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A B S T R A C T

When solving partial differential equations on scattered nodes using the Radial Basis Function-generated Finite
Difference (RBF-FD) method, one of the parameters that must be chosen is the stencil size. Focusing on
Polyharmonic Spline RBFs with monomial augmentation, we observe that it affects the approximation accuracy
in a particularly interesting way — the solution error oscillates under increasing stencil size. We find that we
can connect this behaviour with the spatial dependence of the signed approximation error. Based on this
observation we are able to introduce a numerical quantity that could indicate whether a given stencil size is
locally optimal. This work is an extension of our ICCS 2023 conference paper (Kolar-Požun et al., 2023).
1. Introduction

Partial Differential Equations (PDEs) are ubiquitous in science and
engineering, as well as economics and related fields. For this rea-
son, study of PDEs and their solutions is an extremely active area
of research. As many real-world cases are too complicated to solve
analytically, a substantial part of this research focuses on numerical
PDE solution procedures.

Currently, the most widely used method of obtaining a numerical
solution to a given PDE is the finite element method (FEM) [1]. It
is well understood, supports all types of adaptivities [2] accompanied
with well understood error indicators [3] and isogeometric analysis [4].
A necessary step in FEM analysis is meshing, where the entire compu-
tational domain is covered with polyhedrons. In realistic 3D domains
the process of meshing often requires user assistance and thus cannot
be automated [5]. This motivates research into meshless methods [6]
that work directly on point clouds often referred to as ‘‘scattered
nodes’’, which considerably simplifies the discretisation of the domain
regardless of its dimensionality or shape [7,8]. The elegant formulation
of meshless methods is also convenient for implementing h- [9] and
hp- [10] adaptivities, considering different approximations of partial
differential operators in terms of the stencil shape and size [11,12] and
the local approximation order [13].

Over the years numerous meshless methods were proposed, some
of the commonly used ones being the Finite Point Method [14],
Smooth Particle Hydrodynamics [15], the Generalised Finite Difference
Method [16] and the Moving Least Squares [17] to name a few. In
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this paper we focus on a yet another popular choice - a method based
on Radial Basis Functions (RBFs). RBFs have first seen widespread use
in interpolation on unstructured discretisations in the 1970s [18] and
have become attractive due to their positive definiteness property [19],
resulting in a well-defined interpolation problem for any pairwise
distinct collection of nodes. In 1990, Kansa used the RBF interpolants to
also approximate linear differential operators, resulting in a RBF-based
collocation method for solving PDEs [20].

In the early 2000s, a local variant of Kansa’s method was pro-
posed, with improved stability properties and lower computational
complexity [21,22]. This method, today known as the Radial Basis
Function-generated Finite Difference (RBF-FD) method, approximates a
linear differential operator only locally, given a chosen neighbourhood.
The neighbourhood in question is referred to as a stencil of a given
point and is commonly chosen to simply consist of its 𝑛 closest points.

In the last few years, several improvements of the RBF-FD method
have been proposed. For instance, RBF-HFD (Hermite Finite Differ-
ence) accounting for derivative information for added accuracy [23],
oversampled RBF-FD with increased stability properties [24] and over-
lapped RBF-FD with improved computational complexity [25]. How-
ever, for the purposes of this paper we limit our analyses to the simplest
and most popular original version [21].

Initially, the researchers in this field focused on smooth RBFs such
as Gaussians or Inverse Multiquadrics [26,27]. Their downside is that
they all possess a free parameter — the shape parameter, which can
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substantially affect the method’s accuracy and the precise interpreta-
tion of which is still a major subject of research, making it difficult to
choose appropriately [22].

For this reason, RBFs without a shape parameter have been gaining
traction lately. Concretely, Polyharmonic Splines (PHS) with monomial
augmentation have become a popular choice, becoming a subject of
extensive research and applications [10,28–30].

The main topic of this paper is a study of the effect of stencil size 𝑛
on the quality of differential operator approximation in PHS RBF-FD.

Regarding stability, Bayona already noticed that increasing the
stencil size smoothens the cardinal functions and can aid with the
diagonal dominance of the resulting differentiation matrix [31].

As for approximation accuracy, for the case of smooth RBFs, it
was observed that the stencil size can affect the order of the approx-
imation [32]. On the other hand, in the context of PHS RBF-FD, it
is easy to see that the order of the method is determined by the
degree of augmented monomials [33]. The effect of the stencil size
on approximation accuracy, however, is not so evident. The fact that
stencil properties can affect the accuracy is sometimes mentioned in
passing [24] but, to the best of our knowledge, has not been analysed
in detail.

We observe that the choice of an appropriate stencil size in PHS
RBF-FD can have a substantial impact on the accuracy. Moreover
the accuracy of the method displays an oscillatory behaviour under
increasing stencil size. In the remainder of the paper, we present our
findings in greater detail. Our main objectives are determining why
and under which conditions the oscillatory behaviour of the solution
error occurs and whether we can predict its quantitative properties a
priori. Namely, it would be beneficial if we could predict the optimal
stencil size for a given problem and thus improve the method’s accuracy
without changing our discretisation set or increasing the order of our
method.

