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Abstract

In E-LOTOS, a standard process-algebraic language for specification of concurrent and reactive real-time systems,
the only form of process sequencing is strong sequencing, meaning that no action of a particular process is ever
allowed to occur before complete termination of the preceding process. In the paper, we propose how to enhance
the language with weak sequencing, facilitating specification of accelerated action execution, i.e. of partially
overlapping processes. Defining an enhanced operational semantics, we formalize the approach for discrete-time
basic E-LOTOS processes and give informal guidelines for its generalization to full E-LOTOS.
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1. Introduction

When one specifies that a process Bs may start
only after completion of another process By, that
might be for two reasons. If the intention is to se-
cure that the actions of By come strictly after the
actions of By, such strong sequencing of B; and B,
is definitely the right choice. However, if the only
reason is that in B,, there is an event Fs causally
related to an event F; in By (e.g. because E- uses
the data produced by Ej), it might be desirable to
allow commutation (or even concurrent execution)
of pairs of causally unrelated actions Ej from B;
and EY from B, [8,10].

In many cases, such weak sequencing of B; and
B, is even the only acceptable solution, e.g. in a
real-time system executing an algorithm requiring
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that a particular Es in By is executed as soon as
possible, i.e. without waiting for completion of B; .
Another typical example where commutation of an
FE; in By and an Es in B is desirable is the case
where F; and E5 belong to concurrent components
of a distributed system, so that they cannot be
sequenced without additional time constraints or
events for inter-component communication. Weak
sequencing is also useful in action refinement, for
one might want to refine two consecutive actions
into a pair of partially overlapping processes [9,10].
The need for an operator of weak sequential
composition becomes most evident when one tries
to specify a distributed real-time system (e.g. a
telecommunications system) by specifying its legal
sequences of events. Therefore such an operator is
a welcome constituent of many scenario languages,
most notably of message sequence charts [4,7].
When a scenario language is enhanced with new
scenario composition operators, it increasingly re-
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sembles a process-algebraic language. The reason
is that many process-algebraic languages, e.g. LO-
TOS [2,1], a standard language for specification of
concurrent and reactive systems, have been con-
ceived primarily as languages for abstract specifi-
cation of process behaviour, i.e. of temporal order-
ing of events.

For further integration of the scenario and the
process-algebraic languages, it is important that
the process-algebraic languages adopt all the com-
position operators defined in the former. In this pa-
per, we suggest how to introduce weak sequencing
into E-LOTOS [3,11], the enhanced standard suc-
cessor of LOTOS. We formalize the proposed ap-
proach for discrete-time basic E-LOTOS processes
and give informal guidelines for its generalization
to full E-LOTOS.

The paper is organized as follows. Sect. 2 is
a brief overview of the various kinds of basic E-
LOTOS processes. In Sect. 3, we propose how to
enhance them with weak sequencing. In Sect. 4,
we provide some guidelines for extending the
enhancements to processes with data and to a
dense-time setting. Sect. 5 concludes the paper.

2. Discrete-time basic E-LOTOS processes

In this section, we briefly describe the discrete-
time operational semantics of basic E-LOTOS pro-
cesses. We use a simplified abstract syntax of pro-
cesses, with parentheses for unambiguous parsing.

The simplest E-LOTOS process is time block
“block”, a process without any steps.

Process “stop” is also inactive, but still willing
to age, i.e. execute steps 7T reflecting progress of
time (Fig. 1).

‘stop L stop (INI)‘

Fig. 1. Inaction.

Process “null” has a single step, a special event
d denoting successful termination (Fig. 2).

null > block (TMl)‘

Fig. 2. Successful termination

Let ¢t denote a non-negative, and d a positive
integer. A “wait(t)” denotes a process which suc-
cessfully terminates after ¢ time units (Fig. 3).

wait(0) % block (WT'1)|wait(d) & wait(d — 1) (WT2)

Fig. 3. Waiting.
“1” denotes a process which immediately exe-
cutes an anonymous internal action i and then suc-

cessfully terminates (Fig. 4).
i null (1A1)
Fig. 4. Internal action.

A “signal X” denotes a process which imme-
diately issues a signal X, from a universe X, and
then successfully terminates (Fig. 5).

signal X 5 null (SGl)‘

Fig. 5. Signal.

A “G” denotes a process which is at any time
ready to execute an interaction G, from a universe
G, with its environment on gate G and then suc-
cessfully terminate (Fig. 6).

‘G 4 (UGl)‘G %G (UGZ)‘

Fig. 6. Untimed gate action.

A “GQt” is ready for a G followed by § only ¢
time units after its start (Fig. 7).

G@o % null (TG1)|Gad 5 Ga(d — 1) (TG3)
Ga0 5 stop (TG2)

Fig. 7. Timed gate action.

Hence a process step is a 7 or an event £. An F
is an action A, from a universe A, or a trappable
event T. An AisanioraG. AT isador an X.
AnioraT is by definition urgent, i.e. cannot have
T as an alternative.

A “trap 11 is By ... T, is By, in B,4;” denotes
a process which basically executes B,,+1, but if a
T; becomes feasible, this is interpreted as a termi-
nation of B,,;1, and control is consequently trans-
ferred to B; (Fig. 8). “By; Bs” is a shorthand for
“trap 0 is By in B;”, i.e. for sequential composi-
tion of a By and a B>.



