
A generalization of the E-LOTOS renaming operator: a
onvenien
e

for spe
i�
ation of new forms of pro
ess
omposition

M. Kapus-Kolar

Jo�zef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia

Re
eived 2 De
ember 2003; revised 25 February 2004

Abstra
t

E-LOTOS is one of the standard languages for formal spe
i�
ation of real-time
on
urrent and rea
tive systems.

As it is pro
ess-algebrai
, its expressive power lies in its pro
ess-
omposition operators. Of
ourse, not all forms

of
omposition
an be dire
tly expressed in the language. In the most diÆ
ult
ases, one typi
ally resorts to

the
onstraint-oriented spe
i�
ation style. We demonstrate that a slight enhan
ement of the E-LOTOS renaming

operator would make the spe
i�
ation style even more powerful. As an example, we show how to spe
ify
hoi
e,

parallel
omposition and disabling enhan
ed with a
tion priorities.

Key words: Formal methods, E-LOTOS, Constraint-oriented spe
i�
ation, Event renaming, A
tion priorities

1. Introdu
tion

E-LOTOS [6,10℄, an enhan
ed su

essor of LO-

TOS [5,1℄, is one of the standard languages for for-

mal spe
i�
ation of real-time
on
urrent and rea
-

tive systems. An E-LOTOS spe
i�
ation
hara
-

terizes a pro
ess by its readiness to engage into var-

ious kinds of atomi
 instantaneous events, where

an event might be

{ a G(RN), i.e. an intera
tion of the pro
ess with

its environment, where G is the gate on whi
h it

o

urs and RN is the data re
ord it
arries,

{ an X(RN), i.e. a signal issued by the pro
ess,

{ an i, i.e. an internal pro
ess a
tion, or

Email address: monika.kapus-kolar�ijs.si (M.

Kapus-Kolar).

{ a Æ(RN), i.e. su

essful termination of the pro-

ess.

The usual dynami
 semanti
s of an E-LOTOS

pro
ess is that of interleaving events. A pro
ess

is
hara
terized by its labelled transition system

(LTS), where an individual transition represents

either an individual event or idling, i.e. passing of

time. For
onvenien
e, we will assume that time is

dis
rete, so that every time step is a \ti
k". Events

of type i, Æ(RN) and X(RN) are by de�nition ur-

gent, i.e.
annot have idling as an alternative.

To in
orporate a pro
ess into a parti
ular envi-

ronment, it is sometimes ne
essary to relabel its

LTS, i.e. to
hange aG(RN) into aG

0

(RN

0

), or an

X(RN) into anX

0

(RN

0

). That is fa
ilitated by the

E-LOTOS renaming operator. Unfortunately, the

urrent semanti
s of the operator is unne
essarily

rigid. In Se
tions 2 and 3, we propose a new se-

Preprint submitted to Computer Standards & Interfa
es 25 February 2004

manti
s whi
h makes the operator mu
h more easy

to understand and
onvenient to use. As demon-

strated in Se
tion 4, the enhan
ed operator is par-

ti
ularly helpful in
onstraint-oriented spe
i�
a-

tion of non-standard forms of pro
ess
omposition.

2. From gate renaming to a
tion renaming

Consider a pro
ess B

0

de�ned as

\rename gate G(!true : bool) is G

0

!1

in B endren",

where pro
ess B is de�ned as \G any : bool", i.e.

represents an intera
tion on gate G
arrying any

boolean value. As B exe
utes either G(true) or

G(false), one would expe
t that B

0

exe
utes either

G

0

(1) orG(false). Wrong! A

ording to the
urrent

E-LOTOS semanti
s, the renamingmakesG(false)

non-exe
utable, be
ause gate G is being renamed

(i.e. a
tions on the gate are being renamed), but

there is no name de�ned for G(false). In other

words, a proper spe
i�
ation of the intended be-

haviour would be

\rename gate G(!true : bool) is G

0

!1

gate G(!false : bool) is G!false

in B endren".

There are
ases where su
h
ompli
ation is most

in
onvenient. For example, when
orre
ting a

\rename gate G(!0 : nat) is G

0

!false

in G any : nat endren",

where \nat" denotes natural numbers, one has to

spe
ify non-renaming for every G(x) with (x > 0).

In any
ase, we observe that one naturally tends

see the E-LOTOS renaming operator as an a
tion-

renaming operator, and not as a gate-renaming op-

erator. That is most evident in
ases where gates

are split (as in the above examples) or merged (as,

for example, in

\rename gate G

1

is G gate G

2

is G

in B endren").

Gate splitting and gate merging are operations

whi
h are beyond gate renaming, but (assuming

that there is a name spe
i�ed for every a
tion on

the gates whi
h are being renamed) not beyond

a
tion renaming.

While a
tions are a primary
on
ept in E-

LOTOS, a gate is often given no interpretation

beyond being the �rst item in the tuple of values

representing a parti
ular a
tion. For not every

pro
ess spe
i�ed represents an ar
hite
tural
om-

ponent. Often it is just a part of su
h a
omponent,

or an abstra
tion of its behaviour, or even just

another
onstraint governing its behaviour.

For the above reasons, we propose that E-

LOTOS renaming is rather understood as a
tion

renaming, meaning that when there is no new

name spe
i�ed for a parti
ular a
tion, the a
tion

remains exe
utable in its original form.

The same poli
y should be taken for renaming

of signals: If there is no new name for a signal,

the signal remains as it is. For blo
king of a signal

is even worse than blo
king of an a
tion, be
ause

signals are in E-LOTOS by de�nition urgent.

For the present, however, it would be
onvenient

to have the new semanti
s just as an enhan
ement

to the existing E-LOTOS renaming operator. That

an be a
hieved by a slight synta
ti
 enhan
ement.

The operator
urrently
ombines statements of the

forms \gate G : : : is : : :" and \signal X : : : is : : :".

If su
h a statement is used for a G or an X , that

means that one wants for G or X the original re-

naming semanti
s. If the new renaming semanti
s

is desired for a G or an X , one should use di�er-

ent keywords, for example statements of the forms

\a
tion G : : : is : : :" and \sgn X : : : is : : :", as we

do in the rest of the paper.

3. From gate splitting to a
tion splitting

The generi

onstru
t for spe
ifying a visible a
-

tion in E-LOTOS is \GP

1

�P

2

[E℄". An a
tion sat-

is�es the spe
i�
ation provided that

{ it is on gate G,

{ the data it
arries mat
hes pattern P

1

,

{ its exe
ution timemeasured relatively to themo-

ment when it is logi
ally enabled mat
hes pat-

tern P

2

, and

{ its data and its exe
ution time satisfy predi
ate

E.

In a general
ase, a \GP

1

�P

2

[E℄" (e.g. a \G any :

bool") is satis�able by many di�erent G(RN) (in

the example, byG(true) orG(false)). Hen
e a
tion

splitting is not unknown in E-LOTOS.

2

On the other hand, it seems that there has been

an agreement that the E-LOTOS renaming opera-

tor must not introdu
e a
tion splitting (see for ex-

ample [2℄), although we have not been able to de-

te
t su
h a statement in [6℄. It must
ertainly not

introdu
e signal splitting, and that is not stated in

[6℄, either. For observe the pro
ess

\trap ex
eption X

1

is G

1

�!1 endexn

ex
eption X

2

is G

2

�!1 endexn

in rename signal X is X

1

signal X is X

2

in raise X endren endtrap",

stru
tured as follows:

{ The innermost pro
ess raises ex
eption X , i.e.

issues signal X and blo
ks the system.

