
A generalization of the E-LOTOS renaming operator: a onveniene

for spei�ation of new forms of proess omposition

M. Kapus-Kolar

Jo�zef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia

Reeived 2 Deember 2003; revised 25 February 2004

Abstrat

E-LOTOS is one of the standard languages for formal spei�ation of real-time onurrent and reative systems.

As it is proess-algebrai, its expressive power lies in its proess-omposition operators. Of ourse, not all forms

of omposition an be diretly expressed in the language. In the most diÆult ases, one typially resorts to

the onstraint-oriented spei�ation style. We demonstrate that a slight enhanement of the E-LOTOS renaming

operator would make the spei�ation style even more powerful. As an example, we show how to speify hoie,

parallel omposition and disabling enhaned with ation priorities.

Key words: Formal methods, E-LOTOS, Constraint-oriented spei�ation, Event renaming, Ation priorities

1. Introdution

E-LOTOS [6,10℄, an enhaned suessor of LO-

TOS [5,1℄, is one of the standard languages for for-

mal spei�ation of real-time onurrent and rea-

tive systems. An E-LOTOS spei�ation hara-

terizes a proess by its readiness to engage into var-

ious kinds of atomi instantaneous events, where

an event might be

{ a G(RN), i.e. an interation of the proess with

its environment, where G is the gate on whih it

ours and RN is the data reord it arries,

{ an X(RN), i.e. a signal issued by the proess,

{ an i, i.e. an internal proess ation, or

Email address: monika.kapus-kolar�ijs.si (M.

Kapus-Kolar).

{ a Æ(RN), i.e. suessful termination of the pro-

ess.

The usual dynami semantis of an E-LOTOS

proess is that of interleaving events. A proess

is haraterized by its labelled transition system

(LTS), where an individual transition represents

either an individual event or idling, i.e. passing of

time. For onveniene, we will assume that time is

disrete, so that every time step is a \tik". Events

of type i, Æ(RN) and X(RN) are by de�nition ur-

gent, i.e. annot have idling as an alternative.

To inorporate a proess into a partiular envi-

ronment, it is sometimes neessary to relabel its

LTS, i.e. to hange aG(RN) into aG

0

(RN

0

), or an

X(RN) into anX

0

(RN

0

). That is failitated by the

E-LOTOS renaming operator. Unfortunately, the

urrent semantis of the operator is unneessarily

rigid. In Setions 2 and 3, we propose a new se-

Preprint submitted to Computer Standards & Interfaes 25 February 2004

mantis whih makes the operator muh more easy

to understand and onvenient to use. As demon-

strated in Setion 4, the enhaned operator is par-

tiularly helpful in onstraint-oriented spei�a-

tion of non-standard forms of proess omposition.

2. From gate renaming to ation renaming

Consider a proess B

0

de�ned as

\rename gate G(!true : bool) is G

0

!1

in B endren",

where proess B is de�ned as \G any : bool", i.e.

represents an interation on gate G arrying any

boolean value. As B exeutes either G(true) or

G(false), one would expet that B

0

exeutes either

G

0

(1) orG(false). Wrong! Aording to the urrent

E-LOTOS semantis, the renamingmakesG(false)

non-exeutable, beause gate G is being renamed

(i.e. ations on the gate are being renamed), but

there is no name de�ned for G(false). In other

words, a proper spei�ation of the intended be-

haviour would be

\rename gate G(!true : bool) is G

0

!1

gate G(!false : bool) is G!false

in B endren".

There are ases where suh ompliation is most

inonvenient. For example, when orreting a

\rename gate G(!0 : nat) is G

0

!false

in G any : nat endren",

where \nat" denotes natural numbers, one has to

speify non-renaming for every G(x) with (x > 0).

In any ase, we observe that one naturally tends

see the E-LOTOS renaming operator as an ation-

renaming operator, and not as a gate-renaming op-

erator. That is most evident in ases where gates

are split (as in the above examples) or merged (as,

for example, in

\rename gate G

1

is G gate G

2

is G

in B endren").

Gate splitting and gate merging are operations

whih are beyond gate renaming, but (assuming

that there is a name spei�ed for every ation on

the gates whih are being renamed) not beyond

ation renaming.

While ations are a primary onept in E-

LOTOS, a gate is often given no interpretation

beyond being the �rst item in the tuple of values

representing a partiular ation. For not every

proess spei�ed represents an arhitetural om-

ponent. Often it is just a part of suh a omponent,

or an abstration of its behaviour, or even just

another onstraint governing its behaviour.

For the above reasons, we propose that E-

LOTOS renaming is rather understood as ation

renaming, meaning that when there is no new

name spei�ed for a partiular ation, the ation

remains exeutable in its original form.

The same poliy should be taken for renaming

of signals: If there is no new name for a signal,

the signal remains as it is. For bloking of a signal

is even worse than bloking of an ation, beause

signals are in E-LOTOS by de�nition urgent.

For the present, however, it would be onvenient

to have the new semantis just as an enhanement

to the existing E-LOTOS renaming operator. That

an be ahieved by a slight syntati enhanement.

The operator urrently ombines statements of the

forms \gate G : : : is : : :" and \signal X : : : is : : :".

If suh a statement is used for a G or an X , that

means that one wants for G or X the original re-

naming semantis. If the new renaming semantis

is desired for a G or an X , one should use di�er-

ent keywords, for example statements of the forms

\ation G : : : is : : :" and \sgn X : : : is : : :", as we

do in the rest of the paper.

3. From gate splitting to ation splitting

The generi onstrut for speifying a visible a-

tion in E-LOTOS is \GP

1

�P

2

[E℄". An ation sat-

is�es the spei�ation provided that

{ it is on gate G,

{ the data it arries mathes pattern P

1

,

{ its exeution timemeasured relatively to themo-

ment when it is logially enabled mathes pat-

tern P

2

, and

{ its data and its exeution time satisfy prediate

E.

In a general ase, a \GP

1

�P

2

[E℄" (e.g. a \G any :

bool") is satis�able by many di�erent G(RN) (in

the example, byG(true) orG(false)). Hene ation

splitting is not unknown in E-LOTOS.

2

On the other hand, it seems that there has been

an agreement that the E-LOTOS renaming opera-

tor must not introdue ation splitting (see for ex-

ample [2℄), although we have not been able to de-

tet suh a statement in [6℄. It must ertainly not

introdue signal splitting, and that is not stated in

[6℄, either. For observe the proess

\trap exeption X

1

is G

1

�!1 endexn

exeption X

2

is G

2

�!1 endexn

in rename signal X is X

1

signal X is X

2

in raise X endren endtrap",

strutured as follows:

{ The innermost proess raises exeption X , i.e.

issues signal X and bloks the system.

{ The renaming operator splits signalX so that it

an be issued either as anX

1

or as anX

2

. Hene

the LTS of the resulting proess has branhesX

1

and X

2

.

{ The exeption-trapping operator replaes the

two exeption signals with their orresponding

handlers \G

1

�!1" and \G

2

�!1". The LTS of

the resulting proess has alternative branhes

\tik; G

1

; Æ" and \tik; G

2

; Æ", the behaviours

of the two handlers. Hene in the initial state

of the proess, there are two tik transitions,

implying that the hoie is resolved by the ow

of time.