E
Bny1 = By

trap 11 is By ...Ty is By, in By,41 — trap 11 is

[E & {T1,...,Tx}] (TP1)
By1...T, is B, in B;H_l

T,
Bni1 %, B, 5 B

= (TP2)
trap...T; is B;...in Bp4+1 — B;

T,
Bni1 =%, Bi 5 B}

- (TP4)
trap...T; is B;...in Bp41 — Bg

=
Brt1 = By

trap T4 is By ...Ty is By in Bp41 N trap T is

(TP3)
B;...T, is By, in B;Jrl

Fig. 8. Trapping.

def B3 B, B >
Bl[X> B> = B [X> (B2, Bz) i, (SRI) T (SRQ)
Bl[X>(B2,B3)—)Bl[X>(B2,B3) Bl[X>(B2,Bg)—>nu11
! A
B )£> Bi By — BIZ
i (SR3) - (SR4)
Bl[X> (B27Bg) — signal X’; (Bll [X>(BQ,B3)) B [X>(B2,B3) — trap X is Bl[X>B3 in Bé
X’ T T
By = B B1 — B}, By > B,
g X # X] ($R5)| b2 22 7 (SR6)
B1[X > (B2, B3) — signal X';trap X is B1[X > Bs in B} B1[X > (B2, B3) - B{[X > (B}, Bs)

Fig. 9. Suspend/resume.

If an X is trapped, it is because it represents
an exception, i.e. an unsuccessful termination of a
process. For such an X, “signal X” is a misleading
specification, and it should better be specified by
“raise X” (Fig. 10).

‘raise X 5 block (EX1)

Fig. 10. Exception.

If a T has an alternative, its trapping might
cause non-deterministic process aging. In E-
LOTOS, such aging is strictly forbidden. There-
fore the E-LOTOS operational semantics secures
that no T ever has an alternative. Let us note that
in the adopted interleaving semantics, two events
which are concurrent in a particular process state
are also alternative next steps of the process.

For a T, to have alternatives means to be in a de-
cisive position. E-LOTOS has many process com-
position operators potentially able to put a 7" in
such a position. Whenever this happens, a seman-
tic rule prefixes 7" with an additional i taking over
the decisive role (e.g. rule CH2 in Fig. 11).

A “B;[]|B2”, where it is assumed that neither B;
nor By can execute ¢ as its first event, denotes a
process behaving as B or as Bz, where the choice
is made upon the first event (Fig. 11).

B; 5 B ,
—— i € {1,2}]

_ (CH1)
Bi[|B2 = B

B 5 B

: i € {1,2)] (CH2)
Bi[]|B2 — signal X; B}

vi e {1,2}.B; 5 B!

- (CH3)
Bi[|B2 — Bi[1B)

Fig. 11. Choice.

A “Bi[X > By”, where it is assumed that nei-
ther § nor X can be executed by Bs as its first
event, denotes process B; potentially suspended
upon the first event of Bs. If signal X occurs in Bs
after suspension of By, it is implicitly trapped as
an exception. Consequently, B; is resumed, while
B, is reset to its initial state, becoming ready for
another suspension of By . If By, while running, be-
comes ready for a d, the composite process may
execute an 1 leading to successful termination.

This is the semantics of “B1[X > By” as de-
scribed in all tutorial texts on E-LOTOS and for-
malized in Fig. 9. In the formalization, “B[X >
B, isrewritten into “B;[X > (B2, B2)”, where the
first By represents the currently pending instance
of By, while the second By acts as a constant pro-
viding information on what the following instances



vie n.B; 5 B! pcxC{l,...,n}
. A A ; ; Ezec(A,X,D,T1,...,Ty) (PR1)
par D in [Ih]B1 |[...|| [['n]Bn = par D in [[1]By ||...[| [Ma]By |y ¢ %.(B. = B;)
X
B; 5 B |:i€{17... ,n} :|(PR2)
par D in [[1]By ||...|| [[n]Bn — signal X; (par D in [[1]B)] ||...|| [[x]B,) L7k # i-(B}, = Bi)
vie {1,...,n}.B; > B! .
; 3 . ; ; (PR3)
par D in I'1]By ||...|| Tn]Br — par D in I1]B] ||...|| [['=]B,,
. . s
Vi€ X.B; & B}, Vi€ ({1,...,n}\2).B; [® cxc{l,... ,n}} -
par D in [['1]By ||...|| [[n]By 5 par D in [[1]B} ||...|| [[n]B, [Vi & X.(B; = null)

Fig. 12. Parallel composition.

should be. The official formalization of “B;[X >
By” [3,11] contains an error, as if in rule SR6, 7
reduced “By[X > (B, B3)” to “B1[X > (B}, B})”.

Let I" denote a subset of G. A “par D in [I'1]B; ||
.|| [Cn]B)”, where each element in the list D
is of the form “G#N” with N a positive inte-
ger, denotes parallel composition of processes B
to B, (Fig. 12). Each B; is associated with a I';
listing the gates on which B; synchronizes with
its peers (events G not in I'; are, like events i
and X, executed by B; on its own). If the gate
G on which a synchronization occurs has its syn-
chronization degree N defined in D, this is a
synchronization of exactly IV processes B; with G
in I';, otherwise it is a synchronization of all such
processes. Let the policy be encoded as a pred-
icate Ezxec(A,%,D,I'y,...,I[',) which for every
Y C{1,...,n} defines whether it is legal that the
composite process executes an A as a common
action of exactly the processes B; with ¢ € .. The
composite process successfully terminates when
all its constituents do. “B;|[[']| B2” is a shorthand
for “par @) in [[|B; || [T']B2”, and “By|||By” for
pure interleaving “Bi[[0]|B>”.