{ The renaming operator splits signalX so that it

an be issued either as anX

1

or as anX

2

. Hen
e

the LTS of the resulting pro
ess has bran
hesX

1

and X

2

.

{ The ex
eption-trapping operator repla
es the

two ex
eption signals with their
orresponding

handlers \G

1

�!1" and \G

2

�!1". The LTS of

the resulting pro
ess has alternative bran
hes

\ti
k; G

1

; Æ" and \ti
k; G

2

; Æ", the behaviours

of the two handlers. Hen
e in the initial state

of the pro
ess, there are two ti
k transitions,

implying that the
hoi
e is resolved by the
ow

of time.

The pro
ess is illegal in E-LOTOS, for time non-

determinism is in E-LOTOS a taboo. In the ex-

ample, time non-determinism emerges be
ause of

the trapping operator, but its seed is in the signal

splitting.

For a
tions, trapping is not de�ned, hen
e their

splitting
an do no harm. Therefore we de�ne that

the new semanti
s for a
tion renaming allows a
-

tion splitting, be
ause in E-LOTOS with a
tion

splitting forbidden, language users have unne
es-

sary troubles:

{ Spe
ifying a
tion renaming, one must be
areful

not to de�nemore than one new name per a
tion.

{ For every a
tion, one must plan its \splittings"

in advan
e, to furnish it with auxiliary parame-

ters fa
ilitating the splittings. For example, if an

a
tionG is to experien
e a binary split, \G any :

bool" would be its adequate spe
i�
ation.

The generi
 syntax for gate renaming is

\gate G(IPL) is G

0

P", where P , i.e. the data

arried by the new gate, is a fun
tion of IPL, i.e.

of the data
arried by the old gate. For a
tion

renaming, we propose a slightly enhan
ed syntax,

namely \a
tion G(IPL) is G

0

P [E℄". The expres-

sion is a shorthand for the set of all su
h renamings

of a G(RN) into a G

0

(RN

0

) that

{ RN mat
hes IPL,

{ RN

0

mat
hes P , and

{ the pair (RN;RN

0

) satis�es E.

The predi
ateE, whose default value is true, has

a similar role as in the spe
i�
ation of an individual

a
tion. It
an help in two ways:

{ It fa
ilitates spe
i�
ation of whi
h a
tions on

gate G to rename. For example, an

\a
tion G(?V : int) is G

0

!true[V > 0℄"

on
isely spe
i�es renaming of all a
tions on gate

G
arrying a positive integer.

{ It fa
ilitates spe
i�
ation of the new names. For

example, an

\a
tion G(?V : nat)

is G?V

0

: nat[(V

0

mod V) = 0℄"

on
isely spe
i�es that a G(N) may be exe
uted

as any G(N �M).

The generi
 syntax for signal renaming is

\signal X(IPL) is X

0

E", where E, i.e. the data

arried by the new signal, is a fun
tion of IPL, i.e.

of the data
arried by the old signal. For the new

kind of signal renaming, we propose a slightly en-

han
ed syntax, namely \sgnX(IPL)[E

0

℄ isX

0

E".

The expression is a shorthand for the set of all su
h

renamings of an X(RN) into an X

0

(RN

0

) that

{ RN mat
hes IPL and satis�es predi
ateE

0

, and

{ RN

0

is the value of E
omputed on RN .

The predi
ate E

0

, whose default value is true,

fa
ilitates spe
i�
ation of whi
h X signals to re-

name. For example, a

\sgn X(?V : int)[V > 0℄ is X

0

(V + 1)"

on
isely spe
i�es renaming of all signals X
arry-

ing a positive integer.

The new renaming semanti
s de�nes that a

G

0

(RN

0

) is a new name for a G(RN) if there

is at least one \a
tion : : :" statement spe
ifying

that. Likewise, an X

0

(RN

0

) is a new name for an

X(RN) if there is at least one \sgn : : :" statement

spe
ifying that. The only restri
tion for
ombin-

ing renaming statements is that signal splitting is

forbidden.

Let us
ompare renaming restri
ted to \gate : : :"

and \signal : : :" statements, i.e. the old renaming

3

operator, with renaming restri
ted to \a
tion : : :"

and \sgn : : :" statements, i.e. the new renaming

operator. The new operator has several advan-

tages:

{ Most importantly, it spe
i�es nothing beyond

event renaming, while the old operator, if not

used with suÆ
ient
are, might make some

events unexpe
tedly non-exe
utable.

{ It gives a spe
i�er
omplete freedom on what

to rename and how to rename, as long as signal

splitting is not introdu
ed.

{ With the additional predi
ates, it fa
ilitates
on-

ise spe
i�
ation of large sets of renamings.

{ It fa
ilitates a
tion splitting, whi
h is, as demon-

strated in Se
tion 4, an extremely useful
on-

ept. With that feature, E-LOTOS would gain

an a
tion-splitting operator even more general

than the \multiple labelling" operator of CSP

[4℄.

We observe that the new operator is mu
h more

easy to understand and
onvenient to use than the

old one. The only sensible motivation for using the

old operator would be for blo
king of some events.

But visible a
tions of a pro
ess
an be blo
ked also

by other means, by syn
hronizing the pro
ess with

pro
esses a
ting as additional
onstraints. As for

signals, they should better never be blo
ked, as

they have been
on
eived as unblo
kable events.

4. A
tion splitting in spe
i�
ation of new

forms of pro
ess
omposition

4.1. Obje
t-oriented
onstraint-oriented

spe
i�
ation

A
tion splitting is a step towards polymorphism,

whi
h is an important
on
ept in obje
t-oriented

spe
i�
ation. An E-LOTOS pro
ess is an obje
t

hara
terized by its ability to intera
t with its en-

vironment. By renaming of a
tions and/or signals,

a pro
ess
an be adapted for proper operation in

an environment for whi
h it was not originally in-

tended. If it is a dynami
ally
hanging environ-

ment, a
tion renaming must provide adequate a
-

tion names for ea
h of the possible situations, i.e.

a
tion splitting might be ne
essary.

As an example, take a system of pro
esses
om-

muni
ating through syn
hronous broad
ast. In

su
h a system, ea
h
ommuni
ation event syn
hro-

nizes a message transmitter and all the pro
esses

urrently ready to re
eive the message. Hen
e

when a pro
ess exe
utes a transmission, it must

be ready to exe
ute it either on its own or in

o-operation with any group of the remaining pro-

esses. Sin
e in E-LOTOS, the degree of syn
hro-

nization of an a
tion with the pro
ess environment

dire
tly depends on its name, multiple degrees of

syn
hronization per a
tion
an be spe
i�ed only as

a
tion splitting. With this
on
ept, we have indeed

been able to model su
h systems in E-LOTOS [7℄.

Parallel
omposition of pro
esses
ommuni
at-

ing through syn
hronous broad
ast
an be ex-

pressed in E-LOTOS only indire
tly. Although

the expressive power of a pro
ess-algebrai
 spe
-

i�
ation language lies in its pro
ess-
omposition

operators, one
an hardly expe
t a language to

have operators for all forms of
omposition. For

even if it is from time to time systemati
ally en-

han
ed with new operators for newly identi�ed

pra
ti
ally interesting forms of
omposition, the

enhan
ements must not be too extensive, for oth-

erwise the language would be
ome too
omplex.

Hen
e a good spe
i�
ation language provides

not only a handy set of pro
ess-
omposition opera-

tors, but also means for easy spe
i�
ation of those

forms of
omposition whi
h
annot be expressed

dire
tly. Systemati
 spe
i�
ation of a new form of

pro
ess
omposition typi
ally bases on some spe-

i�
 spe
i�
ation style. E-LOTOS, like LOTOS,

supports many di�erent spe
i�
ation styles [11℄.