The proess is illegal in E-LOTOS, for time non-

determinism is in E-LOTOS a taboo. In the ex-

ample, time non-determinism emerges beause of

the trapping operator, but its seed is in the signal

splitting.

For ations, trapping is not de�ned, hene their

splitting an do no harm. Therefore we de�ne that

the new semantis for ation renaming allows a-

tion splitting, beause in E-LOTOS with ation

splitting forbidden, language users have unnees-

sary troubles:

{ Speifying ation renaming, one must be areful

not to de�nemore than one new name per ation.

{ For every ation, one must plan its \splittings"

in advane, to furnish it with auxiliary parame-

ters failitating the splittings. For example, if an

ationG is to experiene a binary split, \G any :

bool" would be its adequate spei�ation.

The generi syntax for gate renaming is

\gate G(IPL) is G

0

P", where P , i.e. the data

arried by the new gate, is a funtion of IPL, i.e.

of the data arried by the old gate. For ation

renaming, we propose a slightly enhaned syntax,

namely \ation G(IPL) is G

0

P [E℄". The expres-

sion is a shorthand for the set of all suh renamings

of a G(RN) into a G

0

(RN

0

) that

{ RN mathes IPL,

{ RN

0

mathes P , and

{ the pair (RN;RN

0

) satis�es E.

The prediateE, whose default value is true, has

a similar role as in the spei�ation of an individual

ation. It an help in two ways:

{ It failitates spei�ation of whih ations on

gate G to rename. For example, an

\ation G(?V : int) is G

0

!true[V > 0℄"

onisely spei�es renaming of all ations on gate

G arrying a positive integer.

{ It failitates spei�ation of the new names. For

example, an

\ation G(?V : nat)

is G?V

0

: nat[(V

0

mod V) = 0℄"

onisely spei�es that a G(N) may be exeuted

as any G(N �M).

The generi syntax for signal renaming is

\signal X(IPL) is X

0

E", where E, i.e. the data

arried by the new signal, is a funtion of IPL, i.e.

of the data arried by the old signal. For the new

kind of signal renaming, we propose a slightly en-

haned syntax, namely \sgnX(IPL)[E

0

℄ isX

0

E".

The expression is a shorthand for the set of all suh

renamings of an X(RN) into an X

0

(RN

0

) that

{ RN mathes IPL and satis�es prediateE

0

, and

{ RN

0

is the value of E omputed on RN .

The prediate E

0

, whose default value is true,

failitates spei�ation of whih X signals to re-

name. For example, a

\sgn X(?V : int)[V > 0℄ is X

0

(V + 1)"

onisely spei�es renaming of all signals X arry-

ing a positive integer.

The new renaming semantis de�nes that a

G

0

(RN

0

) is a new name for a G(RN) if there

is at least one \ation : : :" statement speifying

that. Likewise, an X

0

(RN

0

) is a new name for an

X(RN) if there is at least one \sgn : : :" statement

speifying that. The only restrition for ombin-

ing renaming statements is that signal splitting is

forbidden.

Let us ompare renaming restrited to \gate : : :"

and \signal : : :" statements, i.e. the old renaming

3

operator, with renaming restrited to \ation : : :"

and \sgn : : :" statements, i.e. the new renaming

operator. The new operator has several advan-

tages:

{ Most importantly, it spei�es nothing beyond

event renaming, while the old operator, if not

used with suÆient are, might make some

events unexpetedly non-exeutable.

{ It gives a spei�er omplete freedom on what

to rename and how to rename, as long as signal

splitting is not introdued.

{ With the additional prediates, it failitates on-

ise spei�ation of large sets of renamings.

{ It failitates ation splitting, whih is, as demon-

strated in Setion 4, an extremely useful on-

ept. With that feature, E-LOTOS would gain

an ation-splitting operator even more general

than the \multiple labelling" operator of CSP

[4℄.

We observe that the new operator is muh more

easy to understand and onvenient to use than the

old one. The only sensible motivation for using the

old operator would be for bloking of some events.

But visible ations of a proess an be bloked also

by other means, by synhronizing the proess with

proesses ating as additional onstraints. As for

signals, they should better never be bloked, as

they have been oneived as unblokable events.

4. Ation splitting in spei�ation of new

forms of proess omposition

4.1. Objet-oriented onstraint-oriented

spei�ation

Ation splitting is a step towards polymorphism,

whih is an important onept in objet-oriented

spei�ation. An E-LOTOS proess is an objet

haraterized by its ability to interat with its en-

vironment. By renaming of ations and/or signals,

a proess an be adapted for proper operation in

an environment for whih it was not originally in-

tended. If it is a dynamially hanging environ-

ment, ation renaming must provide adequate a-

tion names for eah of the possible situations, i.e.

ation splitting might be neessary.

As an example, take a system of proesses om-

muniating through synhronous broadast. In

suh a system, eah ommuniation event synhro-

nizes a message transmitter and all the proesses

urrently ready to reeive the message. Hene

when a proess exeutes a transmission, it must

be ready to exeute it either on its own or in

o-operation with any group of the remaining pro-

esses. Sine in E-LOTOS, the degree of synhro-

nization of an ation with the proess environment

diretly depends on its name, multiple degrees of

synhronization per ation an be spei�ed only as

ation splitting. With this onept, we have indeed

been able to model suh systems in E-LOTOS [7℄.

Parallel omposition of proesses ommuniat-

ing through synhronous broadast an be ex-

pressed in E-LOTOS only indiretly. Although

the expressive power of a proess-algebrai spe-

i�ation language lies in its proess-omposition

operators, one an hardly expet a language to

have operators for all forms of omposition. For

even if it is from time to time systematially en-

haned with new operators for newly identi�ed

pratially interesting forms of omposition, the

enhanements must not be too extensive, for oth-

erwise the language would beome too omplex.

Hene a good spei�ation language provides

not only a handy set of proess-omposition opera-

tors, but also means for easy spei�ation of those

forms of omposition whih annot be expressed

diretly. Systemati spei�ation of a new form of

proess omposition typially bases on some spe-

i� spei�ation style. E-LOTOS, like LOTOS,

supports many di�erent spei�ation styles [11℄.

Ation splitting is partiularly important in the

onstraint-oriented style, for this style extensively

uses the parallel omposition operator, i.e. the op-

erator desribing interonnetion of proesses.

In the onstraint-oriented style, one spei�es the

legal behaviours of a system by a set of onstraints,

in LOTOS or E-LOTOS modelled as onurrent

proesses synhronized on the ations they olle-

tively ontrol. Although a set of onstraints is pri-

marily a set of logial prediates in onjuntion, the

onstraint-oriented style an be used in an objet-

oriented way, by giving eah objet and eah sub-

objet its individual onstraint. If the approah

is ombined with ation splitting, it beomes a

4

powerful method for spei�ation of non-standard

forms of proess omposition.