The following section describes our problem setup along with the
numerical solution procedure. In Section 3 our results are then dis-
cussed, where we start by demonstrating the aforementioned error
oscillations. We then proceed by showing how these oscillations can
be connected to the spatial dependence of pointwise error. In Section 4
several further analyses are performed. First, we check to what extent
the oscillations remain if some aspect of the method is modified and
then analyse how our observations change when considering different
problem setups. In Section 5 a realistic problem of determining the
stationary temperature profile of a heatsink is analysed as a potential
application of our findings.

This paper is an extension of our conference paper [34], in which
the aforementioned error oscillations were first observed.

2. Problem setup

Our analyses are performed on the case of the Poisson equation

∇2𝑢(𝐱) = 𝑓 (𝐱), (1)

where the domain is an open disc 𝛺 = {𝐱 ∈ R2 ∶ ‖𝐱 − (0.5, 0.5)‖ < 0.5}.
We choose the function 𝑓 (𝐱) such, that the problem given by Eq. (1)
has a known solution. Concretely, we choose

𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦), (2)

𝑓 (𝑥, 𝑦) = − 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) (3)

with the Dirichlet boundary conditions given by a restriction of 𝑢(𝐱) to
the boundary 𝜕𝛺.

We discretise the domain with the internodal distance ℎ = 0.01, first
discretising the boundary and then the interior using an advancing front
method-based algorithm proposed in [8,35] that guarantees minimal
spacing and local regularity of the resulting discretisation set. From
here on out we will refer to it as the DIVG (Dimension Independent
2

Fig. 1. Example discretisation set generated by the DIVG algorithm. Example stencils
are also displayed.

Variable density node Generation) algorithm. On the resulting dis-
cretisation points we then obtain a numerical solution to the Poisson
problem using the RBF-FD procedure, which we will now briefly de-
scribe. For a more complete description we refer the reader to [36].
We associate to each discretisation point 𝐱𝑖 its stencil, which consists
of its 𝑛 nearest neighbours. Fig. 1 serves as an visual representation of
how a typical stencil looks like. The Laplacian will be discretised locally
on each such stencil. For readability, we will enumerate the nodes in a
given stencil as 𝐱′1,… 𝐱′𝑛. Let us start by assuming we want to interpolate
an unknown function 𝑢(𝐱) given its values in the stencil nodes. We write
an RBF interpolant with monomial augmentation as:

𝑠(𝐱) =
𝑛
∑

𝑖=1
𝛼𝑖𝜙(‖𝐱 − 𝐱′𝑖‖) +

𝑀𝑚
∑

𝑖=1
𝛽𝑖𝑝𝑖(𝐱), (4)

where the first sum is over the chosen RBFs. In our analyses we have
opted for radial cubics 𝜙(𝑟) = 𝑟3. Second sum ranges over the 𝑀𝑚 basis
functions of polynomials in two variables up to degree 𝑚, inclusive —
concretely, this implies 𝑀𝑚 = (𝑚 + 1)(𝑚 + 2)∕2. In practice (and also in
this paper) 𝑝𝑖(𝐱) are taken to be monomials. Unless otherwise stated,
we will work with 𝑚 = 3. Before proceeding, it will be useful to rewrite
the interpolant in cardinal (also known as Lagrange) form:

𝑠(𝐱) =
𝑛
∑

𝑖=1
𝜓𝑖(𝐱)𝑢(𝐱′𝑖 ), (5)

where 𝜓𝑖(𝐱) are known as the cardinal functions. Applying a chosen
operator  (in our case ∇2), we can express:

(𝑠(𝐱)) =
𝑛
∑

𝑖=1
(𝜓𝑖(𝐱))𝑢(𝐱′𝑖 ). (6)

We will be interested in the operator value at the centre point of the
stencil 𝑥𝐶 :

(𝑠(𝐱𝐶 )) =
𝑛
∑

𝑖=1
𝑤𝑖𝑢(𝐱′𝑖 ), (7)

where we have defined 𝑤𝑖 = (𝜓𝑖(𝐱𝐶 )). This gives us the differentiation
weights approximating the operator  and directly generalising the
finite difference method [30]. Skipping some details, more thoroughly
explained in [36], let us just state that in practice the weights 𝑤𝑖
are obtained as a solution of an appropriate linear system. Having

calculated the differentiation weights, we can now convert the PDE into
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𝑢

Fig. 2. Dependence of the approximation error on the stencil size 𝑛. The data used to make this plot is available in the appendix.
a global (and sparse) linear system, similarly to any traditional finite
difference methods. We then solve it to obtain an approximate solution
̂(𝐱). The source code for the above solution procedure and also all the
forthcoming analyses is readily available in our git repository1. Note
that the provided code relies heavily on an open source meshless library
Medusa [37].

Regarding the described RBF-FD method, an important property is
that the degree of monomial augmentation 𝑚 determines the approxi-
mation order — truncation error scales as ℎ𝑚+1−𝑙, where 𝑙 is the order
of the differential operator  (in our case, 𝑙 = 2) [24]. Compared
with some of the simpler methods of same order, such as a purely
monomial approximation, RBF-FD has improved stability properties. In
fact, we can increase the method stability by keeping the monomial
augmentation degree constant and increasing the stencil size [30].