A “rename R in By”, where each element in
the list R is of the form “G is G or “X is X",
and R defines at most one new name E' per event
E, denotes process By with its events renamed as
specified by R (Fig. 13).

A “hide I' in B;” denotes process B; with all
its G listed in I' hidden, i.e. converted into an i
(Fig. 14). Rule HD2 enforces urgency of the new
internal events.

A “P” denotes an instantiation of a process P

def

if (Eis E' € R) then (R(E) = E'
if AE'.(E is E' € R) then (R(E) < )
B 5B
R(E) (RN1)
rename R in By — rename R in B
B & B
- (RN2)
rename R in By — rename R in B]
Fig. 13. Renaming.
if (B €T) then (E\T " i) etse (B\P < E)
B =% B,
B (HD1)
hide I' in B; — hide I" in B
B, 5 B, ,VYGeT.B 72
LT ! (HD2)
hide I' in B; 5 hide I' in B

Fig. 14. Hiding.

whose behaviour B is defined by a declaration
“Pis By” (Fig. 15). Unguarded recursion leads to
time block [6]. Instantiation of formal gates and
formal signals need not be considered as a separate
issue, because it is nothing but renaming.

B 5B B 5B,
2L 20 p s By (PID)———L [P is B] (P12)

r5 B P B

Fig. 15. Process instantiation.

A “loop X in B;” denotes a process executing
a sequence of processes By until signal X occurs
in the current B; and is interpreted as successful
termination of the loop. As “loop X in By” is



equivalent to “trap X is nullin P” with P defined
as “By; P”, we need not consider it separately.

3. Discrete-time basic E-LOTOS with weak
sequencing

3.1. The necessary additional concepts

3.1.1. Untrappable signals

Process “signal X” basically denotes signal X
followed by successful termination. However, in a
context where X is trapped, this is not the actual
role of the process, which must in that case be
interpreted as exceptional termination X.

To be able to introduce weak sequencing in the
style of [10], we resolve the ambiguity by classify-
ing urgent, non-anonymous, non-¢ events into ex-
ceptions X, from X', and signals S, from a uni-
verse S. Their legal specifications will be “raise X”
and “signal S”, while processes “signal X” and
“raise S” are from now on forbidden, and so is
trapping of signals. Exceptions, like 4, retain ex-
clusively the role of terminations, implying that we
may with no harm pretend that an X always re-
duces its executor to an equivalent of “block”.

Hence from now on, A (the universe of actions) is
enhanced with non-anonymous, unsynchronizable,
urgent actions S. As signals are, unlike exceptions,
untrappable, they can with no harm be in a decisive
position, as any other action.

Although signals are unsynchronizable, they are,
like gate actions, considered observable, because
the environment is allowed to detect them through
passive observation [5]. Hence the universe O of
observable actions O is (GUS). We propose to allow
hiding for all O, including all S.

3.1.2. Legal accelerations

Suppose that for a pair of consecutive processes
B and B’, it has been specified that it is acceptable
for events £’ in B’ to overtake events E in B. Like
[10], we define that E and E' must both belong to
A.

We also forbid E and E' to be an i, because a
process might have internal actions which are not
explicitly specified. So if commutation of a pair

of actions is to be specified, they must be non-
anonymous on the particular specification level, i.e.
their hiding (if any) postponed to a higher level.
Hence FE and E' can only be an O and an O’. Un-
like [10], we do not insist that they must be differ-
ent. However, if they are, their commutation means
that they may as well be executed concurrently.

3.1.3. Early aging

Without weak sequencing, a 7 step of a B results
in aging of all its initial events. In the presence
of weak sequencing, it might happen that some
initial events of a B are logically enabled, and thus
start aging, earlier than the others, implying that 7
needs to be furnished with information on the kinds
of events of B that it ages. Hence we superscribe 7
with a set concisely listing the events.

It turns out that the set can be simply a sub-
set of A, which we shall denote by =. This is be-
cause whenever aging is allowed for one kind of
non-accelerable events, it is also allowed for all the
other kinds, including i. Hence if the set is to in-
dicate aging for events of some kind 7', it suffices
that it contains 1. In the enhanced semantics, we
shall even employ 7° steps.

Before we proceed, let us emphasize that for an
independent B, one is, as with the original seman-
tics, interested only in its £ and 74 (i.e. the ordi-
nary 7) steps. However, such a step of a B often
consists of various steps of its subprocesses, where

a constituent step is not necessarily an E or a 7.

3.1.4. Restricted use of waiting

With the possibility of early aging, the mean-
ing of “wait(¢)” is no longer obvious. In a
“B;wait(t); B””, is it a non-overtakable process
between the termination of B and the start of B’,
or an additional delay for individual events in B’
relatively to individual events in B? In the latter
case, does it apply to all events of B’ or only to its
initial events? What if the termination of B is also
delayed? To avoid the ambiguities, we define that
a “wait(t)” may be used exclusively for delaying
an individual action, i.e. as a prefix of a “G”, a
“G@t"”, an “i” or a “signal S”.

With the above restriction, one can no longer di-
rectly use waiting for delaying a T'. Fortunately, a



T is never in a decisive position, implying that it
can be without a problem prefixed with an auxil-
iary delayed i implementing the desired delay for
T.

3.1.5. Process intentions

Let F, from a universe F, denote a particular
form of process termination. An F can be an ¢, de-
noting non-termination (e.g. because of an infinite
run, a deadlock or a premature time block), or a
T. Let ® denote a subset of F.