To illustrate the power of the objet-oriented

style, and thereby the usefulness of ation split-

ting, we in the following show how one an use

E-LOTOS with enhaned renaming for enoding

a small Basi-LOTOS-like language in whih the

operators of hoie, parallel omposition and dis-

abling are enhaned with ation priorities. The de-

sription is based on ideas from [8℄ and [9℄. Along

with the example, we provide a detailed disussion

on how to indiretly speify new forms of proess

omposition, therefore the reader is invited to give

the example a areful onsideration.

4.2. An instrutive example

4.2.1. Problem statement

We begin with a small Basi-LOTOS-like sub-

language of E-LOTOS. Below we present its on-

struts and their untimed dynami semantis:

{ \blok" denotes a time blok, i.e. a proess with

no steps at all.

{ \stop" denotes an idling proess.

{ \null" denotes suessful termination:

null

Æ

! blok

{ \G" denotes an individual untimed ation on a

gate G:

G

G

! null

In the following, let � denote i or a G, while �

+

denotes Æ or a �.

{ \B

1

;B

2

" denotes sequential omposition of pro-

esses B

1

and B

2

:

B

1

�

! B

0

1

B

1

;B

2

�

! B

0

1

;B

2

B

1

Æ

! B

0

1

; B

2

�

! B

0

2

B

1

;B

2

�

! null;B

0

2

B

1

Æ

! B

0

1

; B

2

Æ

! B

0

2

B

1

;B

2

Æ

! blok

{ \B

1

[℄B

2

", where neither B

1

nor B

2

has Æ as an

initial event, denotes a proess behaving as B

1

or as B

2

, where the hoie is made upon the �rst

event:

B

1

�

! B

0

1

B

1

[℄B

2

�

! B

0

1

B

2

�

! B

0

2

B

1

[℄B

2

�

! B

0

2

{ \B

1

j[�℄jB

2

", where � is a set of gates, denotes

proessesB

1

andB

2

running in parallel and syn-

hronized on gates in � and on Æ:

B

1

�

! B

0

1

B

1

j[�℄jB

2

�

! B

0

1

j[�℄jB

2

[� 62 �℄

B

2

�

! B

0

2

B

1

j[�℄jB

2

�

! B

1

j[�℄jB

0

2

[� 62 �℄

B

1

�

+

�! B

0

1

; B

2

�

+

�! B

0

2

B

1

j[�℄jB

2

�

+

�! B

0

1

j[�℄jB

0

2

[�

+

2 (� [fÆg)℄

{ \B

1

[>B

2

", where B

2

does not have Æ as an ini-

tial event, denotes a proess whih basially ex-

eutes B

1

, but as long as B

1

does not suess-

fully terminate, might start exeutingB

2

instead

(disabling):

B

1

�

! B

0

1

B

1

[>B

2

�

! B

0

1

[>B

2

B

1

Æ

! B

0

1

B

1

[>B

2

i

! null

B

2

�

! B

0

2

B

1

[>B

2

�

! B

0

2

We would like to enhane the operators \[℄",

\j[�℄j" and \[>"with ation priorities and then on-

eive a ompositional transformation whih would

take a proess spei�ed in the enhaned language

and enode its behaviour in E-LOTOS. The trans-

formation will implement every proess B by a

onstraint C[[B℄℄, hene the language being imple-

mented must satisfy the following restritions:

{ There must be no B leading to a time blok, for

C[[B℄℄ is supposed to represent a prediate, i.e. a

timeless entity.

{ No B may ever be deleted, for the behaviour of a

system is supposed to be represented by a stati

set of onstraints C[[B℄℄.

{ Every event must be synhronizable, so that on-

juntion of onstraints an be expressed as syn-

hronization of proesses C[[B℄℄.

{ Every event must be renamable, so that it an

be adapted to the urrent ontext.

{ If a B is a omposition of a B

1

and a B

2

, it

must have no events besides those of B

1

and B

2

,

for otherwise omposition of C[[B

1

℄℄ and C[[B

2

℄℄

would have to be more ompliated than ordi-

nary parallel omposition.

5

Obviously, the adopted language must be

amended in several ways:

{ \blok" must not be a part of the language.

{ Æ is an event whih leads to a time blok and is

not renamable. Therefore we replae it with an

in�nite series of ations with a reserved name

�. Hene we will have ordinary gates O and a

speial gate �.

{ The deision of a \B

1

[>B

2

" to suessfully ter-

minate beause B

1

has beome ready for a Æ is

represented by an internal ation. The ation is

unsynhronizable and not an ation of B

1

or B

2

.

In E-LOTOS, it prevents time non-determinism

whih might our when the Æ is trapped. If we

replae Æ by �, the i no longer introdues a trap-

pable event, so it may be omitted.

{ In the de�nitions of hoie and disabling, there

are ases where B

1

deletes B

2

, or vie versa. In-

stead of being deleted, proesses should rather

be fored into idling.

A language implementing all the above sug-

gestions would omprise the following onstruts,

where L denotes � or an O, and
 denotes a set

of O:

{ idling \stop"

{ suessful termination:

null

�

! null

{ an individual untimed ation on a gate O:

O

O

! null

{ sequential omposition:

B

1

O

! B

0

1

B

1

;B

2

O

! B

0

1

;B

2

B

1

�

! B

0

1

; B

2

L

! B

0

2

B

1

;B

2

L

! B

0

1

;B

0

2

{ hoie:

B

1

L

! B

0

1

B

1

[℄B

2

L

! B

0

1

[℄stop

B

2

L

! B

0

2

B

1

[℄B

2

L

! stop[℄B

0

2

{ parallel omposition:

B

1

O

! B

0

1

B

1

j[
℄jB

2

O

! B

0

1

j[
℄jB

2

[O 62
℄

B

2

O

! B

0

2

B

1

j[
℄jB

2

O

! B

1

j[
℄jB

0

2

[O 62
℄

B

1

L

! B

0

1

; B

2

L

! B

0

2

B

1

j[
℄jB

2

L

! B

0

1

j[
℄jB

0

2

[L 2 (
 [f�g)℄

{ disabling:

B

1

O

! B

0

1

B

1

[>B

2

O

! B

0

1

[>B

2

B

1

�

! B

0

1

B

1

[>B

2

�

! B

0

1

[>stop

B

2

L

! B

0

2

B

1

[>B

2

L

! stop[>B

0

2

In the above language, � may be in a dei-

sive position, just as Æ may be in LOTOS, while

E-LOTOS is in this respet not ompatible with

LOTOS. On the other hand, the language inher-

its from E-LOTOS its nie sequential omposition

operator, whih is more natural than the LOTOS

operator of enabling.

Now we are ready to introdue ation priorities.

We enhane every operator \[℄", \j[
℄j" or \[>"

with its own priority funtion �, i.e. into a \[�℄",

\j[
j�℄j" or \[�>", respetively.

Suh an operator ombines a B

1

and a B

2

into

a B. Let �

1

denote the initial ations L of B

1

, �

2

suh ations of B

2

, and � the gates on whih B

1

and B

2

are synhronized. � equals (
 [f�g) for

an \j[
℄j", and is empty for \[℄" and \[>".

