �(e) addition-
ally requires that whenever the original n(e)Bi

is
�nalized to a Æ(Data), ne is �nalized to a Æ(Data

0)
with Data0 providing a �eld for every V in BndB ,
where for V in BndBi

, the value of the �eld must
be as in Data.
Step 4: The constituent objects of the obtained

EBi
are promoted into objects of EB .

Step 5: To secure the required synchronization
of gate actions and successful terminations, one
adds for every e in (A [ �) an n0

e representing a
new n(e)B and for every non-empty subset � of
f1; : : : ; kg an m� whose R(m�) for every i in �

contains an ri� whose N(ri�) contains names n0
e for

e inABi
and if � is f1; : : : ; kg, also for e in �Bi

. For
every e in (A [�), �(e) additionally requires that
n0
e is �nalized to the same value as the old n(e)B .
A �(m�) requires that in every s with m� an

m(c; s), the value to which the names n(e; c) with e
in E(s) are �nalized is 1) an i(: : :) with � a single-
ton set, or 2) a G(: : :) with an i the only member
of � and G not in Gtsi, or 3) a G(: : :) such that
G is in Gtsi for every i in � and j�j is the explic-
itly or implicitly speci�ed synchronization degree
of G, or 4) a Æ(: : :) with � f1; : : : ; kg. If a �(m�) is
equivalent to \false", m� may be omitted.
OkB is ^i=1;:::;kOkBi

. BndB is [i=1;:::;kBndBi
.

When a TrmBi
returns an exception and there

are an e in �Bi
and its auxiliary pre�x e0 such

that (e0 ^:e), TrmB returns the result of TrmBi
.

When TrmB1
to TrmBk

return some Æ(Data1)
to Æ(Datak), respectively, TrmB returns Æ(Data1;
: : : ; Datak). Otherwise, TrmB returns \none".
Example 8 In aB speci�ed as \par in [G]! B1k
[G]! B2 endpar", DG is 2. Suppose that in EB1

,
E is an fe1g with e1 a permanently enabled event
whose n(e1) may be �nalized to G() or to a G0().
Suppose that in EB2

, E is an fe2; e
0
2g with e2 and

e02 two permanently enabled events that can occur
only in synchronization, in an s whose n(s) is G().
Constructing EB, we introduce new meeting

points mf1g, mf2g and mf1;2g. For mf1g, there is a
role r1f1g whose E(r1f1g) is fe1g. For mf2g, there is

a role r2f2g whose E(r2f2g) is fe2; e
0
2g. For mf1;2g,
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there are roles r1f1;2g and r2f1;2g, where E(r1f1;2g)

is fe1g and E(r2f1;2g) is fe2; e
0
2g. If G is fG;G0g,

�(mf1g) and �(mf2g) allow events i() and G0(: : :),
while �(mf1;2g) allows events G(: : :) and Æ(: : :).
An s in EB can involve either e1 in role r1f1g,

or e1 in role r1f1;2g and e2 and e02 in role r2f1;2g,
where in the second case, the constraint that both
e2 and e02 must be involved is inherited from EB2

.
The resulting n(s) is G0() or G(), respectively.

3.25. Parallel over values

A \par Ptr in LstjjjB0" with Lst a list of values
matching the pattern Ptr and BndB0 empty de-
notes a B basically running a process \case V al is
Ptr ! B0 endcase" for every value V al in Lst,
but equivalent to \exit()" in the exceptional case
of empty Lst [4]. Note that the length of Lstmight
not be known in advance.
An appropriate EB is the E of \par in [] !

B1k[] ! B2k : : : endpar" with each Bi speci�ed
as \case length(Lst) � i is !true ! B0

ij!false !
exit() endcase" where B0

i is \case nth(Lst; i) is
Ptr ! B0 endcase". After a parametrized de-
scription of the constituent Ei is obtained, the event
structure composition procedure from Section 3.24
can be employed as a concise description of EB ,
since it poses no restrictions on k, the number of
the constituent structures.

3.26. Additional simultaneity restrictions

There is a question whether two or more ele-
mentary events of an E-LOTOS process should be
allowed to simultaneously occur on the same pro-
cess gate without synchronizing into a compound
event, i.e. whether gates are sharable resources. If
the events also carry the same data, so that they
are indistinguishable for the process environment,
such simultaneity is even more questionable.
Where suppression of such simultaneity is abso-

lutely necessary, it can be speci�ed by additional
triggered postconditions. We do not, however,
think that the suppression should be incorporated
into the E-LOTOS semantics, because many E-
LOTOS speci�cations, particularly those exten-

sively employing the event renaming operator, use
gates just as an auxiliary concept with a vague
architectural interpretation. As for externally in-
distinguishable events, one often intends to make
them more distinct by a further re�nement, imply-
ing that restricting their simultaneity in an early
design phase would be premature.

4. Concluding remarks

We have proposed a new kind of event struc-
tures suÆciently expressive to model even the rich
semantics of E-LOTOS processes without explo-
sion of the event set. In the presence of timing con-
straints, data handling, multi-party synchroniza-
tion, \m-among-n" synchronization, event renam-
ing with action splitting [8], process suspension
and resumption, and exception trapping, conceiv-
ing such a model has been quite an endeavour.
The resulting true concurrency semantics of E-

LOTOS processes explicitly represents even those
relationships between process events which have so
far been described only informally, in various work-
ing documents and tutorials on the language. If the
proposed formal semantics seems complicated, this
is not because the employed modelling technique
lacks expressiveness, but because the underlying
intuitive semantics of the processes is complicated.
With their object-oriented representation of

events and their relationships, and with their or-
thogonal representation of various concerns, the
proposed event structures seem ideal for incre-
mental (or even on-the-y) process design, i.e.
for addition, deletion and/or re�nement of events
and/or their relationships. This feature of the
modelling technique is particularly welcome in
the age when cooperative distributed design and
execution of processes should be a routine.
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