Having both the analytical and approximate solutions, we will be
interested in the approximation error. It will turn out to be useful
to consider the signed pointwise errors of both the solution and the
Laplacian approximation:

𝑒±poiss(𝐱𝑖) = �̂�𝑖 − 𝑢𝑖, (8)

𝑒±lap(𝐱𝑖) = ∇̃2𝑢𝑖 − 𝑓𝑖, (9)

where ∇̃2 is the discrete approximation of the Laplacian and we have
introduced the notation 𝑢𝑖 = 𝑢(𝐱𝑖). The ‘‘poiss’’ and ‘‘lap’’ subscripts may
be omitted in the text when referring to both errors at once.

As a quantitative measure of the approximation quality, we will also
look at the average/max absolute value error:

𝑒max
poiss = max

𝐱𝑖∈𝛺
|𝑒±poiss(𝐱𝑖)|, (10)

𝑒avgpoiss =
1
𝑁int

∑

𝐱𝑖∈𝛺
|𝑒±poiss(𝐱𝑖)| (11)

and analogously for 𝑒max
lap and 𝑒avglap . 𝑁int is the number of discretisation

points inside the domain 𝛺.
In the next section we will calculate the approximation error for

various stencil sizes 𝑛 and further investigate its (non-trivial) behaviour.

3. Core observations

3.1. Error oscillations

In Fig. 2 we see that both 𝑒max
poiss(𝑛) and 𝑒avgpoiss(𝑛) oscillate with several

local minima (at stencil sizes 𝑛 = 28, 46) and maxima (at stencil
sizes 𝑛 = 17, 34). Additionally, these oscillations are not erratic, but
instead seem to somewhat resemble a smooth function. This is even
more evident in Laplacian approximation error 𝑒avglap (𝑛), which is also

1 https://gitlab.com/e62Lab/public/2023_cp_iccs_stencil_size_effect
3

plotted and we can observe that it has local minima and maxima at
same stencil sizes. Such regularity implies that the appearance of these
minima in the error is not merely a coincidence, but a consequence of
a certain mechanism that could be explained. Further understanding
of this mechanism would be beneficial, as it could potentially allow us
to predict the location of local minima a priori. Considering that the
difference between the neighbouring local maxima and minima can be
over an order of magnitude this could greatly increase the accuracy of
the method without having to increase the order of the augmentation
or the discretisation density. Note that the behaviour of 𝑒max

lap (𝑛) stands
out as much more irregular. This implies that in order to explain the
observed oscillations, we have to consider the collective behaviour of
multiple points, which will be confirmed later on when we consider the
error’s spatial dependence.

3.2. Pointwise behaviour

Fig. 3 provides some more insight into the mechanism behind the
oscillating error. Here we have plotted the spatial dependence of the
signed error 𝑒±poiss for those stencils that correspond to the marked local
extrema. We can observe that in the maxima, the error has the same
sign throughout the whole domain. On the other hand, near the values
of 𝑛 that correspond to the local minima there are parts of the domain
that have differing error signs. Concretely, the sign of 𝑒±poiss is negative
for stencil sizes between 17 and 27 inclusive. In the minima at 𝑛 = 28
both error signs are present, while for bigger stencil sizes (between
29 and 45 inclusive) the error again has constant sign only this time
positive.

This connection between the sign of 𝑒±poiss and the minima in 𝑒max
poiss(𝑛)

motivates us to define a new quantity:

𝛿𝑁±
poiss =

1
𝑁int

(

|{𝐱𝑖 ∈ 𝛺 ∶ 𝑒±poiss(𝐱𝑖) > 0}| − |{𝐱𝑖 ∈ 𝛺 ∶ 𝑒±poiss(𝐱𝑖) < 0}|
)

(12)

and analogously for 𝛿𝑁±
lap. Simply put, the quantity 𝛿𝑁±

poiss is propor-
tional to the difference between the number of nodes with positively
and negatively signed error. Assigning values of ±1 to positive/negative
errors respectively, this quantity can be roughly interpreted as the
average sign of the error. It should hold that |𝛿𝑁±

poiss| is approximately
equal to 1 near the maxima and lowers in magnitude as we approach
the minima. Fig. 4 confirms this intuition: 𝛿𝑁±

poiss(𝑛) changes its values
between ±1 very abruptly only near the 𝑛 that correspond to the
minima of 𝑒max

poiss(𝑛). A similar conclusion can be made for 𝛿𝑁±
lap, which

acts as a sort of ‘‘smoothed out’’ version of 𝛿𝑁±
poiss(𝑛).

