A generalization of the E-LOTOS renaming operator: a convenience
for specification of new forms of process composition

M. Kapus-Kolar
JoZef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia

Received 2 December 2003; revised 25 February 2004

Abstract

E-LOTOS is one of the standard languages for formal specification of real-time concurrent and reactive systems.
As it is process-algebraic, its expressive power lies in its process-composition operators. Of course, not all forms
of composition can be directly expressed in the language. In the most difficult cases, one typically resorts to
the constraint-oriented specification style. We demonstrate that a slight enhancement of the E-LOTOS renaming
operator would make the specification style even more powerful. As an example, we show how to specify choice,

parallel composition and disabling enhanced with action priorities.

Key words: Formal methods, E-LOTOS, Constraint-oriented specification, Event renaming, Action priorities

1. Introduction

E-LOTOS [6,10], an enhanced successor of LO-
TOS [5,1], is one of the standard languages for for-
mal specification of real-time concurrent and reac-
tive systems. An E-LOTOS specification charac-
terizes a process by its readiness to engage into var-
ious kinds of atomic instantaneous events, where
an event might be
— a G(RN), i.e. an interaction of the process with

its environment, where G is the gate on which it

occurs and RN is the data record it carries,
— an X(RN), i.e. a signal issued by the process,
— an i, i.e. an internal process action, or

Email address: monika.kapus-kolar@ijs.si (M.
Kapus-Kolar).

Preprint submitted to Computer Standards & Interfaces

— a §(RN), i.e. successful termination of the pro-
cess.

The usual dynamic semantics of an E-LOTOS
process is that of interleaving events. A process
is characterized by its labelled transition system
(LTS), where an individual transition represents
either an individual event or idling, i.e. passing of
time. For convenience, we will assume that time is
discrete, so that every time step is a “tick”. Events
of type i, §(RN) and X (RN) are by definition ur-
gent, i.e. cannot have idling as an alternative.

To incorporate a process into a particular envi-
ronment, it is sometimes necessary to relabel its
LTS, i.e. to change a G(RN) into a G'(RN'), or an
X(RN)into an X'(RN'). That is facilitated by the
E-LOTOS renaming operator. Unfortunately, the
current semantics of the operator is unnecessarily
rigid. In Sections 2 and 3, we propose a new se-

25 February 2004

mantics which makes the operator much more easy
to understand and convenient to use. As demon-
strated in Section 4, the enhanced operator is par-
ticularly helpful in constraint-oriented specifica-
tion of non-standard forms of process composition.

2. From gate renaming to action renaming

Consider a process B’ defined as
“rename gate G(!true : bool) is G'!1
in B endren”,
where process B is defined as “G any : bool”, i.e.
represents an interaction on gate G carrying any
boolean value. As B executes either G(true) or
G(false), one would expect that B’ executes either
G'(1) or G(false). Wrong! According to the current
E-LOTOS semantics, the renaming makes G (false)
non-executable, because gate G is being renamed
(i.e. actions on the gate are being renamed), but
there is no name defined for G(false). In other
words, a proper specification of the intended be-
haviour would be
“rename gate G(ltrue : bool) is G'!1
gate G(!false : bool) is G'false
in B endren”.
There are cases where such complication is most
inconvenient. For example, when correcting a
“rename gate G(!0 : nat) is G'!false
in GG any : nat endren”,
where “nat” denotes natural numbers, one has to
specify non-renaming for every G(z) with (z > 0).
In any case, we observe that one naturally tends
see the E-LOTOS renaming operator as an action-
renaming operator, and not as a gate-renaming op-
erator. That is most evident in cases where gates
are split (as in the above examples) or merged (as,
for example, in
“rename gate GG; is G gate G2 is GG
in B endren”).
Gate splitting and gate merging are operations
which are beyond gate renaming, but (assuming
that there is a name specified for every action on
the gates which are being renamed) not beyond
action renaming.
While actions are a primary concept in E-
LOTOS, a gate is often given no interpretation

beyond being the first item in the tuple of values
representing a particular action. For not every
process specified represents an architectural com-
ponent. Often it is just a part of such a component,
or an abstraction of its behaviour, or even just
another constraint governing its behaviour.

For the above reasons, we propose that E-
LOTOS renaming is rather understood as action
renaming, meaning that when there is no new
name specified for a particular action, the action
remains executable in its original form.

The same policy should be taken for renaming
of signals: If there is no new name for a signal,
the signal remains as it is. For blocking of a signal
is even worse than blocking of an action, because
signals are in E-LOTOS by definition urgent.

For the present, however, it would be convenient
to have the new semantics just as an enhancement
to the existing E-LOTOS renaming operator. That
can be achieved by a slight syntactic enhancement.
The operator currently combines statements of the
forms “gate G...is...” and “signal X ...is...”.
If such a statement is used for a G or an X, that
means that one wants for G or X the original re-
naming semantics. If the new renaming semantics
is desired for a G or an X, one should use differ-
ent keywords, for example statements of the forms
“action G ...is...” and “sgn X ...is...”, as we
do in the rest of the paper.

3. From gate splitting to action splitting

The generic construct for specifying a visible ac-
tion in E-LOTOS is “GP1QP,[E]”. An action sat-
isfies the specification provided that
— it is on gate G,

— the data it carries matches pattern P,

— its execution time measured relatively to the mo-
ment when it is logically enabled matches pat-
tern P», and

— its data and its execution time satisfy predicate
E.

In a general case, a “GP,QP,[E]” (e.g. a “G any :

bool”) is satisfiable by many different G(RN) (in

the example, by G(true) or G (false)). Hence action
splitting is not unknown in E-LOTOS.

On the other hand, it seems that there has been
an agreement that the E-LOTOS renaming opera-
tor must not introduce action splitting (see for ex-
ample [2]), although we have not been able to de-
tect such a statement in [6]. It must certainly not
introduce signal splitting, and that is not stated in
[6], either. For observe the process

“trap exception X; is G;@!1 endexn

exception X, is G>Q!1 endexn
in rename signal X is X; signal X is X,
in raise X endren endtrap”,

structured as follows:

— The innermost process raises exception X, i.e.
issues signal X and blocks the system.

— The renaming operator splits signal X so that it
can be issued either as an X, or as an X». Hence
the LTS of the resulting process has branches X;
and Xs.