A
tion splitting is parti
ularly important in the

onstraint-oriented style, for this style extensively

uses the parallel
omposition operator, i.e. the op-

erator des
ribing inter
onne
tion of pro
esses.

In the
onstraint-oriented style, one spe
i�es the

legal behaviours of a system by a set of
onstraints,

in LOTOS or E-LOTOS modelled as
on
urrent

pro
esses syn
hronized on the a
tions they
olle
-

tively
ontrol. Although a set of
onstraints is pri-

marily a set of logi
al predi
ates in
onjun
tion, the

onstraint-oriented style
an be used in an obje
t-

oriented way, by giving ea
h obje
t and ea
h sub-

obje
t its individual
onstraint. If the approa
h

is
ombined with a
tion splitting, it be
omes a

4

powerful method for spe
i�
ation of non-standard

forms of pro
ess
omposition.

To illustrate the power of the obje
t-oriented

style, and thereby the usefulness of a
tion split-

ting, we in the following show how one
an use

E-LOTOS with enhan
ed renaming for en
oding

a small Basi
-LOTOS-like language in whi
h the

operators of
hoi
e, parallel
omposition and dis-

abling are enhan
ed with a
tion priorities. The de-

s
ription is based on ideas from [8℄ and [9℄. Along

with the example, we provide a detailed dis
ussion

on how to indire
tly spe
ify new forms of pro
ess

omposition, therefore the reader is invited to give

the example a
areful
onsideration.

4.2. An instru
tive example

4.2.1. Problem statement

We begin with a small Basi
-LOTOS-like sub-

language of E-LOTOS. Below we present its
on-

stru
ts and their untimed dynami
 semanti
s:

{ \blo
k" denotes a time blo
k, i.e. a pro
ess with

no steps at all.

{ \stop" denotes an idling pro
ess.

{ \null" denotes su

essful termination:

null

Æ

! blo
k

{ \G" denotes an individual untimed a
tion on a

gate G:

G

G

! null

In the following, let � denote i or a G, while �

+

denotes Æ or a �.

{ \B

1

;B

2

" denotes sequential
omposition of pro-

esses B

1

and B

2

:

B

1

�

! B

0

1

B

1

;B

2

�

! B

0

1

;B

2

B

1

Æ

! B

0

1

; B

2

�

! B

0

2

B

1

;B

2

�

! null;B

0

2

B

1

Æ

! B

0

1

; B

2

Æ

! B

0

2

B

1

;B

2

Æ

! blo
k

{ \B

1

[℄B

2

", where neither B

1

nor B

2

has Æ as an

initial event, denotes a pro
ess behaving as B

1

or as B

2

, where the
hoi
e is made upon the �rst

event:

B

1

�

! B

0

1

B

1

[℄B

2

�

! B

0

1

B

2

�

! B

0

2

B

1

[℄B

2

�

! B

0

2

{ \B

1

j[�℄jB

2

", where � is a set of gates, denotes

pro
essesB

1

andB

2

running in parallel and syn-

hronized on gates in � and on Æ:

B

1

�

! B

0

1

B

1

j[�℄jB

2

�

! B

0

1

j[�℄jB

2

[� 62 �℄

B

2

�

! B

0

2

B

1

j[�℄jB

2

�

! B

1

j[�℄jB

0

2

[� 62 �℄

B

1

�

+

�! B

0

1

; B

2

�

+

�! B

0

2

B

1

j[�℄jB

2

�

+

�! B

0

1

j[�℄jB

0

2

[�

+

2 (� [fÆg)℄

{ \B

1

[>B

2

", where B

2

does not have Æ as an ini-

tial event, denotes a pro
ess whi
h basi
ally ex-

e
utes B

1

, but as long as B

1

does not su

ess-

fully terminate, might start exe
utingB

2

instead

(disabling):

B

1

�

! B

0

1

B

1

[>B

2

�

! B

0

1

[>B

2

B

1

Æ

! B

0

1

B

1

[>B

2

i

! null

B

2

�

! B

0

2

B

1

[>B

2

�

! B

0

2

We would like to enhan
e the operators \[℄",

\j[�℄j" and \[>"with a
tion priorities and then
on-

eive a
ompositional transformation whi
h would

take a pro
ess spe
i�ed in the enhan
ed language

and en
ode its behaviour in E-LOTOS. The trans-

formation will implement every pro
ess B by a

onstraint C[[B℄℄, hen
e the language being imple-

mented must satisfy the following restri
tions:

{ There must be no B leading to a time blo
k, for

C[[B℄℄ is supposed to represent a predi
ate, i.e. a

timeless entity.

{ No B may ever be deleted, for the behaviour of a

system is supposed to be represented by a stati

set of
onstraints C[[B℄℄.

{ Every event must be syn
hronizable, so that
on-

jun
tion of
onstraints
an be expressed as syn-

hronization of pro
esses C[[B℄℄.

{ Every event must be renamable, so that it
an

be adapted to the
urrent
ontext.

{ If a B is a
omposition of a B

1

and a B

2

, it

must have no events besides those of B

1

and B

2

,

for otherwise
omposition of C[[B

1

℄℄ and C[[B

2

℄℄

would have to be more
ompli
ated than ordi-

nary parallel
omposition.

5

Obviously, the adopted language must be

amended in several ways:

{ \blo
k" must not be a part of the language.

{ Æ is an event whi
h leads to a time blo
k and is

not renamable. Therefore we repla
e it with an

in�nite series of a
tions with a reserved name

�. Hen
e we will have ordinary gates O and a

spe
ial gate �.

{ The de
ision of a \B

1

[>B

2

" to su

essfully ter-

minate be
ause B

1

has be
ome ready for a Æ is

represented by an internal a
tion. The a
tion is

unsyn
hronizable and not an a
tion of B

1

or B

2

.

In E-LOTOS, it prevents time non-determinism

whi
h might o

ur when the Æ is trapped. If we

repla
e Æ by �, the i no longer introdu
es a trap-

pable event, so it may be omitted.

{ In the de�nitions of
hoi
e and disabling, there

are
ases where B

1

deletes B

2

, or vi
e versa. In-

stead of being deleted, pro
esses should rather

be for
ed into idling.

A language implementing all the above sug-

gestions would
omprise the following
onstru
ts,

where L denotes � or an O, and
 denotes a set

of O:

{ idling \stop"

{ su

essful termination:

null

�

! null

{ an individual untimed a
tion on a gate O:

O

O

! null

{ sequential
omposition:

B

1

O

! B

0

1

B

1

;B

2

O

! B

0

1

;B

2

B

1

�

! B

0

1

; B

2

L

! B

0

2

B

1

;B

2

L

! B

0

1

;B

0

2

{
hoi
e:

B

1

L

! B

0

1

B

1

[℄B

2

L

! B

0

1

[℄stop

B

2

L

! B

0

2

B

1

[℄B

2

L

! stop[℄B

0

2

{ parallel
omposition:

B

1

O

! B

0

1

B

1

j[
℄jB

2

O

! B

0

1

j[
℄jB

2

[O 62
℄

B

2

O

! B

0

2

B

1

j[
℄jB

2

O

! B

1

j[
℄jB

0

2

[O 62
℄

B

1

L

! B

0

1

; B

2

L

! B

0

2

B

1

j[
℄jB

2

L

! B

0

1

j[
℄jB

0

2

[L 2 (
 [f�g)℄

{ disabling:

B

1

O

! B

0

1

B

1

[>B

2

O

! B

0

1

[>B

2

B

1

�

! B

0

1

B

1

[>B

2

�

! B

0

1

[>stop

B

2

L

! B

0

2

B

1

[>B

2

L

! stop[>B

0

2

In the above language, � may be in a de
i-

sive position, just as Æ may be in LOTOS, while

E-LOTOS is in this respe
t not
ompatible with

LOTOS. On the other hand, the language inher-

its from E-LOTOS its ni
e sequential
omposition

operator, whi
h is more natural than the LOTOS

operator of enabling.