Funtion � takes �

1

, �

2

and �, and omputes a

triplet (First(B); Seond(B); Both(B)) meaning

that an L is a legal initial step of B provided that

{ it is in First(B) and exeuted individually by

B

1

, or

{ it is in Seond(B) and exeuted individually by

B

2

, or

{ it is in Both(B) and exeuted by B

1

and B

2

in

o-operation.

To failitate implementation of a wide range of

di�erent priority shemes, we introdue for � only

the following requirements:

{ First(B) � (�

1

n�)

{ Seond(B) � (�

2

n�)

{ Both(B) � (�

1

\ �

2

\ �)

{ (First(B) [Seond(B) [Both(B)) may be

empty only if ((�

1

n�)[(�

2

n�)[(�

1

\�

2

\�))

is empty, beause from a non-empty set of the

potentially possible initial steps, � must selet

at least one.

The enhaned semantis of hoie, parallel om-

position and disabling is the following:

{ hoie (B = B

1

[�℄B

2

):

6

B

1

L

! B

0

1

B

1

[�℄B

2

L

! B

0

1

[�℄stop

[L 2 First(B)℄

B

2

L

! B

0

2

B

1

[�℄B

2

L

! stop[�℄B

0

2

[L 2 Seond(B)℄

{ parallel omposition (B = B

1

j[
j�℄jB

2

):

B

1

O

! B

0

1

B

1

j[
j�℄jB

2

O

! B

0

1

j[
j�℄jB

2

[O 2 First(B)℄

B

2

O

! B

0

2

B

1

j[
j�℄jB

2

O

! B

1

j[
j�℄jB

0

2

[O 2 Seond(B)℄

B

1

L

! B

0

1

; B

2

L

! B

0

2

B

1

j[
j�℄jB

2

L

! B

0

1

j[
j�℄jB

0

2

[L 2 Both(B)℄

{ disabling (B = B

1

[�>B

2

):

B

1

O

! B

0

1

B

1

[�>B

2

O

! B

0

1

[�>B

2

[O 2 First(B)℄

B

1

�

! B

0

1

B

1

[�>B

2

�

! B

0

1

[�>stop

[� 2 First(B)℄

B

2

L

! B

0

2

B

1

[�>B

2

L

! stop[�>B

0

2

[L 2 Seond(B)℄

4.2.2. Implementation semantis

Pure objet-oriented spei�ation style requires

that a C[[B℄℄ spei�es not only the ations of B,

but also how B reats on ations in whih it does

not partiipate.

Ations of aB are �rst of all its ordinary ations.

A � it exeutes is also its own ation (it indiates

its suessful termination), but also a reation on

an external ation guarded by B (issuing of per-

mission for suh an ation). Besides, C[[B℄℄ might

have to omprise auxiliary ations modelling var-

ious other kinds of reations of B on external a-

tions.

In our ase, a C[[B℄℄ needs two kinds of auxiliary

ations:

{ In every state, there must be an ation reeting

exeution of an external ation with no inuene

on B, i.e. not hanging its state. We de�ne that

suh an ation ours on a speial gate N , for it

models non-ation.

{ In every state, there must be an ation reeting

deletion of B upon an external ation, i.e. trans-

forming B into an inative proess. We de�ne

that suh an ation ours on a speial gate D.

Hene in the following, G denotes N , D or an

L. If a C[[B℄℄ is not further ombined, its auxil-

iary ations must be suppressed by an additional

onstraint: \C[[B℄℄j[N;D℄jstop" exeutes only the

non-auxiliary ations of B.

To beome enodable in E-LOTOS with en-

haned renaming, the semantis of proesses C[[B℄℄

needs yet another extension. Every ation of a

C[[B℄℄ must arry, suitably enoded, suÆient in-

formation on the urrent state of B, i.e. on its

past events and its possible future behaviours.

In our ase, the parameter must list identi�ers

I

L

of all gates L on whih the proess is in the

partiular state ready to exeute an ation. The

parameter will be needed for spei�ation of a-

tion priorities. If a C[[B℄℄ is not further ombined,

the parameter of its ations must be removed by

a renaming operator. Let all I

G

be of a type \id",

while type \ids" denotes a set of identi�ers I

L

. In

our examples, every I

G

will be simply G.

Let A denote N or D. Hene the desired seman-

tis of C[[stop℄℄ is

C[[stop℄℄

A(fg)

�! C[[stop℄℄

The desired semantis of C[[null℄℄ is

C[[null℄℄

�(fI

�

g)

�! C[[null℄℄

C[[null℄℄

N(fI

�

g)

�! C[[null℄℄

C[[null℄℄

D(fI

�

g)

�! C[[stop℄℄

The desired semantis of a C[[O℄℄ is

C[[O℄℄

O(fI

O

g)

�! C[[null℄℄

C[[O℄℄

N(fI

O

g)

�! C[[O℄℄

C[[O℄℄

D(fI

O

g)

�! C[[stop℄℄

If x and y list the identi�ers of the initial steps

of a B

1

and a B

2

, respetively, let Next(x; y) list

the identi�ers of the initial steps of \B

1

;B

2

". The

desired transitions of a C[[B

1

;B

2

℄℄ are hene:

{ C[[B

1

℄℄ exeutes an O in B

1

, C[[B

2

℄℄ exeutes an

N indiating that the O has no e�et on B

2

:

C[[B

1

℄℄

O(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

N(y)

�! C[[B

0

2

℄℄

C[[B

1

;B

2

℄℄

O(Next(x;y))

�! C[[B

0

1

;B

0

2

℄℄

{ C[[B

2

℄℄ exeutes an L in B

2

, C[[B

1

℄℄ supports that

7

by exeuting � in B

1

:

C[[B

1

℄℄

�(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

;B

2

℄℄

L(Next(x;y))

�! C[[B

0

1

;B

0

2

℄℄

{ For an ation in the environment of \B

1

;B

2

",

C[[B

1

℄℄ and C[[B

2

℄℄ indiate, by o-operative ex-

eution of an N , that it has no e�et on B

1

and

B

2

, or, by o-operative exeution of a D, that it

disables further exeution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

;B

2

℄℄

A(Next(x;y))

�! C[[B

0

1

;B

0

2

℄℄

Let Next

�

(x; y; z) denote the same funtion

as �, exept that wherever � works with an L,

Next

�

(x; y; z) works with I

L

. The desired transi-

tions of a C[[B

1

[�℄B

2

℄℄ are hene:

{ C[[B

1

℄℄ exeutes an L in B

1

, C[[B

2

℄℄ exeutes a D

indiating that B

2

is onsequently disabled:

C[[B

1

℄℄

L(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

D(y)

�! C[[B

0

2

℄℄

C[[B

1

[�℄B

2

℄℄

L(V

1

[V

2

)

�! C[[B

0

1

[�℄B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg) and I

L

is in

V

1

.

{ C[[B

2

℄℄ exeutes an L in B

2

, C[[B

1

℄℄ exeutes a D

indiating that B

1

is onsequently disabled:

C[[B

1

℄℄

D(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

[�℄B

2

℄℄

L(V

1

[V

2

)

�! C[[B

0

1

[�℄B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg) and I

L

is in

V

2

.