— The exception-trapping operator replaces the
two exception signals with their corresponding
handlers “G;@Q!1” and “G2@!1”. The LTS of
the resulting process has alternative branches
“tick,G1,6” and “tick,G2,6”, the behaviours
of the two handlers. Hence in the initial state
of the process, there are two tick transitions,
implying that the choice is resolved by the flow
of time.

The process is illegal in E-LOTOS, for time non-

determinism is in E-LOTOS a taboo. In the ex-

ample, time non-determinism emerges because of
the trapping operator, but its seed is in the signal
splitting.

For actions, trapping is not defined, hence their
splitting can do no harm. Therefore we define that
the new semantics for action renaming allows ac-
tion splitting, because in E-LOTOS with action
splitting forbidden, language users have unneces-
sary troubles:

— Specifying action renaming, one must be careful
not to define more than one new name per action.

— For every action, one must plan its “splittings”
in advance, to furnish it with auxiliary parame-
ters facilitating the splittings. For example, if an
action @ is to experience a binary split, “G any :
bool” would be its adequate specification.

The generic syntax for gate renaming is
“gate G(IPL) is G'P”, where P, i.e. the data
carried by the new gate, is a function of IPL, i.e.

of the data carried by the old gate. For action
renaming, we propose a slightly enhanced syntax,
namely “action G(IPL) is G'P[E]”. The expres-
sion is a shorthand for the set of all such renamings
of a G(RN) into a G'(RN') that

— RN matches IPL,

— RN' matches P, and

— the pair (RN, RN') satisfies E.

The predicate E, whose default value is true, has
a similar role as in the specification of an individual
action. It can help in two ways:

— It facilitates specification of which actions on
gate G to rename. For example, an
“action G(?V : int) is G'ltrue[V > 0]”
concisely specifies renaming of all actions on gate
G carrying a positive integer.
— It facilitates specification of the new names. For
example, an
“action G(?V : nat)
is G?V' : nat[(V' mod V) = 0]”

concisely specifies that a G(IN) may be executed

as any G(N x M).

The generic syntax for signal renaming is
“signal X(IPL) is X'E”, where E, i.e. the data
carried by the new signal, is a function of IPL, i.e.
of the data carried by the old signal. For the new
kind of signal renaming, we propose a slightly en-
hanced syntax, namely “sgn X (IPL)[E']is X'E”.
The expression is a shorthand for the set of all such
renamings of an X (RN) into an X'(RN') that
— RN matches I PL and satisfies predicate E', and
— RN' is the value of ¥ computed on RN.

The predicate E', whose default value is true,
facilitates specification of which X signals to re-
name. For example, a

“sgn X (7V :int)[V > 0] is X'(V +1)”
concisely specifies renaming of all signals X carry-
ing a positive integer.

The new renaming semantics defines that a
G'(RN') is a new name for a G(RN) if there
is at least one “action...” statement specifying
that. Likewise, an X'(RN') is a new name for an
X (RN) if there is at least one “sgn...” statement
specifying that. The only restriction for combin-
ing renaming statements is that signal splitting is
forbidden.

Let us compare renaming restricted to “gate . ..”
and “signal...” statements, i.e. the old renaming

operator, with renaming restricted to “action...”

and “sgn...” statements, i.e. the new renaming

operator. The new operator has several advan-
tages:

— Most importantly, it specifies nothing beyond
event renaming, while the old operator, if not
used with sufficient care, might make some
events unexpectedly non-executable.

— It gives a specifier complete freedom on what
to rename and how to rename, as long as signal
splitting is not introduced.

— With the additional predicates, it facilitates con-
cise specification of large sets of renamings.

— It facilitates action splitting, which is, as demon-
strated in Section 4, an extremely useful con-
cept. With that feature, E-LOTOS would gain
an action-splitting operator even more general
than the “multiple labelling” operator of CSP
[4].

We observe that the new operator is much more
easy to understand and convenient to use than the
old one. The only sensible motivation for using the
old operator would be for blocking of some events.
But visible actions of a process can be blocked also
by other means, by synchronizing the process with
processes acting as additional constraints. As for
signals, they should better never be blocked, as
they have been conceived as unblockable events.

4. Action splitting in specification of new
forms of process composition

4.1. Object-oriented constraint-oriented
specification

Action splitting is a step towards polymorphism,
which is an important concept in object-oriented
specification. An E-LOTOS process is an object
characterized by its ability to interact with its en-
vironment. By renaming of actions and/or signals,
a process can be adapted for proper operation in
an environment for which it was not originally in-
tended. If it is a dynamically changing environ-
ment, action renaming must provide adequate ac-
tion names for each of the possible situations, i.e.
action splitting might be necessary.

As an example, take a system of processes com-
municating through synchronous broadcast. In
such a system, each communication event synchro-
nizes a message transmitter and all the processes
currently ready to receive the message. Hence
when a process executes a transmission, it must
be ready to execute it either on its own or in
co-operation with any group of the remaining pro-
cesses. Since in E-LOTOS, the degree of synchro-
nization of an action with the process environment
directly depends on its name, multiple degrees of
synchronization per action can be specified only as
action splitting. With this concept, we have indeed
been able to model such systems in E-LOTOS [7].

Parallel composition of processes communicat-
ing through synchronous broadcast can be ex-
pressed in E-LOTOS only indirectly. Although
the expressive power of a process-algebraic spec-
ification language lies in its process-composition
operators, one can hardly expect a language to
have operators for all forms of composition. For
even if it is from time to time systematically en-
hanced with new operators for newly identified
practically interesting forms of composition, the
enhancements must not be too extensive, for oth-
erwise the language would become too complex.

Hence a good specification language provides
not only a handy set of process-composition opera-
tors, but also means for easy specification of those
forms of composition which cannot be expressed
directly. Systematic specification of a new form of
process composition typically bases on some spe-
cific specification style. E-LOTOS, like LOTOS,
supports many different specification styles [11].
Action splitting is particularly important in the
constraint-oriented style, for this style extensively
uses the parallel composition operator, i.e. the op-
erator describing interconnection of processes.

In the constraint-oriented style, one specifies the
legal behaviours of a system by a set of constraints,
in LOTOS or E-LOTOS modelled as concurrent
processes synchronized on the actions they collec-
tively control. Although a set of constraints is pri-
marily a set of logical predicates in conjunction, the
constraint-oriented style can be used in an object-
oriented way, by giving each object and each sub-
object its individual constraint. If the approach
is combined with action splitting, it becomes a

powerful method for specification of non-standard
forms of process composition.