For a B, let Z(B) denote its current intentions.
IfZ(B)isan “{(F,Ep)|(F € ®)}”, this means that
B intends to conclude by one of the terminations
listed in ®, where for each F' in ®, Zp lists the
actions potentially preceding F' in B.

In the semantics we propose, computation of
the possible future events of a composite process
is strictly compositional, to keep its complexity
within reasonable limits. Consequently, the com-
putation does not always give precise results. In
particular, a ® without € does not imply that the
process will actually reach a T" in ®. It might as
well deadlock, because of insufficient co-operation
or a premature time block of its subprocesses or
of its environment. However, it is secured that the
process will not reach a T outside ®, or precede
an F'in ® by an A not in =g, or enter a trivially
preventable deadlock. The described policy is the
same as the one embedded in [10].

The current intentions of a B are important for
early aging of actions in the handlers of its termi-
nations. Let O be an action in a B’ specified as the
handler of a termination 7" in a B. Early aging of
O must be considered as soon as B enters a state
in which T is in ® and every member of =7 is by
the specification an action which actions O in B’
are allowed to overtake.

3.1.6. Commitments

By executing an auxiliary step “{(F,Zp)|(F €
®)}”, a B restricts its future behaviour as much
as necessary to become a process with intentions
“{(F,Ep)|(F € ®)}”. For an elementary process,
the only legal way of deleting a possible run is to
refuse execution of a non-urgent action. A com-
mitment made by a composite process will in all

cases be implemented simply as suitable commit-
ments of its constituents [10], where we shall try
to keep the constituent commitments as mild as
possible. When minimization or maximization is
required for a particular set, that will be indicated
by “min” or “max”, respectively.

Commitments are necessary in accelerated ac-
tion execution. Whenever an O directly or indi-
rectly guarded by a B is executed before B ter-
minates in a way justifying the action, B must si-
multaneously make a commitment restricting its
future behaviour to the runs legalizing the O [10].
If B then executes such a run, but unexpectedly
deadlocks, this is, like in [10], not considered a flaw.
Successive accelerated action executions might re-
quire B to make more and more restrictive com-
mitments.

3.2. Enhanced semantics of individual process
types

3.2.1. Time block
A B specified as “block” behaves as defined in
Fig. 16.

Z(block) % {(=,0)}|block ~> block [Z £ A] (TB1)

block "% block (TB2)

Fig. 16. Additional rules for time block.

B can participate in aging, but not in the ordi-
nary (non-selective) aging 74 (TB1).
B can commit to its current behaviour (TB2).

3.2.2. Inaction
A B specified as “stop” behaves as defined in
Fig. 17.

Z(stop) def {(e,0)}|stop T—E} stop (IND’)

stop {(s_,}(?))} stop (IN2)

Fig. 17. Modified and additional rules for inaction.

Rule IN1’ is an analogue of rule IN1 in Fig. 1
and defines that B can participate in aging of any
kind, particularly in steps 7.

B can commit to its current behaviour (IN2).



3.2.3. Successful termination
A B specified as “null” behaves as defined in
Figs. 2 and 18.

T(null) “ {(5,0)}|null 7> null [E £ A] (TM2)
null {%} null (TM3)

Fig. 18. Additional rules for successful termination

B can execute a § and then block (TM1).

B can participate in aging, but not in the ordi-
nary aging 74 (TM2).

B can commit to its current behaviour (TM3).

3.2.4. Internal actions
A B specified as “i” behaves as defined in Figs. 4
and 19.

1) % (6, (i) i i ¢ = (IAZ)‘i {eapr, (IAS)‘

Fig. 19. Additional rules for an internal action.

B can execute an i and become a “null” (IA1).

B can participate in aging, but only as long as
it does not include aging of i, as 74 does (IA2).

B can commit to its current behaviour (IA3).

3.2.5. Signals
A B specified as a “signal S” behaves as defined
in Fig. 20.

7(signal §) < {(5,{5})}

signal S 5 null (SG1)

signal S " signal S [S ¢ E] (SG2)

{66,{SH}

signal S = —— " signal S  (SG3)

Fig. 20. Modified and additional rules for a signal.

Rule SG1’ is an analogue of rule SG1 in Fig. 5
and defines that B can execute an S and become
a “null”.

B can participate in aging, but only as long as
it does not include aging of S, as 7 does (SG2).

B can commit to its current behaviour (SG3).

3.2.6. Exceptions

A B specified as a “raise X” behaves as defined
in Figs. 10 and 21.

B can execute an X and then block (EX1).

Z(raise X) aef {(X,0)}

raise X 7 raise X [E # A] (EX2)

raise X {(ﬁb})} raise X (EX3)

Fig. 21. Additional rules for an exception.

B can participate in aging, but not in the ordi-
nary aging 7 (EX2).
B can commit to its current behaviour (EX3).

3.2.7. Untimed gate actions
A B specified as a “G” behaves as defined in
Fig. 22 and by rule UG1 in Fig. 6.

7(6) € (6,46, &, MT(6) {6 {Gh}
¢ Sa wa)i¢ S nul (UG
¢ (O 6 wasie e (uaw)

{(,0)}

5,
a9 stop  (wawie 1S Ne quas)

¢ %he  (as

Fig. 22. Modified and additional rules for an untimed gate
action.

B can execute a G and become a “null” (UGL).

Rule UG2’ is an analogue of rule UG2 in Fig. 6
and defines that B can participate in aging of any
kind, particularly in steps 7*. B can even idle for
ever.