Now we are ready to introdu
e a
tion priorities.

We enhan
e every operator \[℄", \j[
℄j" or \[>"

with its own priority fun
tion �, i.e. into a \[�℄",

\j[
j�℄j" or \[�>", respe
tively.

Su
h an operator
ombines a B

1

and a B

2

into

a B. Let �

1

denote the initial a
tions L of B

1

, �

2

su
h a
tions of B

2

, and � the gates on whi
h B

1

and B

2

are syn
hronized. � equals (
 [f�g) for

an \j[
℄j", and is empty for \[℄" and \[>".

Fun
tion � takes �

1

, �

2

and �, and
omputes a

triplet (First(B); Se
ond(B); Both(B)) meaning

that an L is a legal initial step of B provided that

{ it is in First(B) and exe
uted individually by

B

1

, or

{ it is in Se
ond(B) and exe
uted individually by

B

2

, or

{ it is in Both(B) and exe
uted by B

1

and B

2

in

o-operation.

To fa
ilitate implementation of a wide range of

di�erent priority s
hemes, we introdu
e for � only

the following requirements:

{ First(B) � (�

1

n�)

{ Se
ond(B) � (�

2

n�)

{ Both(B) � (�

1

\ �

2

\ �)

{ (First(B) [Se
ond(B) [Both(B)) may be

empty only if ((�

1

n�)[(�

2

n�)[(�

1

\�

2

\�))

is empty, be
ause from a non-empty set of the

potentially possible initial steps, � must sele
t

at least one.

The enhan
ed semanti
s of
hoi
e, parallel
om-

position and disabling is the following:

{
hoi
e (B = B

1

[�℄B

2

):

6

B

1

L

! B

0

1

B

1

[�℄B

2

L

! B

0

1

[�℄stop

[L 2 First(B)℄

B

2

L

! B

0

2

B

1

[�℄B

2

L

! stop[�℄B

0

2

[L 2 Se
ond(B)℄

{ parallel
omposition (B = B

1

j[
j�℄jB

2

):

B

1

O

! B

0

1

B

1

j[
j�℄jB

2

O

! B

0

1

j[
j�℄jB

2

[O 2 First(B)℄

B

2

O

! B

0

2

B

1

j[
j�℄jB

2

O

! B

1

j[
j�℄jB

0

2

[O 2 Se
ond(B)℄

B

1

L

! B

0

1

; B

2

L

! B

0

2

B

1

j[
j�℄jB

2

L

! B

0

1

j[
j�℄jB

0

2

[L 2 Both(B)℄

{ disabling (B = B

1

[�>B

2

):

B

1

O

! B

0

1

B

1

[�>B

2

O

! B

0

1

[�>B

2

[O 2 First(B)℄

B

1

�

! B

0

1

B

1

[�>B

2

�

! B

0

1

[�>stop

[� 2 First(B)℄

B

2

L

! B

0

2

B

1

[�>B

2

L

! stop[�>B

0

2

[L 2 Se
ond(B)℄

4.2.2. Implementation semanti
s

Pure obje
t-oriented spe
i�
ation style requires

that a C[[B℄℄ spe
i�es not only the a
tions of B,

but also how B rea
ts on a
tions in whi
h it does

not parti
ipate.

A
tions of aB are �rst of all its ordinary a
tions.

A � it exe
utes is also its own a
tion (it indi
ates

its su

essful termination), but also a rea
tion on

an external a
tion guarded by B (issuing of per-

mission for su
h an a
tion). Besides, C[[B℄℄ might

have to
omprise auxiliary a
tions modelling var-

ious other kinds of rea
tions of B on external a
-

tions.

In our
ase, a C[[B℄℄ needs two kinds of auxiliary

a
tions:

{ In every state, there must be an a
tion re
e
ting

exe
ution of an external a
tion with no in
uen
e

on B, i.e. not
hanging its state. We de�ne that

su
h an a
tion o

urs on a spe
ial gate N , for it

models non-a
tion.

{ In every state, there must be an a
tion re
e
ting

deletion of B upon an external a
tion, i.e. trans-

forming B into an ina
tive pro
ess. We de�ne

that su
h an a
tion o

urs on a spe
ial gate D.

Hen
e in the following, G denotes N , D or an

L. If a C[[B℄℄ is not further
ombined, its auxil-

iary a
tions must be suppressed by an additional

onstraint: \C[[B℄℄j[N;D℄jstop" exe
utes only the

non-auxiliary a
tions of B.

To be
ome en
odable in E-LOTOS with en-

han
ed renaming, the semanti
s of pro
esses C[[B℄℄

needs yet another extension. Every a
tion of a

C[[B℄℄ must
arry, suitably en
oded, suÆ
ient in-

formation on the
urrent state of B, i.e. on its

past events and its possible future behaviours.

In our
ase, the parameter must list identi�ers

I

L

of all gates L on whi
h the pro
ess is in the

parti
ular state ready to exe
ute an a
tion. The

parameter will be needed for spe
i�
ation of a
-

tion priorities. If a C[[B℄℄ is not further
ombined,

the parameter of its a
tions must be removed by

a renaming operator. Let all I

G

be of a type \id",

while type \ids" denotes a set of identi�ers I

L

. In

our examples, every I

G

will be simply G.

Let A denote N or D. Hen
e the desired seman-

ti
s of C[[stop℄℄ is

C[[stop℄℄

A(fg)

�! C[[stop℄℄

The desired semanti
s of C[[null℄℄ is

C[[null℄℄

�(fI

�

g)

�! C[[null℄℄

C[[null℄℄

N(fI

�

g)

�! C[[null℄℄

C[[null℄℄

D(fI

�

g)

�! C[[stop℄℄

The desired semanti
s of a C[[O℄℄ is

C[[O℄℄

O(fI

O

g)

�! C[[null℄℄

C[[O℄℄

N(fI

O

g)

�! C[[O℄℄

C[[O℄℄

D(fI

O

g)

�! C[[stop℄℄

If x and y list the identi�ers of the initial steps

of a B

1

and a B

2

, respe
tively, let Next(x; y) list

the identi�ers of the initial steps of \B

1

;B

2

". The

desired transitions of a C[[B

1

;B

2

℄℄ are hen
e:

{ C[[B

1

℄℄ exe
utes an O in B

1

, C[[B

2

℄℄ exe
utes an

N indi
ating that the O has no e�e
t on B

2

:

C[[B

1

℄℄

O(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

N(y)

�! C[[B

0

2

℄℄

C[[B

1

;B

2

℄℄

O(Next(x;y))

�! C[[B

0

1

;B

0

2

℄℄

{ C[[B

2

℄℄ exe
utes an L in B

2

, C[[B

1

℄℄ supports that

7

by exe
uting � in B

1

:

C[[B

1

℄℄

�(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

;B

2

℄℄

L(Next(x;y))

�! C[[B

0

1

;B

0

2

℄℄

{ For an a
tion in the environment of \B

1

;B

2

",

C[[B

1

℄℄ and C[[B

2

℄℄ indi
ate, by
o-operative ex-

e
ution of an N , that it has no e�e
t on B

1

and

B

2

, or, by
o-operative exe
ution of a D, that it

disables further exe
ution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

;B

2

℄℄

A(Next(x;y))

�! C[[B

0

1

;B

0

2

℄℄

Let Next

�

(x; y; z) denote the same fun
tion

as �, ex
ept that wherever � works with an L,

Next

�

(x; y; z) works with I

L

. The desired transi-

tions of a C[[B

1

[�℄B

2

℄℄ are hen
e:

{ C[[B

1

℄℄ exe
utes an L in B

1

, C[[B

2

℄℄ exe
utes a D

indi
ating that B

2

is
onsequently disabled:

C[[B

1

℄℄

L(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

D(y)

�! C[[B

0

2

℄℄

C[[B

1

[�℄B

2

℄℄

L(V

1

[V

2

)

�! C[[B

0

1

[�℄B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg) and I

L

is in

V

1

.