To illustrate the power of the object-oriented
style, and thereby the usefulness of action split-
ting, we in the following show how one can use
E-LOTOS with enhanced renaming for encoding
a small Basic-LOTOS-like language in which the
operators of choice, parallel composition and dis-
abling are enhanced with action priorities. The de-
scription is based on ideas from [8] and [9]. Along
with the example, we provide a detailed discussion
on how to indirectly specify new forms of process
composition, therefore the reader is invited to give
the example a careful consideration.

4.2. An instructive exzample

4.2.1. Problem statement
We begin with a small Basic-LOTOS-like sub-
language of E-LOTOS. Below we present its con-
structs and their untimed dynamic semantics:
— “block” denotes a time block, i.e. a process with
no steps at all.
— “stop” denotes an idling process.
— “null” denotes successful termination:
null % block
— “@” denotes an individual untimed action on a
gate G-
G S null
In the following, let 1 denote i or a G, while p
denotes 6 or a p.
— “Byp; B3” denotes sequential composition of pro-
cesses By and Bs:
B 4 B!

By:B, % B|:B,

B, % B|,B, % B]
Bi; By & null; B

B> B, B, % B)

Bi; Bs 2 block
— “Bi[]B2”, where neither By nor B has J as an
initial event, denotes a process behaving as B,
or as By, where the choice is made upon the first
event:

B, % B, By & B}
Bi[|B. & B, Bi[|B: % B
— “B1|[[]|B2”, where T is a set of gates, denotes

processes B; and B, running in parallel and syn-
chronized on gates in I and on §:

B, % B
B.|[L11B: & B)[T|B;

B, 4 Bl
BB 5 BT By

[n g T

I=

¢ 1

ut I pt I
Bl — BlaBZ — B2

T [t e (TU{d})]

B,|[I|B; += Bi{|[T]|B;

— “Bi[> By”, where By does not have ¢ as an ini-

tial event, denotes a process which basically ex-

ecutes B, but as long as B; does not success-

fully terminate, might start executing Bs instead
(disabling):

B 5B B > B,
Bi[>Bs % B![>B; Bi[>B; - null
B, & B}
B[>By % B}

We would like to enhance the operators “[]”,
“|[L])” and “[>” with action priorities and then con-
ceive a compositional transformation which would
take a process specified in the enhanced language
and encode its behaviour in E-LOTOS. The trans-
formation will implement every process B by a
constraint C[B], hence the language being imple-
mented must satisfy the following restrictions:

— There must be no B leading to a time block, for
C[B] is supposed to represent a predicate, i.e. a
timeless entity.

— No B may ever be deleted, for the behaviour of a
system is supposed to be represented by a static
set of constraints C[B].

— Every event must be synchronizable, so that con-
junction of constraints can be expressed as syn-
chronization of processes C[B].

— Every event must be renamable, so that it can
be adapted to the current context.

— If a B is a composition of a By and a B, it
must have no events besides those of B, and Bs,
for otherwise composition of C[B;] and C[Bz]
would have to be more complicated than ordi-
nary parallel composition.

Obviously, the adopted language must be
amended in several ways:

— “block” must not be a part of the language.

— J is an event which leads to a time block and is
not renamable. Therefore we replace it with an
infinite series of actions with a reserved name
A. Hence we will have ordinary gates O and a
special gate A.

— The decision of a “By[> B2” to successfully ter-
minate because B; has become ready for a ¢ is
represented by an internal action. The action is
unsynchronizable and not an action of By or Bs.
In E-LOTOS, it prevents time non-determinism
which might occur when the § is trapped. If we
replace d by A, the i no longer introduces a trap-
pable event, so it may be omitted.

— In the definitions of choice and disabling, there
are cases where By deletes Bs, or vice versa. In-
stead of being deleted, processes should rather
be forced into idling.

A language implementing all the above sug-
gestions would comprise the following constructs,
where L denotes A or an O, and) denotes a set
of O:

— idling “stop”

— successful termination:
null 3 null

an individual untimed action on a gate O:

0 & null
— sequential composition:
O ! A ! L !
Bl_>Bl Bl—)Bl,B2—)BQ
BBy S Bl;B, BBy 5 Bl B,
— choice:
L 12 L !
Bl — Bl BQ — 32

BBy % Bi[lstop Bi[|B; & stop[|B}
— parallel composition:

B 3B
5 [0 ¢ Q]
Bi|[Q]|B: = B1][Q]| B2
O
B2 = B
5[0 ¢
Bi1|[Q]| By = B1][Q]| By,
B, % BB, 5 B
[Le(Qu{a})]

B1|[9]|B: % BY|[)|BY

— disabling:
B S B, B 3B,
Bi[>B: 3 B|[>B; Bi[>B> 3 B][>stop
B, 5 B

By[> By % stop[> B}

In the above language, A may be in a deci-
sive position, just as § may be in LOTOS, while
E-LOTOS is in this respect not compatible with
LOTOS. On the other hand, the language inher-
its from E-LOTOS its nice sequential composition
operator, which is more natural than the LOTOS
operator of enabling.

Now we are ready to introduce action priorities.
We enhance every operator “[]”, “[[Q]|” or “[>”
with its own priority function II, i.e. into a “[II]”,
“[QII]})” or “[II>”, respectively.

Such an operator combines a By and a By into
a B. Let A denote the initial actions L of By, As
such actions of By, and A the gates on which B,
and Bj are synchronized. A equals (2 U {A}) for
an “[[Q]|”, and is empty for “[]” and “[>”.

Function II takes Ay, As> and A, and computes a
triplet (First(B), Second(B), Both(B)) meaning
that an L is a legal initial step of B provided that
— it is in First(B) and executed individually by

By, or
— it is in Second(B) and executed individually by

Bz, or
— it is in Both(B) and executed by By and B in

co-operation.

To facilitate implementation of a wide range of
different priority schemes, we introduce for II only
the following requirements:

— First(B) C (A1\A)

— Second(B) C (A2\A)

- BOth(B) g (A1 N A2 N A)

— (Fiirst(B) U Second(B) U Both(B)) may be
empty only if ((A;1\A) U (A2\A) U (A1 NA2NA))
is empty, because from a non-empty set of the
potentially possible initial steps, II must select
at least one.