{ For an ation in the environment of \B

1

[�℄B

2

",

C[[B

1

℄℄ and C[[B

2

℄℄ indiate, by o-operative ex-

eution of an N , that it has no e�et on B

1

and

B

2

, or, by o-operative exeution of a D, that it

disables further exeution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

[�℄B

2

℄℄

A(V

1

[V

2

)

�! C[[B

0

1

[�℄B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg).

Let Syn(
) denote fI

L

j(L 2 (
[f�g))g. The

desired transitions of a C[[B

1

j[
j�℄jB

2

℄℄ are hene:

{ C[[B

1

℄℄ exeutes an O in B

1

outside
, C[[B

2

℄℄

exeutes anN indiating that theO has no e�et

on B

2

:

C[[B

1

℄℄

O(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

N(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

O(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn(
)) and

I

O

is in V

1

.

{ C[[B

2

℄℄ exeutes an O in B

2

outside
, C[[B

1

℄℄

exeutes anN indiating that theO has no e�et

on B

1

:

C[[B

1

℄℄

N(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

O(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

O(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn(
)) and

I

O

is in V

2

.

{ C[[B

1

℄℄ and C[[B

2

℄℄ o-operatively exeute an L

in (
 [f�g), i.e. an L in B

1

and an L in B

2

:

C[[B

1

℄℄

L(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

L(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn(
)) and

I

O

is in V

3

.

{ For an ation in the environment of \B

1

j[
j�℄j

B

2

", C[[B

1

℄℄ and C[[B

2

℄℄ indiate, by o-operative

exeution of an N , that it has no e�et on B

1

and B

2

, or, by o-operative exeution of a D,

that it disables further exeution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

A(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn(
)).

The desired transitions of a C[[B

1

[�>B

2

℄℄ are:

{ C[[B

1

℄℄ exeutes an O in B

1

, C[[B

2

℄℄ exeutes an

N indiating that the O has no e�et on B

2

:

C[[B

1

℄℄

O(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

N(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

O(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) isNext

�

(x; y; fg) and I

O

is in

V

1

.

{ C[[B

1

℄℄ exeutes a � in B

1

, C[[B

2

℄℄ exeutes a D

indiating that B

2

is onsequently disabled:

C[[B

1

℄℄

�(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

D(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

�(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) isNext

�

(x; y; fg) and I

�

is in

V

1

.

{ C[[B

2

℄℄ exeutes an L in B

2

, C[[B

1

℄℄ exeutes a D

indiating that B

1

is onsequently disabled:

C[[B

1

℄℄

D(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

L(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) isNext

�

(x; y; fg) and I

L

is in

V

2

.

8

{ For an ation in the environment of \B

1

[� >

B

2

", C[[B

1

℄℄ and C[[B

2

℄℄ indiate, by o-operative

exeution of an N , that it has no e�et on B

1

and B

2

, or, by o-operative exeution of a D,

that it disables further exeution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

A(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg).

4.2.3. Enoding in E-LOTOS with enhaned

renaming

We begin by observing that funtionsNext(x; y)

and Next

�

(x; y; z) an be easily enoded in E-

LOTOS.

An E-LOTOS enoding of C[[stop℄℄ is

\loop N !fg[℄D!fg endloop".

Assuming that � denotes a regular E-LOTOS

gate name, an enoding for C[[null℄℄ would be

\(loop �!fI

�

g[℄N !fI

�

g endloop

[>(D!fI

�

g;C[[stop℄℄))".

An enoding for C[[O℄℄ is

\(loop N !fI

O

g endloop

[>((O!fI

O

g;C[[null℄℄)[℄(D!fI

O

g;C[[stop℄℄)))".

Enodings for C[[B

1

;B

2

℄℄, C[[B

1

[�℄B

2

℄℄,

C[[B

1

j[
j�℄jB

2

℄℄ and C[[B

1

[� > B

2

℄℄ are given in

Fig. 1, 3, 5 and 7, respetively, where G(B) de-

notes the visible gates of a B, and I(B) the iden-

ti�ers I

L

of L in G(B). Every suh C[[B

1

� B

2

℄℄

(in pre�x notation C[[�(B

1

; B

2

)℄℄) is strutured

aording to the following strategy for enoding a

C[[�(B

1

; : : : ; B

n

)℄℄ (see the examples in Fig. 2, 4, 6

and 8):

{ For all B

i

: Every ation G

i

(x

i

) of C[[B

i

℄℄ is

split into all suh G(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) that

C[[�(B

1

; : : : ; B

n

)℄℄ ould, aording to the se-

mantis of \�", have an ation G(x) resulting

from o-operative exeution ofG

1

(x

1

) in C[[B

1

℄℄,

G

2

(x

2

) in C[[B

2

℄℄,. . . and G

n

(x

n

) in C[[B

n

℄℄. For

every G

i

(x

i

), one also spei�es a dummy new

name G

i

(i) (not intended for exeution), to se-

ure that there is at least one new name per

ation, for otherwise it would be exeutable in

its original form. The proess obtained from

C[[B

i

℄℄ by the desribed ation renamings is a

C

i

[[�(B

1

; : : : ; B

n

)℄℄.

{ All the onstruted proesses C

i

[[�(B

1

; : : : ; B

n

)℄℄

are put in parallel omposition with to-

tal synhronization. Every ation of the

omposite proess C

0

[[�(B

1

; : : : ; B

n

)℄℄ is a

G(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) resulting from a G(I

G

1

;

x

1

; : : : ; I

G

n

; x

n

) in C

1

[[�(B

1

; : : : ; B

n

)℄℄, a G(I

G

1

;

x

1

; : : : ; I

G

n

; x

n

) in C

2

[[�(B

1

; : : : ; B

n

)℄℄,. . . and a

G(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) in C

n

[[�(B

1

; : : : ; B

n

)℄℄,

i.e. from a G

1

(x

1

) in C[[B

1

℄℄, a G

2

(x

2

) in

C[[B

2

℄℄,. . . and a G

n

(x

n

) in C[[B

n

℄℄, as required.

Any ation G

i

(i) of a C

i

[[�(B

1

; : : : ; B

n

)℄℄ is non-

exeutable within the ontext, as intended.

{ Every ationG(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) ofC

0

[[�(B

1

;

: : : ; B

n

)℄℄ is renamed into the G(x) whih it de-

notes in C[[�(B

1

; : : : ; B

n

)℄℄.

Suh enoding diretly reets the dynami seman-

tis of C[[�(B

1

; : : : ; B

n

)℄℄.

4.3. Dealing with data and time

In the language we implemented in Setion 4.2,

all ations were untimed and arried no data. In

this setion, we briey disuss how to overome the

restritions.

Data handling an be introdued as follows:

{ When designing a language whih is to be en-

oded in E-LOTOS, let proesses B maintain

and update data variables and let ationsL arry

data, as desired.

{ When oneiving the implementation semantis,

inlude, as onvenient, in the ation parameters

representing the urrent state of a proess B in-

formation on the data stored by B or potentially

arried by its future ations. In suh a way, it will

be possible to use the data in prediates de�ning

whih are the ations that synhronize when the

proesses C[[B℄℄ to whih they belong are om-

bined.