At a first glance, 𝛿𝑁±
lap seems like a good candidate for an error

indicator — it has a well-behaved dependence on 𝑛, approaches ±1 as
we get closer to the error maxima and has a root near the error minima.
The major downside that completely eliminates its applicability in the
current state is the fact that we need access to the analytical solution
to be able to compute it.

https://gitlab.com/e62Lab/public/2023_cp_iccs_stencil_size_effect
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Fig. 3. Spatial dependence of 𝑒±poiss in some local extrema. The colour scale is the same for all drawn plots.
Fig. 4. The quantities 𝛿𝑁±(𝑛) along with the spatial profiles of the signs of 𝑒± for some chosen stencil sizes. For convenience, 𝛿𝑁± = 0 is marked with a green line.
4. Analysis

Firstly, we would like to eliminate the possibility of some common
numerical issues being a cause for the oscillating error. An immediate
idea is that the choice of a sparse solver employed at the end of
the solution procedure is responsible for the observed behaviour. We
have eliminated this possibility by repeating the analysis with both
the SparseLU and BiCGSTAB solvers, where no difference has been
observed. Likewise, we have checked the condition numbers of the
matrices involved in the approximation and have not seen any unex-
pected behaviour. For further analysis, we will change some aspect of
our solution procedure and verify that the observed error oscillations
remain.

4.1. Changes in the solution procedure

4.1.1. Discretisation refinement
The next idea we explore is the possibility of the discretisation being

too coarse. Fig. 5 shows that under discretisation refinement 𝑒max
poiss(𝑛)

maintains roughly the same shape and is just shifted vertically towards
a lower error. The latter shift is expected, as we are dealing with a
convergent method, for which the solution error behaves as 𝑒 ∝ ℎ𝑝

as ℎ → 0, where 𝑝 is the order of the method, which for the Poisson
equation in our setup should equal 𝑝 = 2 [24]. We also show 𝑒max

poiss(ℎ)
in a log–log scale for the stencil sizes between 𝑛 = 34 (local maximum)
and 𝑛 = 46 (local minimum). It can be seen that the slopes and therefore
the orders 𝑝 do not deviate from the predicted 𝑝 = 2 behaviour as we
4

increase the stencil size and that the observed oscillations mainly come
from the proportionality constant in 𝑒 ∝ ℎ𝑝. The stencil dependence of
the error proportionality constant has already been observed in similar
methods [24,32].

4.1.2. Node layout
As our next test we consider a possibility of a particularly chosen

node layout being responsible for the observed behaviour. On Fig. 6 we
have repeated our calculations on several different sets of discretisation
points, varied by changing the random seed in the DIVG algorithm.
Notice that the maximum error oscillations remain almost unchanged.
We can observe similar behaviour on discretisations of different char-
acter, namely nodes generated by a uniform discretisation in polar
coordinates (discretising concentric circles of increasing radii) and by
Halton sequences [38]. The case of Halton nodes exhibits considerably
less stable behaviour, which is expected as, unlike the other discreti-
sation sets employed, Halton nodes do not have any minimal spacing
guarantee. This can be measured by the node set ratio 𝛾 [39], which
is also displayed on the same figure. It is defined as 𝛾 = 𝜌∕𝛿, where
𝜌 = max𝐱∈𝛺 min𝑖 ‖𝐱𝑖 − 𝐱‖ are the fill distance (maximum empty sphere
diameter) and 𝛿 = min𝑖≠𝑗 ‖𝐱𝑖 − 𝐱𝑗‖ the separation distance of a given
discretisation set.

4.1.3. Boundary stencils
Next we check if boundary stencils are responsible for the observed

behaviour as it is known that they can be problematic due to their one-
sideness [30]. On Fig. 7 we have split our domain into two regions
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Fig. 5. Behaviour of the approximation errors under a refinement of the discretisation.
Fig. 6. Effect of different discretisation methods on the error oscillations. Example node sets along with their node set ratio 𝛾 are displayed in the first row. Second row displays the
𝑒max
poiss behaviours: with each of the three listed methods we have generated 10 different node sets and repeated our analysis. The computed values all lie within the corresponding

shaded regions.
Fig. 7. The separation of the domain into two regions is seen on the left, where the purple circles show the radii of the biggest stencils considered (𝑛 = 69). The right graph
shows the error dependence when either of the regions is at a fixed stencil size 𝑛 = 28. The previous result with no fixed stencil size regions is also shown.
— the nodes near the boundary {𝐱𝑖 ∈ 𝛺 ∶ ‖

‖

𝐱𝑖 − (0.5, 0.5)‖
‖

> 0.4}
are coloured red, while the nodes far from the boundary {𝐱𝑖 ∈ 𝛺 ∶
‖

‖

𝐱𝑖 − (0.5, 0.5)‖
‖

≤ 0.4} are black. We can see that the dependence of
𝑒max
poiss(𝑛) marginally changes if we keep the stencil size near the bound-

ary fixed at 𝑛 = 28 (corresponding to one of the previously mentioned
minima), while only changing the stencil sizes of the remaining nodes.
This shows that the observed phenomenon is not a consequence of the
particularly problematic boundary stencils.
5

4.1.4. Approximation basis
Finally, we check if the oscillations remain also for other choices of

parameters associated with our approximation basis. We will consider
different types of PHS RBFs: Another radial cubic 𝜙(𝑟) = 𝑟2𝑘+1 and also
the less commonly used thin plate splines 𝜙(𝑟) = 𝑟2𝑘 log(𝑟). Additionally,
for each PHS several different values of the monomial augmentation
degree 𝑚 will be considered, which should not be chosen lower than the
PHS parameter 𝑘 for stability reasons [19]. We should also emphasise
that the monomial augmentation degree 𝑚 affects the minimal possible
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Fig. 8. Error oscillations for different choices of method parameters.
Fig. 9. Maximum error dependence on stencil size for few different choices of RBFs. The previous result with 𝜙(𝑟) = 𝑟3 is also shown for reference.
stencil size so some change in the behaviour is expected. The results can
be seen on Fig. 8, where we can see that the stencil size dependence
does change as we modify these parameters, but oscillatory behaviour
remains.