The enhanced semantics of choice, parallel com-
position and disabling is the following:

— choice (B = B1[II]By):

B, 5 B,
B[] B, % B![l]stop
B, % B,
B, [l]By & stoplll] B,
— parallel composition (B = B |[[Q|II]| Bs):
B, % B,
By B; S By ||| B,

[L € First(B)]

[L € Second(B)]

[O € First(B)]

B> 3 B,
B[] By 3 B, |[Q|11]| B,
B, % BBy, % B]
B[] B, 5 By [[Q|11]| B,
— disabling (B = B4 [II > Bs):

B S B,
B[lI>B, S B> B,

B, 3B
Bi[II> By 3 B[>stop

B, % B,
By[II1> B, % stop[ll> B}

[O € Second(B)]

[L € Both(B)]

[O € First(B)]

[A € First(B)]

[L € Second(B)]

4.2.2. Implementation semantics
Pure object-oriented specification style requires

that a C[B] specifies not only the actions of B,

but also how B reacts on actions in which it does

not participate.
Actions of a B are first of all its ordinary actions.

A A it executes is also its own action (it indicates

its successful termination), but also a reaction on

an external action guarded by B (issuing of per-
mission for such an action). Besides, C[[B] might
have to comprise auxiliary actions modelling var-
ious other kinds of reactions of B on external ac-
tions.

In our case, a C[B] needs two kinds of auxiliary
actions:

— In every state, there must be an action reflecting
execution of an external action with no influence
on B, i.e. not changing its state. We define that
such an action occurs on a special gate N, for it
models non-action.

— In every state, there must be an action reflecting
deletion of B upon an external action, i.e. trans-
forming B into an inactive process. We define
that such an action occurs on a special gate D.
Hence in the following, G denotes N, D or an

L. If a C[B] is not further combined, its auxil-

iary actions must be suppressed by an additional

constraint: “C[B]|[V, D]|stop” executes only the

non-auxiliary actions of B.

To become encodable in E-LOTOS with en-
hanced renaming, the semantics of processes C[B]
needs yet another extension. Every action of a
C[B] must carry, suitably encoded, sufficient in-
formation on the current state of B, i.e. on its
past events and its possible future behaviours.
In our case, the parameter must list identifiers
I;, of all gates L on which the process is in the
particular state ready to execute an action. The
parameter will be needed for specification of ac-
tion priorities. If a C[B] is not further combined,
the parameter of its actions must be removed by
a renaming operator. Let all I be of a type “id”,
while type “ids” denotes a set of identifiers I,. In
our examples, every I will be simply G.

Let A denote N or D. Hence the desired seman-
tics of C[stop] is

Cstop] 44 C[stop]

The desired semantics of C[null] is

Cnull] *3Y o[nu]

C[null] { 41 ¢ nuny

C[null] {’A} C[stop]

The desired semantics of a C[O] is

C[[O]] O} C[null]

OWH“”cwwﬂ

If x and y list the identifiers of the initial steps
of a By and a Bs, respectively, let Nezt(z,y) list
the identifiers of the initial steps of “By; By”. The
desired transitions of a C[Bi; Bz] are hence:

— C[B1] executes an O in By, C[Bz] executes an
N indicating that the O has no effect on Bs:

O(x ' N
C1B11 % CB1), C1B:) *% C[By]
O1By: B2] VN 018 B
— C[Bz] executes an L in By, C[B;] supports that

by executing A in Bj:
Az L
c[.] 29 c[B], 0[B:] “Y c[BY]

C[By; Bo] "N o8 By
— For an action in the environment of “By; By”,
C[B1] and C[B:] indicate, by co-operative ex-
ecution of an N, that it has no effect on By and
B», or, by co-operative execution of a D, that it
disables further execution of 31 and Bs:
o] ™S cBil cBa] Y Bl

C[By; B2] " 1By By
Let Newxtr(z,y,z) denote the same function
as II, except that wherever II works with an L,
Nexty(z,y,z) works with I,. The desired transi-
tions of a C[B;[lI]B;] are hence:
— C[Bi] executes an L in By, C[Bz] executes a D
indicating that B is consequently disabled:

C[B:] %8 c1B], C[B:] 2% ¢[By]

I, 3" ClB By
where (V1, V2, {}) is Nexztn(z,y,{}) and I isin
Vi.
— C[Bs] executes an L in By, C[B;] executes a D
indicating that B is consequently disabled:
Ly
C[B:] 2 CIBi],C1B:] *Y C1B3]

L(ViUVa)
ClBimB:] 23 1B B)]
where (V1, V3, {}) is Neztn(z,y,{}) and I isin
Vs.

— For an action in the environment of “B; [II] By,
C[B1] and C[Bs] indicate, by co-operative ex-
ecution of an N, that it has no effect on B; and
Bs, or, by co-operative execution of a D, that it
disables further execution of 31 and Bs:

o] ™S cBil cB] Y Byl

SIS R e EAIEA

where (V1,V2,{}) is Nextn(z,y,{})-

Let Sync(2) denote {I.|(L € (QU{A}))}. The
desired transitions of a C[B;|[Q|II]|B;] are hence:
— C[Bi1] executes an O in B; outside 2, C[Bz]

executes an IV indicating that the O has no effect

on Bz
c[B.] 2% o1By],C1B:] *¥ C[By]

V1UV2UV3)
ClBQII]B,] — — " C[B[[Q[I]| B]
where (V1,V2,V3) is Nextr(x,y, Sync(Q)) and

Ipisin V;.

C[Bz2] executes an O in By outside Q, C[Bi]
executes an N indicating that the O has no effect
on Bl

c1B:1 2 o8], ¢[B:] Y c[By]

CIB B, “ =57 C1B; /1) B5]
where (V1,V2,V3) is Nextr(z,y, Sync(Q)) and
I is in Va.

C[B1] and C[Bs] co-operatively execute an L
in (QU{A}),i.e.an L in By and an L in By:
CIBi1 =5 CIBi], CIB.] “Y C[B3]

clmem)|] “ 257 ey o)) By

where (V1,V2,V3) is Nextn(x,y, Sync(Q)) and
Ip is in V;.