{ C[[B

2

℄℄ exe
utes an L in B

2

, C[[B

1

℄℄ exe
utes a D

indi
ating that B

1

is
onsequently disabled:

C[[B

1

℄℄

D(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

[�℄B

2

℄℄

L(V

1

[V

2

)

�! C[[B

0

1

[�℄B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg) and I

L

is in

V

2

.

{ For an a
tion in the environment of \B

1

[�℄B

2

",

C[[B

1

℄℄ and C[[B

2

℄℄ indi
ate, by
o-operative ex-

e
ution of an N , that it has no e�e
t on B

1

and

B

2

, or, by
o-operative exe
ution of a D, that it

disables further exe
ution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

[�℄B

2

℄℄

A(V

1

[V

2

)

�! C[[B

0

1

[�℄B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg).

Let Syn
(
) denote fI

L

j(L 2 (
[f�g))g. The

desired transitions of a C[[B

1

j[
j�℄jB

2

℄℄ are hen
e:

{ C[[B

1

℄℄ exe
utes an O in B

1

outside
, C[[B

2

℄℄

exe
utes anN indi
ating that theO has no e�e
t

on B

2

:

C[[B

1

℄℄

O(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

N(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

O(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn
(
)) and

I

O

is in V

1

.

{ C[[B

2

℄℄ exe
utes an O in B

2

outside
, C[[B

1

℄℄

exe
utes anN indi
ating that theO has no e�e
t

on B

1

:

C[[B

1

℄℄

N(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

O(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

O(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn
(
)) and

I

O

is in V

2

.

{ C[[B

1

℄℄ and C[[B

2

℄℄
o-operatively exe
ute an L

in (
 [f�g), i.e. an L in B

1

and an L in B

2

:

C[[B

1

℄℄

L(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

L(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn
(
)) and

I

O

is in V

3

.

{ For an a
tion in the environment of \B

1

j[
j�℄j

B

2

", C[[B

1

℄℄ and C[[B

2

℄℄ indi
ate, by
o-operative

exe
ution of an N , that it has no e�e
t on B

1

and B

2

, or, by
o-operative exe
ution of a D,

that it disables further exe
ution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

j[
j�℄jB

2

℄℄

A(V

1

[V

2

[V

3

)

�! C[[B

0

1

j[
j�℄jB

0

2

℄℄

where (V

1

; V

2

; V

3

) is Next

�

(x; y; Syn
(
)).

The desired transitions of a C[[B

1

[�>B

2

℄℄ are:

{ C[[B

1

℄℄ exe
utes an O in B

1

, C[[B

2

℄℄ exe
utes an

N indi
ating that the O has no e�e
t on B

2

:

C[[B

1

℄℄

O(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

N(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

O(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) isNext

�

(x; y; fg) and I

O

is in

V

1

.

{ C[[B

1

℄℄ exe
utes a � in B

1

, C[[B

2

℄℄ exe
utes a D

indi
ating that B

2

is
onsequently disabled:

C[[B

1

℄℄

�(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

D(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

�(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) isNext

�

(x; y; fg) and I

�

is in

V

1

.

{ C[[B

2

℄℄ exe
utes an L in B

2

, C[[B

1

℄℄ exe
utes a D

indi
ating that B

1

is
onsequently disabled:

C[[B

1

℄℄

D(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

L(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

L(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) isNext

�

(x; y; fg) and I

L

is in

V

2

.

8

{ For an a
tion in the environment of \B

1

[� >

B

2

", C[[B

1

℄℄ and C[[B

2

℄℄ indi
ate, by
o-operative

exe
ution of an N , that it has no e�e
t on B

1

and B

2

, or, by
o-operative exe
ution of a D,

that it disables further exe
ution of B

1

and B

2

:

C[[B

1

℄℄

A(x)

�! C[[B

0

1

℄℄; C[[B

2

℄℄

A(y)

�! C[[B

0

2

℄℄

C[[B

1

[�>B

2

℄℄

A(V

1

[V

2

)

�! C[[B

0

1

[�>B

0

2

℄℄

where (V

1

; V

2

; fg) is Next

�

(x; y; fg).

4.2.3. En
oding in E-LOTOS with enhan
ed

renaming

We begin by observing that fun
tionsNext(x; y)

and Next

�

(x; y; z)
an be easily en
oded in E-

LOTOS.

An E-LOTOS en
oding of C[[stop℄℄ is

\loop N !fg[℄D!fg endloop".

Assuming that � denotes a regular E-LOTOS

gate name, an en
oding for C[[null℄℄ would be

\(loop �!fI

�

g[℄N !fI

�

g endloop

[>(D!fI

�

g;C[[stop℄℄))".

An en
oding for C[[O℄℄ is

\(loop N !fI

O

g endloop

[>((O!fI

O

g;C[[null℄℄)[℄(D!fI

O

g;C[[stop℄℄)))".

En
odings for C[[B

1

;B

2

℄℄, C[[B

1

[�℄B

2

℄℄,

C[[B

1

j[
j�℄jB

2

℄℄ and C[[B

1

[� > B

2

℄℄ are given in

Fig. 1, 3, 5 and 7, respe
tively, where G(B) de-

notes the visible gates of a B, and I(B) the iden-

ti�ers I

L

of L in G(B). Every su
h C[[B

1

� B

2

℄℄

(in pre�x notation C[[�(B

1

; B

2

)℄℄) is stru
tured

a

ording to the following strategy for en
oding a

C[[�(B

1

; : : : ; B

n

)℄℄ (see the examples in Fig. 2, 4, 6

and 8):

{ For all B

i

: Every a
tion G

i

(x

i

) of C[[B

i

℄℄ is

split into all su
h G(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) that

C[[�(B

1

; : : : ; B

n

)℄℄
ould, a

ording to the se-

manti
s of \�", have an a
tion G(x) resulting

from
o-operative exe
ution ofG

1

(x

1

) in C[[B

1

℄℄,

G

2

(x

2

) in C[[B

2

℄℄,. . . and G

n

(x

n

) in C[[B

n

℄℄. For

every G

i

(x

i

), one also spe
i�es a dummy new

name G

i

(i) (not intended for exe
ution), to se-

ure that there is at least one new name per

a
tion, for otherwise it would be exe
utable in

its original form. The pro
ess obtained from

C[[B

i

℄℄ by the des
ribed a
tion renamings is a

C

i

[[�(B

1

; : : : ; B

n

)℄℄.