As an example, suppose that we are implement-

ing a \B

1

;B

2

" spei�ed as \O

1

?x;O

2

?y[y < x℄".

Obviously, x must be arried by � ations of B

1

,

and the legal ombinations of a � in C[[B

1

℄℄ and an

O

2

in C[[B

2

℄℄ are those where the y arried by O

2

is smaller than the x arried by �.

Timed ations an be introdued as follows:

{ When designing a language whih is to be en-

oded in E-LOTOS, design it as an untimed lan-

guage, but let every ation L arry a parameter

9

C[[B

1

;B

2

℄℄ := rename forall G 2 G(C

0

[[B

1

;B

2

℄℄) : ation G(id; ?x : ids; id; ?y : ids) is G!Next(x; y) endfor

in C

0

[[B

1

;B

2

℄℄ endren

C

0

[[B

1

;B

2

℄℄ := C

1

[[B

1

;B

2

℄℄jjC

2

[[B

1

;B

2

℄℄

C

1

[[B

1

;B

2

℄℄ := rename forall O 2 G(C[[B

1

℄℄) : ation O(?x : ids) is O(!I

O

; !x; !I

N

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

if � 2 G(C[[B

1

℄℄) then forall L 2 G(C[[B

2

℄℄) : ation �(?x : ids) is L(!I

�

; !x; !I

L

; ?y : ids)

[issubset(y; I(C[[B

2

℄℄)) and isin(I

L

; y)℄ endfor endthen

forall A 2 fN;Dg : ation A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : ation G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

;B

2

℄℄ := rename forall L 2 G(C[[B

2

℄℄) : ation L(?y : ids) is O(!I

�

; ?x : ids; !I

L

; !y)

[issubset(x; I(C[[B

1

℄℄)) and isin(I

�

; x)℄ endfor

forall O 2 G(C[[B

1

℄℄) : ation N(?y : ids) is O(!I

O

; ?x : ids; !I

N

; !y)

[issubset(x;I(C[[B

1

℄℄)) and isin(I

O

; x)℄ endfor

forall A 2 fN;Dg : ation A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x; I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : ation G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 1. Enoding of C[[B

1

;B

2

℄℄ in E-LOTOS with enhaned renaming.

a

B 1

B 2

a

a

a

B 1 ; B 2

C 1 B
1
; B 2

]][[

a (a , { a } , N , . . .) , a (1)
D (D , { a } , D , . . .) , D (1)

N (N , { } , N , . . .) , N (1) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1)

D (D , { } , D , . . .) ,

D (1)
N (N , { } , N , . . .) , N (1) ,

a (, { } , a , { a }) , (1)

C 2 B 1 ; B 2
]][[

a (a , { a } , N , { }) , a (a , { a , } , N , { }) ,

N (N , . . . , N , { }) , N (2) , D (D , . . . , D , { }) , D (2)

a (a , { a } , N , { a }) , a (a , { a , } , N , { a }) ,

N (N , . . . , N , { a }) , N (2)
a (, { } , a , { a }) , a (, { a , } , a , { a }) ,

a (2) , D (D , . . . , D , { a }) , D (2)

C 1 B 1 ; B 2
]][[| | C 2 B 1 ; B 2

]][[

a (a , { a } , N , { a })
D (D , { a } , D , { a })

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (a , { a } , a , { a })

N (N , { } , N , { a })
D (D , { } , D , { a })

a (, { } , a , { a })
D (D , { } , D , { })

N (N , { } , N , { })

C]][[B 1

C]][[B 2

N ({ }) ,

D ({ })

N ({ a }) a ({ a }) ,

D ({ a })

C B 1 ; B 2
]][[

a ({ a }) D ({ a })

N ({ }) ,

D ({ })

N ({ a })

N ({ a }) a ({ a }) ,

D ({ a })

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

D ({ })N ({ }) ,
({ })

Fig. 2. Example implementation of sequential omposition.

supposingly representing the absolute exeution

time of L, and restrit its value as desired.

{ When implementing a spei�ed proess B, in-

trodue an additional onstraint representing

a global lok. The lok proess will synhro-

nize with every L in C[[B℄℄ and take are that

its exeution-time parameter equals the urrent

time.

As an example, take the proess \O

1

;O

2

�!3",

exeuting O

2

3 time units after O

1

. Introduing

absolute-exeution-time parameters, we rewrite

the proess into

\O

1

?x : time;O

2

?y : time[y = x+ 3℄".

An adequate lok will allow O

1

(x) only at time x,

and O

2

(y) only at time y.

5. Disussion and onlusions

Among the LOTOS (or E-LOTOS) spei�a-

tion styles [11℄, the onstraint-oriented style yields

spei�ations whih are the most diÆult to imple-

ment in an eÆient way. However, when one wants

to speify a really ompliated behaviour, the style

is usually the best hoie, for it failitates abstrat

and delarative spei�ation.

10

C[[B

1

[�℄B

2

℄℄ := rename

forall G 2 G(C

0

[[B

1

[�℄B

2

℄℄) : ation G(id; ?x : ids; id; ?y : ids) is G?z : ids

[var V

1

: ids; V

2

: ids in (?V

1

; ?V

2

;any : ids) := Next

�

(x; y; fg); z = union(V

1

; V

2

) endvar℄ endfor

in C

0

[[B

1

[�℄B

2

℄℄ endren

C

0

[[B

1

[�℄B

2

℄℄ := C

1

[[B

1

[�℄B

2

℄℄jjC

2

[[B

1

[�℄B

2

℄℄

C

1

[[B

1

[�℄B

2

℄℄ := rename

forall L 2 G(C[[B

1

℄℄) : ation L(?x : ids) is L(!I

L

; !x; !I

D

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

1

) endvar℄ endfor

forall L 2 G(C[[B

2

℄℄) : ation D(?x : ids) is L(!I

D

; !x; !I

L

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall A 2 fN;Dg : ation A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : ation G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

[�℄B

2

℄℄ := rename

forall L 2 G(C[[B

2

℄℄) : ation L(?y : ids) is L(!I

D

; ?x : ids; !I

L

; !y)[issubset(x; I(C[[B

1

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall L 2 G(C[[B

1

℄℄) : ation D(?y : ids) is L(!I

L

; ?x : ids; !I

D

; !y)[issubset(x;I(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

1

) endvar℄ endfor

forall A 2 fN;Dg : ation A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x;I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : ation G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 3. Enoding of C[[B

1

[�℄B

2

℄℄ in E-LOTOS with enhaned renaming.

a

B 1

B 2

b

B 1 [. . .] B 2

a

C]][[B 1

C]][[B 2

N ({ }) ,

D ({ })

N ({ b }) b ({ b }) ,

D ({ b })

C B 1 [. . .] B 2
]][[

N ({ }) ,

D ({ })

N ({ a }) a ({ a }) ,

D ({ a })

N ({ }) ,

D ({ })

N ({ a }) a ({ a }) ,

D ({ a })

C 1 B 1 [. . .] B 2
]][[

C 2 B 1 [. . .] B 2
]][[

C 1 B 1 [. . .] B 2
]][[| | C 2 B 1 [. . .] B 2

]][[

N (N , { } , N , . . .) , N (1) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1) a (a , { a } , D , { }) , a (a , { a } , D , { b }) , a (1) ,

D (D , { a } , D , . . .) , D (1)

N (N , . . . , N , { }) , N (2) ,

a (a , { a } , D , { }) , D (D , . . . , D { }) , D (2)

N (N , . . . , N , { b }) , N (2) b (D , { } , b , { b }) , b (2) ,

a (a , { a } , D , { b }) , D (D , . . . , D , { b }) , D (2)

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (N , { a } , N , { b }) a (a , { a } , D , { b }) ,

D (D , { a } , D , { b })

Fig. 4. Example implementation of hoie, where a has a higher priority than b.