B can commit to its current behaviour (UG3).

B can commit to refuse G (UG4).

B can commit to execution of G, thereby reduc-
ing to process “!G” unable to commit to refusal of
G (UGS).

3.2.8. Timed gate actions

A B specified as a “G@t” behaves as defined in
Fig. 24 and by rule TG1 in Fig. 7. In Fig. 24, rules
TG2 and TG3’, respectively, are analogues of rules
TG2 and TG3 in Fig. 7.

If immediate execution of GG is specified, B can
execute a G and become a “null” (TG1).

Rules TG2’, TG3” and TG4 define that B can
participate in aging of any kind, particularly in
steps 7. B can even idle for ever. A time step
influences B only if it includes aging of actions
G. If the timer has already expired, B becomes a



T(B1B>) " {(F,Zp)|(F € ®)} where ¥i € {1,2}.({(F, Z5)|(F € ®;)} = I(B1) ,
({0, 7} = {1,21).(2) == {FI(F € ) A (F £ ) V (S £ 0) V (¢ € 3;))})
® =9 \Ud,, VFed(EfF = {A|Ti € {1,2}.((F € ®))

AN(AEER)V((A=D)AF#£e)AER =0)))})

Bi[|B, {EENEED) gy

B % . ¥i e {1,2}.B, "> B]
i € {1,2)] (CHZ) (CH3)
Bi1[|B2 = raise X Bi[|B: == BB,
) {(FERI(Fe®)}
vie{1,2)B; = B [{(F, =r)|(F € )} = T(B{[B)) ()

Vi € {1,2}.(maz(®; N ®) AVF € &;.max(Z%))

Fig. 23. Modified and additional rules for choice.

zcan < ((6,(6)), (.0) |

G@o T—E} stop [G € Z] (TG2)
Gad 7 Gad—1) [Ge T (TG)
Gat 75 qat (G ¢ T (TG4)
aap LOAEDT q, (TG5)
Gat {(i@} stop (TG6)
car 1 gay (TG7)
r(can) < {(5,{6))

1G@0 S null (ITG1
1G@0 = stop [G € =] (ITG2’

)
)
1Gad THGa(d - 1) [G € 5] (ITG3)
)
)

Gt T51Gat (G ¢ Z (ITG4
1car 1S N gay (ITG7

Fig. 24. Modified and additional rules for a timed gate
action.

“stop” (TG2’). If the timer has not yet expired, it
is decreased (TG3’).
B can commit to its current behaviour (TG5).
B can commit to refuse G (TG6).
B can commit to execution of GG, thereby reduc-

ing to process “!GQ@Qt” unable to commit to refusal
of G (TGT).

3.2.9. Waiting

A B sgpecified as a “wait(t); B;”, where we
assume that B; is an “i”, a “signal S”, a “G”
or a “IG”, behaves as defined in Fig. 25, while a
‘wait(¢); GQt'” and a “wait(¢); |GQt'” are equiva-
lent to “GQ@(t+t')” and “!GQ(t+t')”, respectively.
In Fig. 25, rules WT1’ and WT2’, respectively, are

analogues of rules WT1 and WT2 in Fig. 3.

T(wait(t); By) "< 7(B1)
B 5B, B, > B
L (WTD) ——— (WT4)
wait(0); B = B} wait(0); B ~— B
B4
= [A € E] (WT2)
wait(d); B — wait(d — 1); B;
B4
[4g3) (Wr3)
wait(d); By — wait(d); B;
B, (PEIFED) o
(WT5)

{(FEp)|(Fe®)}
— w.

wait(t); B1 ait(t); B}

Fig. 25. Modified an additional rules for waiting.

If the delay is 0, B can execute the action spec-
ified by By (WT1’).

If the delay is non-zero, B can participate in
aging of any kind. If the aging includes aging of
the action specified by Bj, the delay is decreased
(WT2’), otherwise it is not (WT3).

If the delay is 0, aging of B is aging of By (WT4).

B can commit to particular terminations and
to particular actions preceding them so that B
makes the commitment (WT5).

3.2.10. Choice

A B specified as a “B;[|By” behaves as defined
in Fig. 23 and by rule CH1 in Fig. 11. In Fig. 23,
rules CH2’ and CH3’, respectively, are analogues
of rules CH2 and CH3 in Fig. 11.

An A resolves the choice in favour of its executor
B; (CH1).
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Fig. 26. Enhanced semantics of trapping.

When one of the alternatives has an X pending,
B can execute an i leading to exceptional termina-
tion X (CH2).

Aging of B requires that both alternatives age
in the particular manner (CH3’).

Rule CH4 defines how B commits to particu-
lar terminations and to particular events preced-
ing them. Such a commitment might reduce an al-
ternative to such an extent that it can no longer
become the selected one.

Example 1 Commitment “{(5,G1)}” reduces
process “G1[|G2” to “1Gi[|stop”, which is with
respect to E and 7 steps equivalent to “G1”.

3.2.11. Trapping

Trapping (Fig. 8) is the main sequencing opera-
tor of basic E-LOTOS. In Fig. 26, it is generalized
into “trap T1|Cy is By ...T,|Cy is By, in Byp1”,
where for each Tj, C; lists the pairs (O,0’) such
that actions O’ in B; are allowed to overtake ac-
tions O in B,,41 proceeding towards T;. The default
C; is empty, as for example in the case of “By; By”.
In Fig. 26, rules TP1’ to TP4’, respectively, are
analogues of rules TP1 to TP4 in Fig. 8.