{ All the
onstru
ted pro
esses C

i

[[�(B

1

; : : : ; B

n

)℄℄

are put in parallel
omposition with to-

tal syn
hronization. Every a
tion of the

omposite pro
ess C

0

[[�(B

1

; : : : ; B

n

)℄℄ is a

G(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) resulting from a G(I

G

1

;

x

1

; : : : ; I

G

n

; x

n

) in C

1

[[�(B

1

; : : : ; B

n

)℄℄, a G(I

G

1

;

x

1

; : : : ; I

G

n

; x

n

) in C

2

[[�(B

1

; : : : ; B

n

)℄℄,. . . and a

G(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) in C

n

[[�(B

1

; : : : ; B

n

)℄℄,

i.e. from a G

1

(x

1

) in C[[B

1

℄℄, a G

2

(x

2

) in

C[[B

2

℄℄,. . . and a G

n

(x

n

) in C[[B

n

℄℄, as required.

Any a
tion G

i

(i) of a C

i

[[�(B

1

; : : : ; B

n

)℄℄ is non-

exe
utable within the
ontext, as intended.

{ Every a
tionG(I

G

1

; x

1

; : : : ; I

G

n

; x

n

) ofC

0

[[�(B

1

;

: : : ; B

n

)℄℄ is renamed into the G(x) whi
h it de-

notes in C[[�(B

1

; : : : ; B

n

)℄℄.

Su
h en
oding dire
tly re
e
ts the dynami
 seman-

ti
s of C[[�(B

1

; : : : ; B

n

)℄℄.

4.3. Dealing with data and time

In the language we implemented in Se
tion 4.2,

all a
tions were untimed and
arried no data. In

this se
tion, we brie
y dis
uss how to over
ome the

restri
tions.

Data handling
an be introdu
ed as follows:

{ When designing a language whi
h is to be en-

oded in E-LOTOS, let pro
esses B maintain

and update data variables and let a
tionsL
arry

data, as desired.

{ When
on
eiving the implementation semanti
s,

in
lude, as
onvenient, in the a
tion parameters

representing the
urrent state of a pro
ess B in-

formation on the data stored by B or potentially

arried by its future a
tions. In su
h a way, it will

be possible to use the data in predi
ates de�ning

whi
h are the a
tions that syn
hronize when the

pro
esses C[[B℄℄ to whi
h they belong are
om-

bined.

As an example, suppose that we are implement-

ing a \B

1

;B

2

" spe
i�ed as \O

1

?x;O

2

?y[y < x℄".

Obviously, x must be
arried by � a
tions of B

1

,

and the legal
ombinations of a � in C[[B

1

℄℄ and an

O

2

in C[[B

2

℄℄ are those where the y
arried by O

2

is smaller than the x
arried by �.

Timed a
tions
an be introdu
ed as follows:

{ When designing a language whi
h is to be en-

oded in E-LOTOS, design it as an untimed lan-

guage, but let every a
tion L
arry a parameter

9

C[[B

1

;B

2

℄℄ := rename forall G 2 G(C

0

[[B

1

;B

2

℄℄) : a
tion G(id; ?x : ids; id; ?y : ids) is G!Next(x; y) endfor

in C

0

[[B

1

;B

2

℄℄ endren

C

0

[[B

1

;B

2

℄℄ := C

1

[[B

1

;B

2

℄℄jjC

2

[[B

1

;B

2

℄℄

C

1

[[B

1

;B

2

℄℄ := rename forall O 2 G(C[[B

1

℄℄) : a
tion O(?x : ids) is O(!I

O

; !x; !I

N

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

if � 2 G(C[[B

1

℄℄) then forall L 2 G(C[[B

2

℄℄) : a
tion �(?x : ids) is L(!I

�

; !x; !I

L

; ?y : ids)

[issubset(y; I(C[[B

2

℄℄)) and isin(I

L

; y)℄ endfor endthen

forall A 2 fN;Dg : a
tion A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : a
tion G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

;B

2

℄℄ := rename forall L 2 G(C[[B

2

℄℄) : a
tion L(?y : ids) is O(!I

�

; ?x : ids; !I

L

; !y)

[issubset(x; I(C[[B

1

℄℄)) and isin(I

�

; x)℄ endfor

forall O 2 G(C[[B

1

℄℄) : a
tion N(?y : ids) is O(!I

O

; ?x : ids; !I

N

; !y)

[issubset(x;I(C[[B

1

℄℄)) and isin(I

O

; x)℄ endfor

forall A 2 fN;Dg : a
tion A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x; I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : a
tion G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 1. En
oding of C[[B

1

;B

2

℄℄ in E-LOTOS with enhan
ed renaming.

a

B 1

B 2

a

a

a

B 1 ; B 2

C 1 B
1
; B 2

]][[

a (a , { a } , N , . . .) , a (1)
D (D , { a } , D , . . .) , D (1)

N (N , { } , N , . . .) , N (1) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1)

D (D , { } , D , . . .) ,

D (1)
N (N , { } , N , . . .) , N (1) ,

a (, { } , a , { a }) , (1)

C 2 B 1 ; B 2
]][[

a (a , { a } , N , { }) , a (a , { a , } , N , { }) ,

N (N , . . . , N , { }) , N (2) , D (D , . . . , D , { }) , D (2)

a (a , { a } , N , { a }) , a (a , { a , } , N , { a }) ,

N (N , . . . , N , { a }) , N (2)
a (, { } , a , { a }) , a (, { a , } , a , { a }) ,

a (2) , D (D , . . . , D , { a }) , D (2)

C 1 B 1 ; B 2
]][[| | C 2 B 1 ; B 2

]][[

a (a , { a } , N , { a })
D (D , { a } , D , { a })

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (a , { a } , a , { a })

N (N , { } , N , { a })
D (D , { } , D , { a })

a (, { } , a , { a })
D (D , { } , D , { })

N (N , { } , N , { })

C]][[B 1

C]][[B 2

N ({ }) ,

D ({ })

N ({ a }) a ({ a }) ,

D ({ a })

C B 1 ; B 2
]][[

a ({ a }) D ({ a })

N ({ }) ,

D ({ })

N ({ a })

N ({ a }) a ({ a }) ,

D ({ a })

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

D ({ })N ({ }) ,
({ })

Fig. 2. Example implementation of sequential
omposition.

supposingly representing the absolute exe
ution

time of L, and restri
t its value as desired.

{ When implementing a spe
i�ed pro
ess B, in-

trodu
e an additional
onstraint representing

a global
lo
k. The
lo
k pro
ess will syn
hro-

nize with every L in C[[B℄℄ and take
are that

its exe
ution-time parameter equals the
urrent

time.

As an example, take the pro
ess \O

1

;O

2

�!3",

exe
uting O

2

3 time units after O

1

. Introdu
ing

absolute-exe
ution-time parameters, we rewrite

the pro
ess into

\O

1

?x : time;O

2

?y : time[y = x+ 3℄".

An adequate
lo
k will allow O

1

(x) only at time x,

and O

2

(y) only at time y.

5. Dis
ussion and
on
lusions

Among the LOTOS (or E-LOTOS) spe
i�
a-

tion styles [11℄, the
onstraint-oriented style yields

spe
i�
ations whi
h are the most diÆ
ult to imple-

ment in an eÆ
ient way. However, when one wants

to spe
ify a really
ompli
ated behaviour, the style

is usually the best
hoi
e, for it fa
ilitates abstra
t

and de
larative spe
i�
ation.