For an action in the environment of “B;|[Q/II]|
By”, C[B4] and C[B:] indicate, by co-operative
execution of an N, that it has no effect on B,
and Bs, or, by co-operative execution of a D,
that it disables further execution of B and Bs:

Az ' A
CIB.] ™ CBi].C[B:] 2% C[B)]
V1UV2UV3
ClB1[[2[IT]| Ba] " oB;|0[m)|B]
where (Vi, Va2, V3) is Nextn(z,y, Sync(2)).
The desired transitions of a C[B;[Il > Bs] are:

C[B1] executes an O in By, C[Bs] executes an
N indicating that the O has no eﬂect on By:

] 2% o], CB:] *% o5y
C[B.[11> By] “8 o[B! 11> BL]
where (V1, V2, {}) is Nexztn(z,y,{}) and Io is in

1-
C[B1] executes a A in By, C[Bz] executes a D
indicating that B- is consequently disabled:

c1B:]1 2 c[B], 18,1 2Y c[By]

OB > B,] “28"Y o[B! 1> BL]
where (V1, V3, {}) is Nextn(z,y,{}) and I isin
.
C[B2] executes an L in By, C[B1] executes a D
indicating that B is consequently disabled:
CIB.] 2% C1Bi], C1B:] Y C[B)]

C[B.[II> Bo] "9 o[B! 1> BY]
where (V1, V5, {}) is Nexztn(x,y,{}) and I, is in
Vs.

— For an action in the environment of “Bj[II >
By”, C[By] and C[Bs] indicate, by co-operative
execution of an N, that it has no effect on B,
and Bs, or, by co-operative execution of a D,
that it disables further execution of B; and Bs:

Il ™% cIBi],C1B:] 2 C[By]

CIB[I> B.] “253" o[B! (1> B)]

where (V1,V2,{}) is Nextn(z,y,{})-

4.2.3. Encoding in E-LOTOS with enhanced
renaming
We begin by observing that functions Nezt(z, y)
and Nextn(z,y,z) can be easily encoded in E-
LOTOS.
An E-LOTOS encoding of C[stop] is
“loop N{}[]D!{} endloop”.
Assuming that A denotes a regular E-LOTOS
gate name, an encoding for C[null] would be
“loop A{IA}]NY{Ia} endloop
(> (D!{Is}; Clstop]))’.
An encoding for C[0] is
“(loop N{Ip} endloop
> (0{Io}; Clnull][(DH 1o }: Clstop]))).
Encodings for C[B1;B:], C[Bi[lI]B:],

C[B1|[YI0]|Bz] and C[Bi[Il > B,] are given in

Fig. 1, 3, 5 and 7, respectively, where G(B) de-

notes the visible gates of a B, and Z(B) the iden-

tifiers I, of L in G(B). Every such C[By * B3]

(in prefix notation C[%(By,Bs)]) is structured

according to the following strategy for encoding a

C[*(By,...,B,)] (see the examples in Fig. 2,4, 6

and 8):

— For all B;: Every action G;(x;) of C[B;] is
split into all such G(Ig,,x1,-..,1q,,x,) that
C[*(Bi,...,By)] could, according to the se-
mantics of “4”, have an action G(x) resulting
from co-operative execution of G (1) in C[B1],
G2(x2) in C[Bs],. ..and Gp(zy) in C[B,]. For
every G;(x;), one also specifies a dummy new
name G;(i) (not intended for execution), to se-
cure that there is at least one new name per
action, for otherwise it would be executable in
its original form. The process obtained from
C[B;] by the described action renamings is a
Ci[[*(Bl, - ,Bn)]]

— All the constructed processes C;[*(B1, ..., By)]

are put in parallel composition with to-
tal synchronization. Every action of the
composite process C'[*(Bi,...,B,)] is a
G(Ilg,,x1,...,1q,,xy) resulting from a G(Ig,,
L1y--- ,IGn,.Tn) in Cll[*(Bla ey Bn)]], a G(IGU
Z1,-., g, ,xn) in Co#(By,...,By)],.-..and a
G(IG17‘Z’17) IGn7$n) in Cnl[*(Bb RS Bn)]]:
ie. from a Gi(z1) in C[Bi], a Gz(zz2) in
C[Bz2];. ..and a Gy (zy) in C[B,], as required.
Any action G;(¢) of a C;[*(By, ..., By)] is non-
executable within the context, as intended.

— Every action G(Ig,, z1,. .., 1q, , %) of C'[*(By,
..., By)] is renamed into the G(x) which it de-
notes in Cx(By,...,B,)].

Such encoding directly reflects the dynamic seman-

tics of C*(By,. .., Bp)]-

4.3. Dealing with data and time

In the language we implemented in Section 4.2,
all actions were untimed and carried no data. In
this section, we briefly discuss how to overcome the
restrictions.

Data handling can be introduced as follows:

— When designing a language which is to be en-
coded in E-LOTOS, let processes B maintain
and update data variables and let actions L carry
data, as desired.

— When conceiving the implementation semantics,
include, as convenient, in the action parameters
representing the current state of a process B in-
formation on the data stored by B or potentially
carried by its future actions. In such a way, it will
be possible to use the data in predicates defining
which are the actions that synchronize when the
processes C[B] to which they belong are com-
bined.

As an example, suppose that we are implement-
ing a “By; By” specified as “O1%z; O27yly < z]”.
Obviously, must be carried by A actions of By,
and the legal combinations of a A in C[B;] and an
O, in C[B;] are those where the y carried by O,
is smaller than the x carried by A.

Timed actions can be introduced as follows:

— When designing a language which is to be en-
coded in E-LOTOS, design it as an untimed lan-
guage, but let every action L carry a parameter

C[Bj1; Bz] := rename forall G € G(C'[By; B2]) : action G(id, 7« : ids, id, 7y : ids) is G!Next(x,y) endfor
in C'[B1; Bz2] endren
C'[By; Bs] = C1[Bu1; B2]||C2[B1; B2]
C1[Bz1; Bz] := rename forall O € G(C[B1]) : action O(?z :ids) is O(!Ip, !z, Iy, 7y : ids)[issubset(y, Z(C[B-]))] endfor
if A € G(C[B1]) then forall L € G(C[B2]) : action A(?x :ids) is L(1a,'z,! I,y : ids)
[issubset(y, Z(C[B2]))) and isin(/r,,y)] endfor endthen
forall A € {N, D} : action A(?x :ids) is A(!14,!x,!T4,?y : ids)[issubset(y, Z(C[Bz]))] endfor
forall G € G(C[B1]) : action G(ids) is G'1 endfor
in C[B:] endren
Cs3[B1; Bz] := rename forall L € G(C[Bz]) : action L(?y : ids) is O(!a, %z :ids, I, 'y)
[issubset(z, Z(C[B1])) and isin(Ia,x)] endfor
forall O € G(C[B1]) : action N(?y :ids) is O('Ip, %z :ids, ! In,y)
[issubset(z, Z(C[B1])) and isin(Ip,x)] endfor
forall A € {N,D} : action A(?y :ids) is A(!1a, % : ids,!I 4, 'y)[issubset(z, Z(C[B1]))] endfor
forall G € G(C[Bz]) : action G(ids) is G'2 endfor
in C[B2] endren

Fig. 1. Encoding of C[B1; B2] in E-LOTOS with enhanced renaming.