For completeness, let us also briefly consider alternative choices of
RBFs besides PHS. We consider the following:

• Gaussian 𝜙(𝑟) = 𝑒−(𝜖𝑟)2 ,
• Multiquadric (MQ) 𝜙(𝑟) =

√

1 + (𝜖𝑟)2,
• Inverse Multiquadric (IMQ) 𝜙(𝑟) = (1 + (𝜖𝑟)2)−0.5.

We repeat our analysis and study the stencil size dependence 𝑒poissmax (𝑛).
The results can be seen on Fig. 9. We can observe that we do get
similar oscillatory behaviour also for these other RBFs when 𝜖 = 1,
but the behaviour is very different when 𝜖 = 0.1. The fact that 𝜖
greatly affects the accuracy is well known and in general, selecting
a suitable 𝜖 is a difficult problem [22]. Although in our analyses, we
have scaled the local coordinate 𝑟 with the stencil radius, the optimal
shape parameter likely still varies with the stencil, which would greatly
complicate further investigations. For this reason we focus purely on
PHS for the remainder of the paper, as they have no such parameter2

— one of the main reasons for considering them in the first place.

2 One could argue that the PHS exponent is also a parameter, however its
effect is much less drastic [40].
6

4.2. Different problem setups

Having verified that the observed oscillations remain as we modify
our solution procedure, we now turn our attention to different problem
setups. As pointwise behaviour, described by 𝛿𝑁±

poiss, could have some
value in applications we will now include it in our analyses. Concretely,
we would like to investigate the extent to which the observed error
oscillations and the associated 𝛿𝑁±

poiss behaviour remain if we modify
our model problem in some way.

4.2.1. Dimensionality
We start by changing the dimensionality of the domain. Namely,

in addition to a 2D disc, we also consider an interval 𝛺 = (0, 1) and
an open ball in 3D, centred around a point (0.5, 0.5, 0.5) with a radius
of 0.5, again with the Dirichlet boundary conditions calculated from
our chosen analytical solution, which is 𝑢(𝑥) = sin(𝜋𝑥) and 𝑢(𝑥, 𝑦, 𝑧) =
sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧) for the new 1D and 3D cases respectively. The
results are displayed on Fig. 10 and we can see that both the error
oscillations and the associated pointwise behaviour (𝛿𝑁±

poiss) remain,
where the error minima are dimension-dependent and further apart
from each other with increasing dimensionality. Furthermore, we can
see that the oscillations eventually dampen for sufficiently high stencil
sizes. There are also some deviations from our previous pointwise error
observations in 2D – as we pass the minimum just below 𝑛 = 100,
a notable change can be seen in 𝛿𝑁±

poiss but of different character
than previously observed – the sign does not change. Additionally in
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Fig. 10. Error oscillations and the 𝛿𝑁±
poiss behaviour plotted for different dimensionalities. The 3D case was computed with a spacing of ℎ = 0.04 due to its increased computational

complexity.
Fig. 11. Error oscillations and the 𝛿𝑁±
poiss behaviour plotted for different dimensionalities and with mixed boundary conditions. The 3D case was computed with a spacing of

ℎ = 0.04 due to its increased computational complexity.
the 3D case, the value of |𝛿𝑁±
poiss| is not 1 outside the minima but is

instead slightly lower. In spite of these differences, qualitatively the
observed behaviour remains the same also in those newly analysed
cases, especially at lower and therefore (due to the high computational
cost of increasing 𝑛) the most relevant stencil sizes.

4.2.2. Boundary conditions
We repeat the analysis in different dimensions also with mixed

boundary conditions, keeping Dirichlet boundary conditions for bound-
ary nodes satisfying 𝑥 > 0.5 and imposing Neumann boundary condi-
tions for the remaining nodes. In order to increase stability, we have
taken a standard approach and added a ghost node for each Neumann
boundary node, positioned at a distance ℎ in the outward-facing normal
direction [30]. To maintain a square system additional equations must
be added — we require the discretised PDE to hold not only at interior
points, but also at each Neumann boundary node. The results are
seen on Fig. 11. The changes compared to the previously considered
case with only Dirichlet boundary conditions are minimal, a notable
difference appearing only in the 2D case, where two minima at very
close proximity appear just below 𝑛 = 100. This particular minimum
already exhibited unusual behaviour previously, on Fig. 10.