10

C[[B

1

[�℄B

2

℄℄ := rename

forall G 2 G(C

0

[[B

1

[�℄B

2

℄℄) : a
tion G(id; ?x : ids; id; ?y : ids) is G?z : ids

[var V

1

: ids; V

2

: ids in (?V

1

; ?V

2

;any : ids) := Next

�

(x; y; fg); z = union(V

1

; V

2

) endvar℄ endfor

in C

0

[[B

1

[�℄B

2

℄℄ endren

C

0

[[B

1

[�℄B

2

℄℄ := C

1

[[B

1

[�℄B

2

℄℄jjC

2

[[B

1

[�℄B

2

℄℄

C

1

[[B

1

[�℄B

2

℄℄ := rename

forall L 2 G(C[[B

1

℄℄) : a
tion L(?x : ids) is L(!I

L

; !x; !I

D

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

1

) endvar℄ endfor

forall L 2 G(C[[B

2

℄℄) : a
tion D(?x : ids) is L(!I

D

; !x; !I

L

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall A 2 fN;Dg : a
tion A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : a
tion G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

[�℄B

2

℄℄ := rename

forall L 2 G(C[[B

2

℄℄) : a
tion L(?y : ids) is L(!I

D

; ?x : ids; !I

L

; !y)[issubset(x; I(C[[B

1

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall L 2 G(C[[B

1

℄℄) : a
tion D(?y : ids) is L(!I

L

; ?x : ids; !I

D

; !y)[issubset(x;I(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

1

) endvar℄ endfor

forall A 2 fN;Dg : a
tion A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x;I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : a
tion G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 3. En
oding of C[[B

1

[�℄B

2

℄℄ in E-LOTOS with enhan
ed renaming.

a

B 1

B 2

b

B 1 [. . .] B 2

a

C]][[B 1

C]][[B 2

N ({ }) ,

D ({ })

N ({ b }) b ({ b }) ,

D ({ b })

C B 1 [. . .] B 2
]][[

N ({ }) ,

D ({ })

N ({ a }) a ({ a }) ,

D ({ a })

N ({ }) ,

D ({ })

N ({ a }) a ({ a }) ,

D ({ a })

C 1 B 1 [. . .] B 2
]][[

C 2 B 1 [. . .] B 2
]][[

C 1 B 1 [. . .] B 2
]][[| | C 2 B 1 [. . .] B 2

]][[

N (N , { } , N , . . .) , N (1) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1) a (a , { a } , D , { }) , a (a , { a } , D , { b }) , a (1) ,

D (D , { a } , D , . . .) , D (1)

N (N , . . . , N , { }) , N (2) ,

a (a , { a } , D , { }) , D (D , . . . , D { }) , D (2)

N (N , . . . , N , { b }) , N (2) b (D , { } , b , { b }) , b (2) ,

a (a , { a } , D , { b }) , D (D , . . . , D , { b }) , D (2)

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (N , { a } , N , { b }) a (a , { a } , D , { b }) ,

D (D , { a } , D , { b })

Fig. 4. Example implementation of
hoi
e, where a has a higher priority than b.

In the paper, we sket
hed a method for

onstraint-oriented spe
i�
ation of new pro
ess-

omposition operators. It
onsists of two steps.

In the �rst step, one designs a pro
ess-algebrai

spe
i�
ation language best meeting one's spe-

i�
 needs. If the language introdu
es only events

whi
h are fully
ontrollable and freely renamable

(for every event, one
an at least pretend that it

is), the dynami
 semanti
s of the language
an

then be me
hani
ally rewritten into a form whi
h

allows me
hani
 translation of pro
ess spe
i�
a-

tions into E-LOTOS. If supported by a tool, the

method would help those users of E-LOTOS (or

its enhan
ed su

essors) for whom the
onstraint-

oriented style is too abstra
t, but would still want

to spe
ify non-standard forms of pro
ess
omposi-

tion.

Applying the above method, we observed that

it strongly builds upon a
tion splitting. In E-

LOTOS, an a
tion
an be split only with respe
t

11

C[[B

1

j[
j�℄jB

2

℄℄ := rename forall G 2 G(C

0

[[B

1

j[
j�℄jB

2

℄℄) : a
tion G(id; ?x : ids; id; ?y : ids) is G?z : ids

[var V

1

: ids; V

2

: ids; V

3

: ids in (?V

1

; ?V

2

; ?V

3

) := Next

�

(x; y; Syn
(
));

z = union(union(V

1

; V

2

); V

3

) endvar℄ endfor

in C

0

[[B

1

j[
j�℄jB

2

℄℄ endren

C

0

[[B

1

j[
j�℄jB

2

℄℄ := C

1

[[B

1

j[
j�℄jB

2

℄℄jjC

2

[[B

1

j[
j�℄jB

2

℄℄

C

1

[[B

1

j[
j�℄jB

2

℄℄ := rename

forall L 2 ((
 [f�g) \ G(C[[B

1

℄℄) \ G(C[[B

2

℄℄)) : a
tion L(?x : ids) is L(!I

L

; !x; !I

L

; ?y : ids)

[issubset(y; I(C[[B

2

℄℄)) and

var V

3

: ids in (any : ids;any : ids; ?V

3

) := Next

�

(x; y; Syn
(
)); isin(I

L

; V

3

) endvar℄ endfor

forall O 2 (G(C[[B

1

℄℄)n
) : a
tion O(?x : ids) is O(!I

O

; !x; !I

N

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; Syn
(
)); isin(I

O

; V

1

) endvar℄ endfor

forall O 2 (G(C[[B

2

℄℄)n
) : a
tion N(?x : ids) is O(!I

N

; !x; !I

O

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; Syn
(
)); isin(I

O

; V

2

) endvar℄ endfor

forall A 2 fN;Dg : a
tion A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : a
tion G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

j[
j�℄jB

2

℄℄ := rename

forall L 2 ((
 [f�g) \ G(C[[B

1

℄℄) \ G(C[[B

2

℄℄)) : a
tion L(?y : ids) is L(!I

L

; ?x : ids; !I

L

; !y)

[issubset(x; I(C[[B

1

℄℄)) and

var V

3

: ids in (any : ids;any : ids; ?V

3

) := Next

�

(x; y; Syn
(
)); isin(I

L

; V

3

) endvar℄ endfor

forall O 2 (G(C[[B

2

℄℄)n
) : a
tion O(?y : ids) is O(!I

N

; ?x : ids; !I

O

; !y)[issubset(x; I(C[[B

1

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; Syn
(
)); isin(I

O

; V

2

) endvar℄ endfor

forall O 2 (G(C[[B

1

℄℄)n
) : a
tion N(?y : ids) is O(!I

O

; ?x : ids; !I

N

; !y)[issubset(x;I(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; Syn
(
)); isin(I

O

; V

1

) endvar℄ endfor

forall A 2 fN;Dg : a
tion A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x; I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : a
tion G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 5. En
oding of C[[B

1

j[
j�℄jB

2

℄℄ in E-LOTOS with enhan
ed renaming.