In the paper, we skethed a method for

onstraint-oriented spei�ation of new proess-

omposition operators. It onsists of two steps.

In the �rst step, one designs a proess-algebrai

spei�ation language best meeting one's spe-

i� needs. If the language introdues only events

whih are fully ontrollable and freely renamable

(for every event, one an at least pretend that it

is), the dynami semantis of the language an

then be mehanially rewritten into a form whih

allows mehani translation of proess spei�a-

tions into E-LOTOS. If supported by a tool, the

method would help those users of E-LOTOS (or

its enhaned suessors) for whom the onstraint-

oriented style is too abstrat, but would still want

to speify non-standard forms of proess omposi-

tion.

Applying the above method, we observed that

it strongly builds upon ation splitting. In E-

LOTOS, an ation an be split only with respet

11

C[[B

1

j[
j�℄jB

2

℄℄ := rename forall G 2 G(C

0

[[B

1

j[
j�℄jB

2

℄℄) : ation G(id; ?x : ids; id; ?y : ids) is G?z : ids

[var V

1

: ids; V

2

: ids; V

3

: ids in (?V

1

; ?V

2

; ?V

3

) := Next

�

(x; y; Syn(
));

z = union(union(V

1

; V

2

); V

3

) endvar℄ endfor

in C

0

[[B

1

j[
j�℄jB

2

℄℄ endren

C

0

[[B

1

j[
j�℄jB

2

℄℄ := C

1

[[B

1

j[
j�℄jB

2

℄℄jjC

2

[[B

1

j[
j�℄jB

2

℄℄

C

1

[[B

1

j[
j�℄jB

2

℄℄ := rename

forall L 2 ((
 [f�g) \ G(C[[B

1

℄℄) \ G(C[[B

2

℄℄)) : ation L(?x : ids) is L(!I

L

; !x; !I

L

; ?y : ids)

[issubset(y; I(C[[B

2

℄℄)) and

var V

3

: ids in (any : ids;any : ids; ?V

3

) := Next

�

(x; y; Syn(
)); isin(I

L

; V

3

) endvar℄ endfor

forall O 2 (G(C[[B

1

℄℄)n
) : ation O(?x : ids) is O(!I

O

; !x; !I

N

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; Syn(
)); isin(I

O

; V

1

) endvar℄ endfor

forall O 2 (G(C[[B

2

℄℄)n
) : ation N(?x : ids) is O(!I

N

; !x; !I

O

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; Syn(
)); isin(I

O

; V

2

) endvar℄ endfor

forall A 2 fN;Dg : ation A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : ation G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

j[
j�℄jB

2

℄℄ := rename

forall L 2 ((
 [f�g) \ G(C[[B

1

℄℄) \ G(C[[B

2

℄℄)) : ation L(?y : ids) is L(!I

L

; ?x : ids; !I

L

; !y)

[issubset(x; I(C[[B

1

℄℄)) and

var V

3

: ids in (any : ids;any : ids; ?V

3

) := Next

�

(x; y; Syn(
)); isin(I

L

; V

3

) endvar℄ endfor

forall O 2 (G(C[[B

2

℄℄)n
) : ation O(?y : ids) is O(!I

N

; ?x : ids; !I

O

; !y)[issubset(x; I(C[[B

1

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; Syn(
)); isin(I

O

; V

2

) endvar℄ endfor

forall O 2 (G(C[[B

1

℄℄)n
) : ation N(?y : ids) is O(!I

O

; ?x : ids; !I

N

; !y)[issubset(x;I(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; Syn(
)); isin(I

O

; V

1

) endvar℄ endfor

forall A 2 fN;Dg : ation A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x; I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : ation G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 5. Enoding of C[[B

1

j[
j�℄jB

2

℄℄ in E-LOTOS with enhaned renaming.

B 2

b

B 1 | [| . . .] | B 2

a

B 1

a

b

C]][[B 2

N ({ }) ,

D ({ })

N ({ b }) b ({ b }) ,

D ({ b })

C B 1 | [| . . .] | B 2
]][[

C]][[B 1

a ({ a }) D ({ a })

N ({ }) ,

D ({ })

N ({ a })

N ({ b })
b ({ b }) ,

D ({ b })

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

D ({ })N ({ }) ,
({ })

C 1 B 1 | [| . . .] | B 2
]][[

C 1 B 1 | [| . . .] | B 2
]][[| | C 2 B 1 | [| . . .] | B 2

]][[

C 2 B 1 | [| . . .] | B 2
]][[

a (a , { a } , N , { b }) , a (a , { a , } , N , { b }) ,

N (N , . . . , N , { b }) , N (2) b (N , { } , b , { b }) , b (N , { } , b , { b }) , b (2)

D (D , . . . , D , { b }) , D (2)
a (a , { a } , N , { }) , a (a , { a , } , N , { }) , N (2)

N (N , . . . , N , { }) , D (D , . . . , D , { }) , D (2)

a (a , { a } , N , { }) , a (a , { a } , N , { b }) , a (1)

D (D , { a } , D , . . .) , D (1)

N (N , { } , N , . . .) , N (1) ,

b (N , { } , b , { b }) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1)

D (D , { } , D , . . .) ,

D (1)
b (N , { } , b , { b }) , N (1) ,

N (N , { } , N , . . .) , (1)

a (a , { a } , N , { b })
D (D , { a } , D , { b })

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (N , { a } , N , { b })

N (N { } , N , { b }) D (D , { } , D , { b })

b (N , { } , b , { b })

N (N , { } , N , { })
D (D , { } , D , { })

Fig. 6. Example implementation of parallel omposition, where a has a higher priority than b.

to a parameter introdued spei�ally for the pur-

pose. Having found that inonvenient, we deided

to propose a generalization of the E-LOTOS re-

naming operator. Besides being more powerful,

the new renaming operator also has a more natural

and non-restritive semantis.