If B,,+1 executes a non-trapped E, this has no
side-effects (TP1’).

If Bj+1 has reached a trapped termination 75,
any step of B;, either an E (TP2’) or a 7= (TP4’),
transfers control to the handler of T;.

Aslong as B, 41 does not reach a trapped termi-
nation, the composite process B ages so that B, 11
ages, i.e. executes a 7=n+1 (TP3’). Besides, for each
particular O, it might be that the fact that O is in
Zn+1, L.e. that the step includes aging of the initial
O in B, implies not only that it includes aging of
the initial O in Byy1, but also of the initial O in
one or more of the termination handlers B;. Early
aging applies to an initial O of a B; provided that
T; is a potential termination of B, ; and that it
is obvious that B,,4; will not be precede T; by an
action not overtakable by O.

It might be that B, 1 has several potential ter-
minations, where early aging in a termination han-
dler B; does not imply that T; will actually be the
selected termination of B,,41. However, early ag-
ing is important, because when a particular 7; is
selected, its handler B; must be in a state in which
it is known that some of its actions were logically
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Fig. 27. Modified and additional rules for parallel composition.

enabled, and consequently started to age, already mits to successfully terminate without executing
at particular times before 7. Go. In doing that, B has the option to reduce to
Example 2 In “rap X is G1[]G: in ((stop;raise X)[]!G1)”, to
“rap 0|/(G1,G2) is G2@1[|G5@1 in G,@17, G, “rap X is!G[|stop in ((!G;raise X)[|G1)” or
is logically enabled (i.e. ages) from the beginning, to “‘trap X is!G;[|stop in ((G;;raise X)[]!G;1)”.
while G3 only after G . Hence a 7 reduces the pro- The first of the three processes is with respect to E
cess to ‘“trap 6|(G1, G2) is G2@0[|G5@1 in G;@0 7. and T steps equivalent to “G1”, while the other
A possible next step is Go further reducing the pro- two are equivalent to “(G1; G1)[|G1”.
cess to “trap 6|(G1,G2) is null in !G1@0”.

As long as By does not reach a trapped ter- 3.2.12. Parallel composition
mination, it is possible that a termination handler A B specified as a “par D in [[1]B; ||...]|
B, executes an accelerated O (TP5). This requires [['n]B,” behaves as defined in Fig. 27 and by rules
that Bj,+1 simultaneously promises that it will pro- PR1 and PR3 in Fig. 12. In Fig. 27, rules PR2’ and
ceed towards Tj, executing only actions overtak- PR4’, respectively, are analogues of rules PR2 and
able by O. In doing that, B,,;; must maximize Z, PR4 in Fig. 12.
the set of its possible future actions, i.e. restrict Rule PR1 defines how a subset of the concurrent
its future behaviour as little as possible. After the processes collectively executes an action.
commitment, Bpy; can no longer terminate with When one of the concurrent processes has an X
a T different from Tj, hence trapping of such T' is pending, B can execute an i leading to exceptional
no longer necessary. termination X (PR2’).

Rule TP6 defines how B commits to particular Successful termination of B results from success-
terminations and to particular actions preced- ful termination of its constituents (PR3).
ing them. Such a commitment might be non- Aging of B requires that every its constituent
deterministic. which has not yet reached successful termination
Example 3 In “trap 6[(G1,G3) is G in B” ages in the particular manner (PR4’). If B is ready
where B is for successful termination, the rule implies that it
‘trap X is G1[|G> in ((Gy;raise X)[|G1)”, G can age in any manner legal for a “null”.
may be executed immediately, but only if B com- Example 4 In ‘“trap 0|(G1,G) is B in G;”
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Fig. 28. Enhanced semantics of suspend/resume.

where B is “G2@2|||block”, G5 is logically enabled
from the beginning. Hence a ™ reduces the pro-
cess to “trap 0|(G1,G2) is G2@l|||block in G, 7,
where B executes a 7€, acceptable for block.

If the second step is G1 reducing the process to
“rap 6|(G1, G2) is G2@1|||block in null”, there
cannot be another 4, because for B, this would be
a 74, unacceptable for block.

Rule PR5 defines how B commits to particu-
lar terminations and to particular events preceding
them. As a Zx always contains i, the only useful
commitments B can make are those towards § or ¢.
Note that although we strive for the mildest possi-
ble commitments of the constituent processes, pre-
vention of an unexpected deadlock requires that at
least when the processes all commit to proceed to-
wards successful termination, none of them plans
actions which the commitments of its peers render
trivially unexecutable. In [10], this precaution is
also implemented to some extent, and is useful also
for prevention of non-deterministic commitments.
Example 5 In ‘trap 6|(G1,G3) is G5 in B”
where B is “{G1[J(G1; G2))|[Gall(G1]G2) ", G
may be executed immediately, but only if B com-
mits to successfully terminate without evecuting
G, thereby reducing to
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“1G1[|(stop; G2))|[G2]|(!G1[Istop) *, which is with
respect to E and T steps equivalent to “G1|||G1”.
Without deadlock prevention, B would have the
option to reduce to
“1G1 [[(stop; G2))|[G2]|('G1 [
“(1G1[|(stop; G2))|[G2]|(G1['G2) 7, to
{161 [| (G5 1Ga) (G2l (G [Istop) ™ or to
“Gi[l(\G1;1G2))|[Ge]|(\G1 [J]stop) ”.  The  last
two of the processes are with respect to E
and T* steps equivalent to the deadlockable
“G1[](G1;stop))|||G1”. As such, they do not suf-
ficiently justify accelerated execution of Gs. In
the words of [10], B’s permission for Gs requires
that its both concurrent constituents issue such a
permission, i.e. commit to successfully terminate
without executing Gs.