4.2.3. Domain shapes
Next, we solve the Poisson problem on different domains, while

maintaining the Dirichlet boundary conditions and the same right hand
side 𝑓 (𝑥, 𝑦). We have tested the following domain shapes:

• A non-Lipschitz domain — a nephroid, parametrically given by
𝑥(𝑡) = 0.75 cos(𝑡) − 0.5 cos3(𝑡) and 𝑦(𝑡) = 0.5 sin3(𝑡), 𝑡 ∈ [0, 2𝜋) and
then rotated by 𝜋∕4 and translated by (0.5, 0.5).
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• A triangular domain — a polygon with vertices (0, 0), (1, 0) and
(0, 1).

• ‘‘Pac-Man’’ shaped domain — the set-theoretic difference of a disc
of radius 0.5 centred at (0.5, 0.5) and a square with corners (0.5, 0)
and (1, 0.5). The resulting shape is rotated by 𝜋∕4.

• A domain that is not simply connected — an annulus, centred
around (0.5, 0.5) with inner radius 0.1 and outer radius 0.5.

• A more complicated domain, given in polar coordinates as 𝑟(𝜙) =
0.25 |cos(1.5𝜙)|sin(3𝜙) and also translated by (0.5, 0.5).

Fig. 12 shows that again our previous observations hold with a
slight difference in the pointwise error behaviour — 𝛿𝑁±

poiss is again not
near zero only in the error minima, but also in their neighbourhood.
Additionally on some domains |𝛿𝑁±

poiss| is not exactly equal to 1 far
from the minima as before, but is instead slightly lower. It would
appear that the observed phenomena are robust under a change of the
domain since, again, while minor differences are present, qualitatively
the behaviour is still the same.

4.2.4. Differential operators
To further test the extent of observed oscillations, let us look at

more PDEs of type 𝑢(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦), still with the same analytical
solution and Dirichlet boundary conditions, but different elliptic partial
differential operators :

1 = ∇2 + 𝜕𝑥𝜕𝑦
2 = ∇2 + 𝜕𝑥 + 𝜕𝑦
 = 𝑥𝜕2 + 𝑦2𝜕2
3 𝑥 𝑦
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Fig. 12. The plots show the error oscillations and its pointwise behaviour for different domains. The shaded region corresponds to the interval 𝑛 ∈ [24, 30], for which the pointwise
contours are displayed to the right. The contour plot borders’ colour associates them to the corresponding plots on the left. For reference, the results of our initially considered
setup are plotted with a black, transparent line.
Fig. 13. The plots on the left show the 𝑒max
poiss(𝑛) and 𝛿𝑁±

poiss(𝑛) dependence respectively for several different elliptic equations. The shaded region corresponds to the interval
𝑛 ∈ [26, 30], for which the pointwise contours are displayed to the right. The contour plot border’s colour associates them to the corresponding plots on the left. For reference, the
results of our initially considered setup are plotted with a black, transparent line.
4 = ∇2 + 1

5 = ∇2 + 10

The results are displayed on Fig. 13, where we can see that the
behaviour again remains very similar with the minima appearing at
exactly the same stencil sizes for different differential operators.

4.2.5. Analytical solutions
As a last test of the section, we return to  = ∇2 and instead

consider other choices of the analytical solution 𝑢(𝑥, 𝑦). Consequently
this changes the right hand side 𝑓 (𝑥, 𝑦) of the Poisson problem as
well as its boundary conditions. A variety of different functions were
tested, listed in Table 1. The results are shown on Fig. 14. We see
that oscillatory behaviour in the error is observed in all of the listed
functions, however, unlike in most of our previous tests, locations of
the error minima can substantially change and are function-dependent.
Additionally, in the case of 𝑢6 (the well known Franke function, com-
monly used for testing method robustness) minima are also harder to
8

Table 1
The different choices of analytical solution
𝑢(𝑥, 𝑦) considered.
Label 𝑢(𝑥, 𝑦)

𝑢1 𝑥4𝑦5

𝑢2 1 + sin(4𝑥) + cos(3𝑥) + sin(2𝑦)
𝑢3 exp(𝑥2)
𝑢4 arsinh(𝑥 + 2𝑦)
𝑢5 cos(𝜋𝑥) cos(𝜋𝑦)
𝑢6 f ranke(𝑥, 𝑦) [41]

see, likely due to the increased complexity of this particular function.
Most importantly, we notice that the previously observed pointwise
error behaviour is not general, since it differs for the cases of 𝑢4, 𝑢5
and 𝑢6. Nevertheless, a visual connection can be still made in all the
cases: 𝑢5 has 𝛿𝑁±

poiss(𝑛) approximately equal to zero, with bumps at
the stencil sizes corresponding to minima locations. The remaining
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Fig. 14. The plots on the left show the 𝑒max
poiss(𝑛) and 𝛿𝑁±

poiss(𝑛) dependence respectively for several different choices of solution functions. The shaded region corresponds to the
interval 𝑛 ∈ [24, 30], for which the pointwise contours are displayed to the right. The contour plot border’s colour associates them to the corresponding plots on the left. Graphs
plotted with a dotted line correspond to functions of which pointwise error behaviour differs from previously observed. For reference, the results of our initially considered setup
are plotted with a black, transparent line.
two cases actually seem to exhibit exactly the opposite of our initial
observations — in minima the pointwise errors are of mostly one sign
while in maxima both signs are approximately equally represented.