We onlude by summarizing that the proposed

generalization would help in two ways:

12

C[[B

1

[�>B

2

℄℄ := rename forall G 2 G(C

0

[[B

1

[�>B

2

℄℄) : ation G(id; ?x : ids; id; ?y : ids) is G?z : ids

[var V

1

: ids; V

2

: ids in (?V

1

; ?V

2

;any : ids) := Next

�

(x; y; fg); z = union(V

1

; V

2

) endvar℄

endfor

in C

0

[[B

1

[�>B

2

℄℄ endren

C

0

[[B

1

[�>B

2

℄℄ := C

1

[[B

1

[�>B

2

℄℄jjC

2

[[B

1

[�>B

2

℄℄

C

1

[[B

1

[�>B

2

℄℄ := rename

forall O 2 G(C[[B

1

℄℄) : ation O(?x : ids) is O(!I

O

; !x; !I

N

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

O

; V

1

) endvar℄ endfor

if � 2 G(C[[B

1

℄℄) then ation �(?x : ids) is �(!I

�

; !x; !I

D

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

�

; V

1

) endvar℄ endif

forall L 2 G(C[[B

2

℄℄) : ation D(?x : ids) is L(!I

D

; !x; !I

L

; ?y : ids)[issubset(y;G(C[[B

2

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall A 2 fN;Dg : ation A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : ation G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

[�>B

2

℄℄ := rename

forall L 2 G(C[[B

2

℄℄) : ation L(?y : ids) is L(!I

D

; ?x : ids; !I

L

; !y)[issubset(x; I(C[[B

1

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall O 2 G(C[[B

1

℄℄) : ation N(?y : ids) is O(!I

O

; ?x : ids; !I

N

; !y)[issubset(x;G(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

O

; V

1

) endvar℄ endfor

ation D(?y : ids) is �(!I

�

; ?x : ids; !I

D

; !y)[issubset(x;G(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

�

; V

1

) endvar℄

forall A 2 fN;Dg : ation A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x; I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : ation G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 7. Enoding of C[[B

1

[�>B

2

℄℄ in E-LOTOS with enhaned renaming.

B 2

b

B 1 [. . . > B 2

a

B 1

a

b

C]][[B 2

N ({ }) ,

D ({ })

N ({ b }) b ({ b }) ,

D ({ b })

C B 1 [. . . > B 2
]][[

C]][[B 1

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

N ({ , b }) b ({ , b }) ,

D ({ , b })
 ({ , b })

N ({ }) ,
({ })

D ({ })

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

D ({ })N ({ }) ,
({ })

C 1 B 1 [. . . > B 2
]][[

C 1 B 1 [. . . > B 2
]][[| | C 2 B 1 [. . . > B 2

]][[

C 2 B 1 [. . . > B 2
]][[

a (a , { a } , N , { }) , a (a , { a } , N , { b }) , a (1)

D (D , { a } , D , . . .) , D (1)

N (N , { } , N , . . .) , N (1) ,

b (D , { } , b , { b }) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1)

b (D , { } , b , { b }) ,

D (D , { } , D , . . .) , D (1)N (N , { } , N , . . .) , N (1) , (1) ,

 (, { } , D , { }) , (, { } , D , { b })

a (a , { a } , N , { b }) , a (a , { a , } , N , { b }) ,

N (N , . . . , N , { b }) , N (2)
b (D , { } , b , { b }) , b (D , { } , b , { b }) , b (2)

 (, { } , D , { b }) , (, { a , } , D , { b }) ,

D (D , . . . , D , { b }) , D (2)a (a , { a } , N , { }) , a (a , { a , } , N , { }) , N (2)

N (N , . . . , N , { }) , D (D , . . . , D , { }) , D (2) ,

 (, { } , D , { }) , (, { a , } , D , { })

a (a , { a } , N , { b })
D (D , { a } , D , { b })

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (N , { a } , N , { b })

N (N { } , N , { b }) b (D , { } , b , { b }) ,

D (D , { } , D , { b })
 (, { } , D , { b })

N (N , { } , N , { }) ,

 (, { } , D , { })

D (D , { } , D , { })

Fig. 8. Example implementation of disabling, where a has a higher priority then b.

{ It wouldmake the renaming operatormuhmore

easy to understand and onvenient to use, sup-

porting further development of E-LOTOS into

a \seond-generation" formal desription teh-

nique [3℄.

{ The enhaned operator would simplify spei�a-

tion of non-standard forms of proess omposi-

tion and thereby onstrution of ompilers from

ustom-designed proess-algebrai spei�ation

languages to E-LOTOS.

13

Referenes

[1℄ T. Bolognesi and E. Brinksma, Introdution to the ISO

spei�ation language LOTOS, Computer Networks

and ISDN Systems 14 (1987) 25{59.

[2℄ H. Garavel, A wish list for the behaviour part of

E-LOTOS, Input doument [LG5℄ to the ISO/IEC

JTC1/SC21/WG7 Meeting on Enhanements to

LOTOS, Li�ege, Deember 1995.

[3℄ H. Garavel and M. Sighireanu, Towards a seond

generation of formal desription tehniques - rationale

for the design of E-LOTOS, in: J.-F. Groote, B. Luttik,

and J. van Wamel (eds.), Pro. of the 3rd International

Workshop on Formal Methods for Industrial Critial

Systems FMICS'98, Amsterdam, The Netherlands,

May 1998, 187{230.

[4℄ C. A. R. Hoare, Communiating Sequential Proesses,

Prentie-Hall International, 1985.

[5℄ ISO, LOTOS { A Formal Desription Tehnique Based

on the Temporal Ordering of Observational Behaviour,

ISO 8807, ISO { Information Proessing Systems {

Open Systems Interonnetion, 1989.

[6℄ ISO/IEC, Enhanements to LOTOS (E-LOTOS),

ISO/IEC 15437, ISO { Information Tehnology, 2001.

[7℄ M. Kapus-Kolar, Speifying broadast ommuniation

in a sublanguage of E-LOTOS, in: B. Zaj and M.

Tkal�i� (eds.), Pro. of the IEEE EUROCON'2003:

Computer as a Tool, Ljubljana, September 2003, vol.II,

pp. 2{6.

[8℄ M. Kapus-Kolar, Speifying ation priorities in a

sublanguage of E-LOTOS, in: D. Begu�si�, N. Ro�zi�

(eds.), Pro. of the 11th International Conferene on

Software, Teleommuniations & Computer Networks

SoftCOM'2003, Split, Otober 2003, pp. 247{251.

[9℄ M. Kapus-Kolar, Speifying late deisions in a subset

of E-LOTOS, submitted for publiation, 2003.

[10℄ A. Verdejo, E-LOTOS: Tutorial and Semantis, M.S.

thesis, Universidad Complutense de Madrid, 1999.

[11℄ C. A. Vissers, G. Sollo, M. van Sinderen, and H.

Brinksma, Spei�ation styles in distributed systems

design and veri�ation, Theoretial Computer Siene

89 (1991) 179{206.

Monika Kapus-Kolar reeived the B.S. degree in

eletrial engineering from the University of Mari-

bor, Slovenia, in 1981, and the M.S. and Ph.D.

degrees in omputer siene from the University

of Ljubljana, Slovenia, in 1984 and 1989, respe-

tively. Sine 1981 she has been with the Jo�zef Ste-

fan Institute, Ljubljana, where she is urrently a

researher at the Department of Digital Commu-

niations and Networks. Her urrent researh in-

terests inlude formal spei�ation tehniques and

methods for development of distributed systems

and omputer networks.

14