Note that the deadlock pends in B already before it
makes the commitment. Still, if the sequencing was
strong, B would not have to issue the permission
before the danger of deadlock was over. With weak
sequencing, this is no longer true.

('Gl ]Gg) ”, to

3.2.13. Suspend/resume

A B specified as a “B1[X > By” (Fig. 9) con-
tains implicit trapping of X in By. By generalizing
the trapping by a commutation relation C, we in
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Fig. 29. Modified and additional rules for renaming.

Fig. 28 generalize B into “B;[X|C > By”. In the fig-
ure, rules SR1’ to SR6’, respectively, are analogues
of rules SR1 to SR6in Fig. 9. Z(B1 [X|C > (Bs, B3))
is defined under the assumption that “B{[X]|C >
(B2, Bs)” represents a “Bi[X|C > B}” or a deriva-
tive of it.

When B; executes an A, this has no effect on By
(SRY1).

When B; has a T pending, B can execute an i
leading to termination 7', that might be successful
(SR2’) or exceptional (SR3’).

When B; executes an A, By is suspended (SR4’).

When B; has an X' different from X pending, B
can execute an i leading to exceptional termination
X' (SR5).

Aging of B requires that B; and B> both age in
the particular manner (SR6’).

Rule SR7 defines how B commits to particu-
lar terminations and to particular events preced-
ing them. Such a commitment might reduce By,
B, or Bs to such an extent that it can no longer
terminate B, or Bs or B3 to such an extent that it
can no longer suspend Bj or no longer facilitates
its resumption after a suspension.

The primarily intended application of C is to
specify that some O in a suspended B; are resumed
before B; as a whole is resumed. If an O is resumed
immediately upon suspension of By, it is as if O
had not been suspended at all, implying that C'
can help in specifying that some actions in B; are
non-suspendable (e.g. because of their particular
importance).

Example 6 In
“(Gl |||G2)[X|(G4, Gl) > (Gg, G4; raise X) 7 a Gs
leads to an equivalent of
“rap X|(G4,Gy) is
(G1|||Gg)[X|(G4, Gl) > (Gg; G4;raise X)
in (G4;raise X)”, with a possible accelerated G
leading to an equivalent of
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“trap X|(G4,G1) is
G2[X|(G4,G1) > (Gs; Gy raise X)
in (IG4;raise X)”, as if G1 has not been sus-
pended. On the other hand, execution of G2 is not
resumed until X is raised after Gy.

With the help of C, one can also achieve that af-
ter suspension of By, some O in the next instance of
Bs occur before the current instance of Bs reaches
termination X, implying that C can help in spec-
ification of infinite sequences of partially overlap-
ping instances of By. As for a suspended By, it is
not resumed until all the activated instances of Bs
have reached X.

Example 7 In
“G1[X|(Gs,G2) > (G2;G3;raise X)”, a Gy leads
to an equivalent of
“rap X|(G3,G2) is
Gy [X|(G3, Gz) > (Gz; Gg; raise X)
in (Gs;raise X)”, with a possible accelerated G
leading to an equivalent of
“rap X|(Gs,G2) is
trap X|(Gs,G2) is
Gy [X|(G3, Gg) > (Gz; Gg; raise X)
in (G3;raise X)
in (!G3;raise X)”, with a possible G3 leading to
an equivalent of
“rap X|(Gs,G2) is
Gh [X|(G3, Gz) > (Gz; Gg; raise X)
in (Gs;raise X)”, with a possible G3 leading to an
equivalent of “G1[X|(Gs3,G2) > (G2; Gs;raise X) 7.

3.2.14. Renaming

A B specified as a “rename R in B;”, where
each element in the list R is of the form “G is G"”,
“SisS" or “X is X'”, behaves as defined in Fig. 29
and by rule RN1 in Fig. 13.

B can execute any event of By, though renamed
as specified by R (RN1).

Rule RN2’; an analogue of rule RN2 in Fig. 13,
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Fig. 30. Modified and additional rules for hiding.

defines that aging of B requires that all the in-
volved actions age under their original names.

Rule RN3 defines how B commits to particu-
lar terminations and to particular events preceding
them.

3.2.15. Hiding

Let Q denote a subset of O. A B specified as a
“hide € in B;” behaves as defined in Fig. 30. In
the figure, rules HD1’ and HD2’ respectively, are
analogues of rules HD1 and HD2 in Fig. 14.

B can execute any event of By, though hidden if
it belongs to @ (HD1’).

Aging of B requires that all the involved actions
age under their original names (HD2?).

Rule HD3 defines how B commits to particu-
lar terminations and to particular events preceding
them.

3.2.16. Process instantiation

A B specified as a “P” defined by a declaration
“P is B;” behaves as defined in Fig. 31 and by
rule PI1 in Fig. 15. Let us note that in E-LOTOS,
declaration of a P is always accompanied by decla-
ration of G(P) listing its potential G and by X' (P)
listing its potential X. With the enhanced seman-
tics of P, one would also declare S(P) listing its
potential S.

In principle, the events of B are supposed to be
the events of By (PI1). However, if P is directly
or indirectly instantiated in B; and the instanti-
ation is not sufficiently guarded, rule PI1 might
for a particular E lead to an infinite proof of exe-
cutability, implying that B will not be able to exe-
cute E. Weak sequencing makes the problem even
more acute [10].
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Fig. 31. Modified and additional rules for process instan-
tiation.