Bl CI]:B1:H Cl[[B1;Bz]]
a N({a}) NN, tap.N...).N(1) D(D, {a}.D....).D(1)
I NG} e ta) N NN, NN
N({A}), ’ NN, {A}N,...),N(1), 215 el LD,
Alin) D(1}) YRR TR D(D.{}.D,..).D(1)
B, ClB,1 GlB;:5,1
a N({a}) a({a}), a(a,{a},N,{a}).a(a,{a,0},N,{a}), a(A,{AY,a,{a))ad, fa,A)a,{a)),
' N({), XPah NON....N, {a}).N@) a(2).D(D.....D,{a}).D(2)
D a(a, {a}.N, {}).a(a,{a, A} N, {}),
N(N....,N,{}),N(2),D(D....,.D,{}),D(2)
BW;BZ CIIBlng]] C][[Blsz]]Ilcz[[Bsz]]
N({a}) N(a,{a},a,{a})
ai “aiaD)| D) a(a,{a},N, DID. (2} fa)
) N(tahAa({ap), ZHND, NN, {23 N a3 I NN,
D({a}) ' D({}) CNEREY D(D, {}.D,{})
NOV N) () AP)
Fig. 2. Example implementation of sequential composition.
supposingly representing the absolute execution An adequate clock will allow O (x) only at time x,
time of L, and restrict its value as desired. and Oy(y) only at time y.

— When implementing a specified process B, in-
troduce an additional constraint representing
a global clock. The clock process will synchro-
nize with every L in C[B] and take care that
its execution-time parameter equals the current
time.

As an example, take the process “Op; 0,@!37,
executing Os 3 time units after O,. Introducing
absolute-execution-time parameters, we rewrite
the process into

“O17x : time; 037y : timely = x + 3]7.

5. Discussion and conclusions

Among the LOTOS (or E-LOTOS) specifica-
tion styles [11], the constraint-oriented style yields
specifications which are the most difficult to imple-
ment in an efficient way. However, when one wants
to specify a really complicated behaviour, the style
is usually the best choice, for it facilitates abstract
and declarative specification.

10

C[B1[11]B2] := rename

forall G € G(C'[B1[II]B2]) : action G(id, 7z : ids,id, 7y : ids) is G?z : ids
[var Vi :ids, Vs :ids in (?V1, ?Va,any : ids) := Nextn(x,y, {}); # = union(Vi, Vo) endvar] endfor

in C'[B:[1I]Bz2] endren
C'[B1[1]B2] = C1[B1[1] Be]||C2[B1[11] B2]
C1[B1[I1] B2] := rename

forall L € G(C[B1]) : action L(?x :ids) is L(!, s, Ip,?y : ids)[issubset(y, Z(C[B2])) and
var Vi :ids in (?Vi,any : ids,any : ids) := Nextn(z,y,{});isin(Ir, V1) endvar] endfor
forall L € G(C[Bz]) : action D(?x :ids) is L(M p,!x,! I,y : ids)[issubset(y, Z(C[Bz])) and
var V5 :ids in (any : ids, ?V2,any : ids) := Nextn(z,y,{}); isin({r, V2) endvar] endfor
forall A € {N, D} : action A(?x :ids) is A(!14,!x,!T4,?y : ids)[issubset(y, Z(C[Bz2]))] endfor
forall G € G(C[B1]) : action G(ids) is G'1 endfor

in C[B1] endren
Co[B1[II] B2] := rename

forall L € G(C[Bz]) : action L(?y :ids) is L({p,?z : ids, !, ly)[issubset(z, Z(C[B1])) and
var V5 :ids in (any : ids, ?V2,any : ids) := Nextn(z,y,{}); isin({r, V2) endvar] endfor
forall L € G(C[B1]) : action D(?y :ids) is L(!Iy,?z : ids, Ip, 'y)[issubset(z,Z(C[B1])) and
var Vi :ids in (?V1,any : ids,any : ids) := Neztn(x,y, {});isin({1, V1) endvar] endfor
forall A € {N,D} :action A(?y :ids) is A(!1a, % : ids,!I 4, 'y)[issubset(z,Z(C[B:]))] endfor
forall G € G(C[Bz]) : action G(ids) is G'2 endfor

in C[B2] endren

Fig. 3. Encoding of C[B1[II]B2] in E-LOTOS with enhanced renaming.

N(N,{a},N,...),N(1)

NN, {}.N,..),N(1),
D(D,{}.D....),.D(1)

N(N,...,N,{b}),N(2)

N(N,{a}.N,{b})

ClB/[.1B]
a(a, {a},D, {}).a(a, {a},D, {b}).a(1),
D(D, {a}.D....),.D(1)

GlB[..18.]

b(D, {}.b,{b}).b(2),
a(a,{a},D,{b}),D(D.....D,{b}).D(2)

).D(D.....D{}),D(2)

C\LB\[..1B,1IIGB[...1B,]

a(a.{a}.D. {b}).
NN,{1N, (), D(D,{a},D,{b})
D(D,{}.D,{})

B, ClB1
a, NG A aa)),
N({D), ({a})
D({})
B, CIB.1
b, N A biib),
N({1, PP
DI NON,..N,(IN(),
! a(a7{a},D,{,
BJ[..1, CIB,[..18.]
al N(tahC Aa(ta}),
N({}), ({a})
D({})
Fig. 4.