It could therefore still be possible to deduce the location of error
minima purely from 𝛿𝑁±

poiss(𝑛). However, in order to do so we need
to understand which properties of 𝑢(𝑥, 𝑦) (or, preferably, easily obtain-
able properties of the Poisson problem) determine the three observed
pointwise error behaviours. We have thus far not explored this further.

5. A practical example

We conclude the paper with a practical example, hinting at a poten-
tial application of the presented results. We will consider the problem of
determining the steady state temperature profile of a heatsink, similarly
as in [42]. As a 3D domain with irregular boundary, this is a typical
case where meshless methods can be employed. The domain description
has been obtained from [43]. Converting our physical problem to
the context of PDEs, determining the steady state temperature profile
amounts to solving the Laplace equation:

∇2𝑇 (𝑥, 𝑦) = 0. (13)

At the bottom (minimal 𝑦), the heatsink will be in contact with a
body of a temperature 𝑇hot , giving a Dirichlet boundary condition. On
the rest of the boundary we can combine Fourier’s law of conduction
and Newton’s law of cooling to obtain the Robin boundary condition
𝑇 + 𝛼 𝜕𝑇𝜕𝑛 = 𝑇out , where 𝛼 = 𝜆∕ℎ, with 𝜆 being the thermal conductivity
of the heatsink and ℎ the heat transfer coefficient. 𝑇out is the ambient
temperature.

To fully specify the problem setup, we will set the temperatures
equal to 𝑇out = 20 ◦C, 𝑇hot = 80 ◦C. Heatsinks are commonly made from
aluminium with 𝜆 ≈ 209Wm−1 K−1. Outside the heatsink, we have air
moving at a moderate speed, which amounts to ℎ ≈ 100Wm−2 K−1.

Due to the higher complexity of this problem, the parameters were
modified from the ones most commonly used until now. We now work
with ℎ = 3.5 × 10−4 m and 𝑚 = 2. Example numerical solution can be
seen on the left plot of Fig. 15.

As we do not have an analytical solution for this case, we have
resorted to estimating the behaviour of solution error with the recently
9

introduced IMEX error indicator [10,44]. IMEX uses an auxiliary higher
order operator to obtain an estimation of error behaviour and works
well provided the solution is smooth enough (as it appears to be also in
our case). For more information on IMEX we refer an interested reader
to the paper [10].

Right plot of Fig. 15 shows the IMEX (calculated pointwise and
averaged over the domain) dependence on stencil size. Once again
we observe oscillations that are in agreement with our previous ob-
servations — the minima are quite far apart (we are in a 3D case),
while the difference between the extrema can be substantial. As al-
ready mentioned, we currently do not have all the building blocks to
implement the presented application in practice, as we do not have a
systematic way of obtaining the optimal stencil size without access to
some accurate reference solution. This presented example is only meant
to provide additional motivation for further research in this direction.
Additionally, it should be noted that we have two possible methods
of increasing the accuracy of our solution procedure — lowering the
discretisation distance ℎ or suitably modifying the stencil size 𝑛. There
is likely some trade-off here where for some cases each of the options
turn out to be superior, but we have not delved further into the subject.

6. Conclusions

Our study started with a simple observation — when solving a
Poisson problem with PHS RBF-FD, the approximation accuracy de-
pends on the stencil size 𝑛 in a non-trivial manner. In particular, there
exist certain stencil sizes where the method is especially accurate. A
priori knowledge of these stencil sizes could decrease the solution error
without any additional effort and is therefore strongly desirable. We
have made a small step towards understanding this phenomenon by
looking at the spatial dependence of the signed solution error — in
the stencil sizes corresponding to the local error minima, the signed
solution error was not strictly positive or negative. This was unlike the
generic stencil sizes, where the error had the same sign throughout the
domain. Motivated by this observation, we have introduced a quantity
that is roughly the average sign of the pointwise errors and appeared
to have a root only near the stencils corresponding to the local error
minima.
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Fig. 15. Left plot shows the numerical solution to the physical problem, calculated with the stencil size of 𝑛 = 90. Right plot shows the IMEX dependence on stencil size.
We have eliminated some common numerical issues as the cause of
the observed oscillations and verified that the latter remain also when
changing some aspect of our numerical solution procedure. This was
followed by extending our analyses to different problem setups, where
we have noticed that the observed behaviour is robust under the change
of the problem domain or its dimensionality and is not limited to
the simplest Dirichlet boundary conditions. Furthermore the behaviour
remains almost unchanged also when considering some other PDEs of
elliptic type. However, we have observed a greater effect of the chosen
analytical solution (which in turn affects the right hand side of the
Poisson problem as well as the boundary conditions). While oscillatory
behaviour of the aggregated error remains, its pointwise behaviour
can differ. Nevertheless, we can still hope to be able to deduce the
location of minima from the pointwise behaviour, since we have seen
that a connection between the maximum error and its spatial properties
can still be made, although this relationship is more complicated than
initially described and warrants further investigation.