Rule PI2’ is an analogue of rule PI2 in Fig. 15
and defines that P in principle ages exactly as Bj.
However, as there is again the problem of infinite
proofs, the trivial case of aging known to have no
impact on B is covered by a separate rule PI3.

B in principle commits to particular termina-
tions and to particular actions preceding them ex-
actly as B; (PI4). However, as there is again the
problem of infinite proofs, the trivial case where B
commits to its current behaviour is covered by a
separate rule PI5.

Computing the intentions Z(P) of individual P
in a particular system specification, one collects all
the semantic rules applying to processes of the sys-
tem and computes Z(P) simultaneously satisfying
all of them. A particular T is included into ® of a
particular Z(P) only if this proves necessary, and
the same applies to inclusion of a particular A in a
particular Zr. On the other hand, ¢ is included in a
particular Z(P) whenever possible, particularly in



the case of unguarded recursion, which is thereby
correctly interpreted as non-termination.
Example 8 If “Pissignal S”7,Z(P)is{(0,{S})},
because it must be equal to Z(signal S).

If “P is signal S; P” or if “P is signal S|||P”,
Z(P) is {(e,{S})}, because no T needs to be in P,
while € can and hence must.

4. Some guidelines for weak sequencing in
full E-LOTOS

It seems that embedding of weak sequencing into
full E-LOTOS can follow the same principles as for
discrete-time basic E-LOTOS, with the following
enhancements:

Every observable action O is a G(a) or an S(a),
where «a is the associated data. In the following, let
() denotea Goran S,and U aniora Q.

A gate action is specified by a “Gr@Qr'[5]” de-
noting any G(«) such that a matches pattern ,
its execution time ¢ matches pattern 7', and the
pair (m,n") satisfies the additional condition (. In
other words, such a process denotes choice between
various adequate OQt. When the choice needs to
be restricted to justify accelerated execution of a
subsequent action, the process can make the com-
mitment simply by strengthening .

In the trapping operator (Sect. 3.2.11), it might
be necessary that a commutation relation Cj is
very large or even infinite. Such a C; can be effi-
ciently specified by a list of elements of the form
“(Q(m), Q' (*)[A]". Actions Q'(a’) in B; may
overtake actions @(«) in B,,41 provided that the
list contains a “(Q(w),Q'(n"))[B]” such that «
matches pattern 7, o’ matches pattern 7', and the
pair (a,a') satisfies the additional condition 3.
Such encoding is appropriate also for the C' of the
suspend /resume operator.

Every T is a 6(«) or an X (). In the following,
let Z denotea doran X,andY anecora Z.

In the trapping operator, when a Z; is trapped
and handled by B;, the free variables of B; are,
as specified, instantiated with the data « asso-
ciated with Z;. In a general case, B, chooses
between many different a. The consequently large
Z(Bp+1) can be efficiently represented by an
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SV () [By], )Y € )Y An V(@) (Y is e,
a is by definition void) is a possible termination
of By,4+1 if Y is in T and « matches pattern wy
and satisfies the additional condition 8y . A U(a')
(if U is i, o' is by definition void) is a possible
predecessor of such an Y () if in {y, there is a
“U(m)[8]” such that o' matches 7 and the pair
(ar, ') satisfies the additional condition §.

For each Z; potentially trapped in a By1, the
current intentions of B4 imply an additional re-
striction on the free variables of B;, the handler of
Z;. As the restriction influences the ability of B;
for early aging and for accelerated action execu-
tion, it must be updated upon every step of B, 41,
while in the standard E-LOTOS, it need not be
computed until By actually reaches Z;.

If the time domain is dense, a time step is a
“d=" where d denotes its length and Z the actions
to which the aging applies. As Z might be large or
even infinite, it requires an efficient encoding, as a
list of elements of the form “U(7)[]”. d* denotes
the ordinary time step of length d, while time steps
of other kinds represent selective early aging.

In the trapping operator, if at a time ¢, B;,41
initiates a time step of length d, it is required that
Z(Bp+1) is the same at all times ¢ with (¢t < t' <
(t+d)). Besides, each termination handler B; must
be able to execute its corresponding early-aging
step d¥¢. If this is not the case, the time step must
be adequately shortened. In a rare anomalous case,
no sufficiently short step exists, but this is the usual
problem with the interleaving semantics for dense
time [6].

5. Concluding remarks

In the paper, we have enhanced the E-LOTOS
trapping operator (and the trapping embedded in
the E-LOTOS suspend /resume operator) with the
possibility of specifying that consecutive processes
may partially overlap. Developing the enhanced se-
mantics, we had to introduce four new concepts:
non-trappable signals, early aging of actions, in-
tention reporting and process commitments. We
also had to restrict the use of waiting. With the
proposed semantics, we have successfully extended



the ideas of [10] to real-time processes and to pro-

cesses with more that one possible direction of se-

quential control transfer.

We conclude by summarizing that the proposed
enhancements of E-LOTOS would help in the fol-
lowing very frequent situations:

— When some actions of otherwise consecutive
processes belong to different locations of a dis-
tributed system, it is appropriate to specify that
they are naturally concurrent, to emphasize
that the process sequencing in its strong form
is not trivially implementable in the particular
system.

— When some actions of otherwise consecutive pro-
cesses are not causally related and do not com-
pete for resources, it is desirable to specify that
they may be executed concurrently, to empha-
size the possibility of accelerated execution.
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