In the paper, we sketched a method for
constraint-oriented specification of new process-
composition operators. It consists of two steps.
In the first step, one designs a process-algebraic
specification language best meeting one’s spe-
cific needs. If the language introduces only events
which are fully controllable and freely renamable
(for every event, one can at least pretend that it
is), the dynamic semantics of the language can
then be mechanically rewritten into a form which

11

Example implementation of choice, where @ has a higher priority than b.

allows mechanic translation of process specifica-
tions into E-LOTOS. If supported by a tool, the
method would help those users of E-LOTOS (or
its enhanced successors) for whom the constraint-
oriented style is too abstract, but would still want
to specify non-standard forms of process composi-
tion.

Applying the above method, we observed that
it strongly builds upon action splitting. In E-
LOTOS, an action can be split only with respect

C[B1][Q11]| B2] := rename forall G € G(C'[B1|[QII]| B2]) : action G(id,?z : ids,id, 7y : ids) is G7z : ids
[var Vi :ids, V3 :ids, V3 @ ids in (?V7,?Vh, ?V3) := Next(z,y, Sync(Q));
z = union(union(V1, 2), V3) endvar] endfor
in C'[B1]|[Q/11]| B2] endren
C'[B1[9II]|Ba] := C1 [B1][/1)|Ba] | Ca[By (211 Ba]
C1[B1|[Q|1I]| B2] := rename
forall L € ((QU {A}) N G(C[B1]) N G(C[B2])) : action L(?x : ids) is L(!Ig,'z,! Iy, 7y : ids)
[issubset(y, Z(C[B2])) and
var V3 :ids in (any : ids,any : ids, ?V3) := Nextn(z,y, Sync(?));isin(I, V3) endvar] endfor
forall O € (G(C[B1])\f) : action O(?z : ids) is O(!1p, !z, In, 7y : ids)[issubset(y, Z(C[Bz2])) and
var Vi :ids in (?V1,any : ids,any : ids) := Nextn(z,y, Sync(Q));isin(Ip, V1) endvar] endfor
forall O € (G(C[B2])\) : action N(?z :ids) is O(!n, !z, T, 7y : ids)[issubset(y, Z(C[Bz])) and
var V3 :ids in (any : ids, ?Vs, any : ids) := Nextn(z,y, Sync(Q));isin(Ip, V2) endvar] endfor
forall A € {N,D} : action A(?x :ids) is A('14,!z,!Ia,7y : ids)[issubset(y, Z(C[Bz2]))] endfor
forall G € G(C[B1]) : action G(ids) is G!1 endfor
in C[B1] endren
C2[B1|[Q11]| B2] := rename
forall L € (QU{A}) NG(C[B:1]) N G(C[Bz])) : action L(?y :ids) is L(!Iy,?z : ids, Iy, !y)
[issubset(z, Z(C[B1])) and
var V3 :ids in (any : ids,any :ids, ?V3) := Next(z,y, Sync(Q));isin(Ir, V3) endvar] endfor
forall O € (G(C[B2])\Q) : action O(?y : ids) is O(y, ?x : ids, o, 'y)[issubset(z, Z(C[B1])) and
var V5 :ids in (any :ids,?Vs,any : ids) := Next(z,y, Sync(?));isin(Ip, V2) endvar] endfor
forall O € (G(C[B1])\Q) : action N(?y :ids) is O(p, 7z : ids, Iy, 'y)[issubset(z, Z(C[B1])) and
var Vi :ids in (?Vi,any : ids,any : ids) := Next(z,y, Sync(?));isin(Ip, V1) endvar] endfor
forall A € {N,D} : action A(?y :ids) is A(!1, % :ids, 14, !y)[issubset(z, Z(C[B1]))] endfor
forall G € G(C[Bz]) : action G(ids) is G!2 endfor
in C[Bz] endren

Fig. 5. Encoding of C[B1|[Q|II]|Bz2] in E-LOTOS with enhanced renaming.

B, clB] C\IB,[[I..11B,]

a N({a}) D({a}) N(N, {a},N,...),N(1) D(D,{a},D,...),D(1)
a({a}) BANP SN a(a,{a},N,{}).a(a,{a},N,{b}),a(1) SOTATDS E%\],{{}}LN{’B}))’N(I),
N(iah.(PG i, {83.D502),(BN, {1.b, {b}),
Alla)) OD({}) ;((T\II\]”{{AA}}’EQE})?’AT\I((S))’ D(1) D(D,{},D,...),D(1)

B, C[B,1 GlB[]. 1181

b a(a,{a}.N,{b}),a(a, {a,a},N,{b}),

v MO AN, NN (BHNG) bON,{1,0,{6}) 6N, {4}, b})b(2)

N({}), D(D....,D,{b}),D(2)

D({}) a(a,{a},N,{}),a(a,{a,A},N,{}),N(Z)
N(N....,N,{}).D(D.....D,{}),D(2)

By[[l---118, CLB|[[--1IB.1 GBIl 1B GIB,[[]...11B,]

NN, {a},N, (b} D(D. {2} .D,{b})

a(a,{a},N, {b])
N(N{a LN, (b} 3 NN, (1N,),
Narn ()

Fig. 6. Example implementation of parallel composition, where a has a higher priority than b.

to a parameter introduced specifically for the pur- the new renaming operator also has a more natural
pose. Having found that inconvenient, we decided and non-restrictive semantics.

to propose a generalization of the E-LOTOS re- We conclude by summarizing that the proposed
naming operator. Besides being more powerful, generalization would help in two ways:

12

C[B1[II> By] := rename forall G € G(C'[B1[II> Bz]) : action G(id, 7z : ids, id, ?y : ids) is G?z : ids
[var Vi :ids, V2 :ids in (?Vy,?Ve,any : ids) := Next(z,y, {}); 2 = union(Vi, V2) endvar]
endfor
in C'[B1[II > Bz] endren
C,[Bl [H> B2]] = 01[31 [H> B2ﬂ||C2|IBl [H>B2]]
C1[B1[II> B2] := rename
forall O € G(C[B1]) : action O(?z : ids) is O(!Ip, 'z, Iy, ?y : ids)[issubset(y, Z(C[Bz])) and
var Vi :ids in (?Vi,any : ids,any : ids) := Nextn(z,y, {});isin(Io, V1) endvar| endfor
if A € G(C[B1]) then action A(?x :ids) is A(1a, 'z, p,?y : ids)[issubset(y, Z(C[B2])) and
var Vi :ids in (?Vi,any : ids,any : ids) := Next(z,y, {});isin(Ia, V1) endvar] endif
forall L € G(C[Bz]) : action D(?z :ids) is L({p,x,! I, 7y : ids)[issubset(y, G(C[B2])) and
var Vs :ids in (any :ids, ?Va,any : ids) := Nextr(z,y, {});isin(Ir, V2) endvar] endfor
forall A € {N, D} : action A(?x :ids) is A(!14,!x,!I4,?y : ids)[issubset(y, Z(C[B2]))] endfor
forall G € G(C[By]) : action G(ids) is G'1 endfor
in C[B1] endren
Co[B1[II> B2] := rename
forall L € G(C[Bz]) : action L(?y :ids) is L(!{p,?x : ids, !, ly)[issubset(z, Z(C[B1])) and
var Vs :ids in (any :ids, ?Va,any : ids) := Nextr(z,y, {});isin(Ir, V2) endvar] endfor
forall O € G(C[B1]) : action N(?y :ids) is O(!Ip, 7z : ids, Iy, 'y)[issubset(z, G(C[B1])) and
var Vi :ids in (?Vi,any : ids,any : ids) := Nextn(z,y, {});isin(Io, V1) endvar| endfor
action D(?y :ids) is A(!Ia,?x :ids, U p, ly)[issubset(z, G(C[B1])) and
var Vi :ids in (?Vi,any : ids,any : ids) := Nextr(z,y, {});isin(Ia, V1) endvar]
forall A € {N, D} : action A(?y :ids) is A(!14, % :ids,!I 4, y)[issubset(z, Z(C[B1]))] endfor
forall G € G(C[Bz]) : action G(ids) is G'2 endfor
in C[B3] endren

Fig. 7. Encoding of C[B;[II> Bz] in E-LOTOS with enhanced renaming.

ClB,1 C\[B,[..>B,]
N(N,{a},N,...),N(1)
a(a,{a},N,{}).a(a,{a},N,{b}),a(l)

D, {a}.D....),.D(1)
NN, {},N,..),N(1),

b(D,{A},b, {b}), b(D,{},b,{b}),
NOV AN, N(DLA(),
AAADY DDA, {A}D, b} D(D,{A},D,...),D(1)~"D(D,{},D....),D(1)
B, Cl5,1 GlB,[..>B]
K N({b} A b({b}), (@, {ah.N, {b}).a(a, (2,51 N, {b}), — b(D,{}.b,{b}.b(D{A}.b,{b}).b(2)
X N({), XU NEY....N {(bHNE) A(81.D, [b}).A(8,{2.A1.D, (b)),

a(a,{a}.N,{}).a(a,{a,A} N, {}),N(2) %D(D.....D,{b}),D(2)
N(N.....N,{}),D(D....,.D,{}),D(2),
A{AaLDAL, A {a,A},D.})

D({})

B\[..>B, C\LB\[..>BllIGlB,[..>B,]
a N(N, {a}.N,{b})
NN{ALN, {b}) 5 NN (LN (D),
A(A,{a},D,{b} DD, {},D,{})
NN {ALN, (), D(D,{4}.D,{})
a@.{a1.D.{})
Fig. 8. Example implementation of disabling, where a has a higher priority then b.

— It would make the renaming operator much more — The enhanced operator would simplify specifica-
easy to understand and convenient to use, sup- tion of non-standard forms of process composi-
porting further development of E-LOTOS into tion and thereby construction of compilers from
a “second-generation” formal description tech- custom-designed process-algebraic specification
nique [3]. languages to E-LOTOS.

13

References

[1] T. Bolognesi and E. Brinksma, Introduction to the ISO
specification language LOTOS, Computer Networks
and ISDN Systems 14 (1987) 25-59.

[2] H. Garavel, A wish list for the behaviour part of
E-LOTOS, Input document [LG5] to the ISO/IEC
JTC1/SC21/WGT7 Meeting on Enhancements to
LOTOS, Liege, December 1995.

[3] H. Garavel and M. Sighireanu, Towards a second
generation of formal description techniques - rationale
for the design of E-LOTOS, in: J.-F. Groote, B. Luttik,
and J. van Wamel (eds.), Proc. of the 3rd International
Workshop on Formal Methods for Industrial Critical
Systems FMICS’98, Amsterdam, The Netherlands,
May 1998, 187-230.

[4] C. A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall International, 1985.

[5] ISO, LOTOS - A Formal Description Technique Based
on the Temporal Ordering of Observational Behaviour,
ISO 8807, ISO — Information Processing Systems —
Open Systems Interconnection, 1989.

6] ISO/IEC, Enhancements to LOTOS (E-LOTOS),
ISO/IEC 15437, ISO — Information Technology, 2001.

[7] M. Kapus-Kolar, Specifying broadcast communication
in a sublanguage of E-LOTOS, in: B. Zajc and M.
Tkalcic (eds.), Proc. of the IEEE EUROCON’2003:
Computer as a Tool, Ljubljana, September 2003, vol.II,
pp- 2-6.

(8] M. Kapus-Kolar, Specifying action priorities in a
sublanguage of E-LOTOS, in: D. Begusi¢c, N. Rozi¢
(eds.), Proc. of the 11th International Conference on
Software, Telecommunications €& Computer Networks
SoftCOM’2003, Split, October 2003, pp. 247-251.

[9] M. Kapus-Kolar, Specifying late decisions in a subset
of E-LOTOS, submitted for publication, 2003.

[10] A. Verdejo, E-LOTOS: Tutorial and Semantics, M.S.
thesis, Universidad Complutense de Madrid, 1999.

[11] C. A. Vissers, G. Scollo, M. van Sinderen, and H.
Brinksma, Specification styles in distributed systems
design and verification, Theoretical Computer Science
89 (1991) 179-206.

Monika Kapus-Kolar received the B.S. degree in
electrical engineering from the University of Mari-
bor, Slovenia, in 1981, and the M.S. and Ph.D.
degrees in computer science from the University
of Ljubljana, Slovenia, in 1984 and 1989, respec-
tively. Since 1981 she has been with the Jozef Ste-
fan Institute, Ljubljana, where she is currently a
researcher at the Department of Digital Commu-

14

nications and Networks. Her current research in-
terests include formal specification techniques and
methods for development of distributed systems
and computer networks.