As demonstrated by the heatsink example, our observations are not
limited to simple, unrealistic problems, but could extend to real-life
examples as well. The research presented is a step towards defin-
ing a more practically useful indicator, which would reveal the most
accurate stencil sizes even without having access to the analytical
solution. Such an indicator would provide us with a simple way of
improving our method’s accuracy — by modifying the stencil size.
This represents an alternative to increasing the method’s order or
refining the discretisation and is part of our ongoing research. Addi-
tional future work includes more rigorous theoretical explanations for
the observations presented, especially on characterising the different
pointwise error behaviours. The effect of different method parameters
was merely touched upon in this paper and should also be more
thoroughly explored. Further experimental investigations should also
be made, particularly to what extent our observations carry over to
even more problem setups — differential equations that are not of
the elliptic type and a sweep over an even wider choice of analytical
solutions, for instance.
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Appendix. Tabulated error values

For the first case considered, where we have initially demonstrated
the phenomenon of oscillating error (Fig. 2), the exact error values are

Table A.2
Error values for the case at the beginning of Section 3, seen on Fig. 2.
𝑛 𝑒poissmax 𝑒poissavg 𝑒lapmax 𝑒lapavg

10 0.000248 7.2e−05 3.44 0.00397
11 8.1e−05 2.46e−05 0.0473 0.00279
12 0.00021 8.12e−05 0.0397 0.00329
13 0.000317 0.000129 0.02 0.00399
14 0.000404 0.000169 0.0208 0.00469
15 0.000457 0.000193 0.0187 0.00516
16 0.000491 0.000209 0.0203 0.00546
17 0.000498 0.000213 0.02 0.00553
18 0.000479 0.000206 0.0206 0.00533
19 0.000443 0.000191 0.0189 0.00498
20 0.000392 0.00017 0.0192 0.0045
21 0.000335 0.000146 0.0173 0.00398
22 0.000274 0.000121 0.0165 0.00348
23 0.000217 9.73e−05 0.017 0.00306
24 0.000163 7.55e−05 0.0156 0.00273
25 0.000115 5.49e−05 0.0164 0.00245
26 6.84e−05 3.35e−05 0.0135 0.00226
27 3.22e−05 1.36e−05 0.0115 0.00214
28 2.96e−05 8.13e−06 0.0102 0.00208
29 6.96e−05 2.44e−05 0.0116 0.00208
30 0.000102 3.95e−05 0.011 0.00213

(continued on next page)
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Table A.2 (continued).
𝑛 𝑒poissmax 𝑒poissavg 𝑒lapmax 𝑒lapavg

31 0.000131 5.3e−05 0.0102 0.00219
32 0.000153 6.33e−05 0.0101 0.00223
33 0.000165 6.94e−05 0.0112 0.00227
34 0.00017 7.23e−05 0.0107 0.00226
35 0.000166 7.15e−05 0.00982 0.0022
36 0.000158 6.89e−05 0.00917 0.00211
37 0.000146 6.46e−05 0.0081 0.002
38 0.00013 5.82e−05 0.00879 0.00186
39 0.000114 5.19e−05 0.00893 0.00174
40 9.66e−05 4.5e−05 0.00781 0.00161
41 7.97e−05 3.81e−05 0.00769 0.00149
42 6.53e−05 3.17e−05 0.00813 0.0014
43 5.07e−05 2.51e−05 0.00806 0.00133
44 3.43e−05 1.76e−05 0.00737 0.00126
45 2.21e−05 1.02e−05 0.00814 0.00123
46 1.27e−05 3.67e−06 0.0147 0.00122
47 2.23e−05 5.99e−06 0.0147 0.00122
48 3.92e−05 1.23e−05 0.014 0.00124
49 5.42e−05 1.91e−05 0.0131 0.00127
50 6.84e−05 2.55e−05 0.013 0.00133
51 8.23e−05 3.16e−05 0.0118 0.00137
52 9.29e−05 3.68e−05 0.0125 0.00143
53 0.000103 4.15e−05 0.0122 0.00147
54 0.000111 4.52e−05 0.0123 0.00151
55 0.000115 4.76e−05 0.012 0.00153
56 0.000118 4.94e−05 0.0112 0.00154
57 0.000119 5.03e−05 0.0128 0.00156
58 0.000119 5.1e−05 0.0139 0.00156
59 0.000117 5.06e−05 0.0142 0.00155
60 0.000116 5.02e−05 0.0138 0.00154
61 0.000112 4.92e−05 0.0134 0.00151
62 0.000108 4.8e−05 0.0132 0.00148
63 0.000105 4.67e−05 0.0181 0.00145
64 0.000101 4.51e−05 0.0182 0.00142
65 9.68e−05 4.34e−05 0.0167 0.00138
66 9.22e−05 4.15e−05 0.0159 0.00133
67 8.74e−05 3.96e−05 0.0167 0.00129
68 8.23e−05 3.75e−05 0.0171 0.00124
69 7.69e−05 3.52e−05 0.017 0.00118

listed in Table A.2. The error values for other cases are omitted and we
again direct an interested reader to our public gitlab repository.3
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