B 2

b

B 1 | [| . . .] | B 2

a

B 1

a

b

C]][[B 2

N ({ }) ,

D ({ })

N ({ b }) b ({ b }) ,

D ({ b })

C B 1 | [| . . .] | B 2
]][[

C]][[B 1

a ({ a }) D ({ a })

N ({ }) ,

D ({ })

N ({ a })

N ({ b })
b ({ b }) ,

D ({ b })

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

D ({ })N ({ }) ,
({ })

C 1 B 1 | [| . . .] | B 2
]][[

C 1 B 1 | [| . . .] | B 2
]][[| | C 2 B 1 | [| . . .] | B 2

]][[

C 2 B 1 | [| . . .] | B 2
]][[

a (a , { a } , N , { b }) , a (a , { a , } , N , { b }) ,

N (N , . . . , N , { b }) , N (2) b (N , { } , b , { b }) , b (N , { } , b , { b }) , b (2)

D (D , . . . , D , { b }) , D (2)
a (a , { a } , N , { }) , a (a , { a , } , N , { }) , N (2)

N (N , . . . , N , { }) , D (D , . . . , D , { }) , D (2)

a (a , { a } , N , { }) , a (a , { a } , N , { b }) , a (1)

D (D , { a } , D , . . .) , D (1)

N (N , { } , N , . . .) , N (1) ,

b (N , { } , b , { b }) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1)

D (D , { } , D , . . .) ,

D (1)
b (N , { } , b , { b }) , N (1) ,

N (N , { } , N , . . .) , (1)

a (a , { a } , N , { b })
D (D , { a } , D , { b })

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (N , { a } , N , { b })

N (N { } , N , { b }) D (D , { } , D , { b })

b (N , { } , b , { b })

N (N , { } , N , { })
D (D , { } , D , { })

Fig. 6. Example implementation of parallel
omposition, where a has a higher priority than b.

to a parameter introdu
ed spe
i�
ally for the pur-

pose. Having found that in
onvenient, we de
ided

to propose a generalization of the E-LOTOS re-

naming operator. Besides being more powerful,

the new renaming operator also has a more natural

and non-restri
tive semanti
s.

We
on
lude by summarizing that the proposed

generalization would help in two ways:

12

C[[B

1

[�>B

2

℄℄ := rename forall G 2 G(C

0

[[B

1

[�>B

2

℄℄) : a
tion G(id; ?x : ids; id; ?y : ids) is G?z : ids

[var V

1

: ids; V

2

: ids in (?V

1

; ?V

2

;any : ids) := Next

�

(x; y; fg); z = union(V

1

; V

2

) endvar℄

endfor

in C

0

[[B

1

[�>B

2

℄℄ endren

C

0

[[B

1

[�>B

2

℄℄ := C

1

[[B

1

[�>B

2

℄℄jjC

2

[[B

1

[�>B

2

℄℄

C

1

[[B

1

[�>B

2

℄℄ := rename

forall O 2 G(C[[B

1

℄℄) : a
tion O(?x : ids) is O(!I

O

; !x; !I

N

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

O

; V

1

) endvar℄ endfor

if � 2 G(C[[B

1

℄℄) then a
tion �(?x : ids) is �(!I

�

; !x; !I

D

; ?y : ids)[issubset(y; I(C[[B

2

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

�

; V

1

) endvar℄ endif

forall L 2 G(C[[B

2

℄℄) : a
tion D(?x : ids) is L(!I

D

; !x; !I

L

; ?y : ids)[issubset(y;G(C[[B

2

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall A 2 fN;Dg : a
tion A(?x : ids) is A(!I

A

; !x; !I

A

; ?y : ids)[issubset(y; I(C[[B

2

℄℄))℄ endfor

forall G 2 G(C[[B

1

℄℄) : a
tion G(ids) is G!1 endfor

in C[[B

1

℄℄ endren

C

2

[[B

1

[�>B

2

℄℄ := rename

forall L 2 G(C[[B

2

℄℄) : a
tion L(?y : ids) is L(!I

D

; ?x : ids; !I

L

; !y)[issubset(x; I(C[[B

1

℄℄)) and

var V

2

: ids in (any : ids; ?V

2

;any : ids) := Next

�

(x; y; fg); isin(I

L

; V

2

) endvar℄ endfor

forall O 2 G(C[[B

1

℄℄) : a
tion N(?y : ids) is O(!I

O

; ?x : ids; !I

N

; !y)[issubset(x;G(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

O

; V

1

) endvar℄ endfor

a
tion D(?y : ids) is �(!I

�

; ?x : ids; !I

D

; !y)[issubset(x;G(C[[B

1

℄℄)) and

var V

1

: ids in (?V

1

;any : ids;any : ids) := Next

�

(x; y; fg); isin(I

�

; V

1

) endvar℄

forall A 2 fN;Dg : a
tion A(?y : ids) is A(!I

A

; ?x : ids; !I

A

; !y)[issubset(x; I(C[[B

1

℄℄))℄ endfor

forall G 2 G(C[[B

2

℄℄) : a
tion G(ids) is G!2 endfor

in C[[B

2

℄℄ endren

Fig. 7. En
oding of C[[B

1

[�>B

2

℄℄ in E-LOTOS with enhan
ed renaming.

B 2

b

B 1 [. . . > B 2

a

B 1

a

b

C]][[B 2

N ({ }) ,

D ({ })

N ({ b }) b ({ b }) ,

D ({ b })

C B 1 [. . . > B 2
]][[

C]][[B 1

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

N ({ , b }) b ({ , b }) ,

D ({ , b })
 ({ , b })

N ({ }) ,
({ })

D ({ })

a ({ a })
D ({ a })

N ({ }) ,

D ({ })

N ({ a })

D ({ })N ({ }) ,
({ })

C 1 B 1 [. . . > B 2
]][[

C 1 B 1 [. . . > B 2
]][[| | C 2 B 1 [. . . > B 2

]][[

C 2 B 1 [. . . > B 2
]][[

a (a , { a } , N , { }) , a (a , { a } , N , { b }) , a (1)

D (D , { a } , D , . . .) , D (1)

N (N , { } , N , . . .) , N (1) ,

b (D , { } , b , { b }) ,

D (D , { } , D , . . .) , D (1)

N (N , { a } , N , . . .) , N (1)

b (D , { } , b , { b }) ,

D (D , { } , D , . . .) , D (1)N (N , { } , N , . . .) , N (1) , (1) ,

 (, { } , D , { }) , (, { } , D , { b })

a (a , { a } , N , { b }) , a (a , { a , } , N , { b }) ,

N (N , . . . , N , { b }) , N (2)
b (D , { } , b , { b }) , b (D , { } , b , { b }) , b (2)

 (, { } , D , { b }) , (, { a , } , D , { b }) ,

D (D , . . . , D , { b }) , D (2)a (a , { a } , N , { }) , a (a , { a , } , N , { }) , N (2)

N (N , . . . , N , { }) , D (D , . . . , D , { }) , D (2) ,

 (, { } , D , { }) , (, { a , } , D , { })

a (a , { a } , N , { b })
D (D , { a } , D , { b })

N (N , { } , N , { }) ,

D (D , { } , D , { })

N (N , { a } , N , { b })

N (N { } , N , { b }) b (D , { } , b , { b }) ,

D (D , { } , D , { b })
 (, { } , D , { b })

N (N , { } , N , { }) ,

 (, { } , D , { })

D (D , { } , D , { })

Fig. 8. Example implementation of disabling, where a has a higher priority then b.

{ It wouldmake the renaming operatormu
hmore

easy to understand and
onvenient to use, sup-

porting further development of E-LOTOS into

a \se
ond-generation" formal des
ription te
h-

nique [3℄.

{ The enhan
ed operator would simplify spe
i�
a-

tion of non-standard forms of pro
ess
omposi-

tion and thereby
onstru
tion of
ompilers from

ustom-designed pro
ess-algebrai
 spe
i�
ation

languages to E-LOTOS.

13

Referen
es

[1℄ T. Bolognesi and E. Brinksma, Introdu
tion to the ISO

spe
i�
ation language LOTOS, Computer Networks

and ISDN Systems 14 (1987) 25{59.

[2℄ H. Garavel, A wish list for the behaviour part of

E-LOTOS, Input do
ument [LG5℄ to the ISO/IEC

JTC1/SC21/WG7 Meeting on Enhan
ements to

LOTOS, Li�ege, De
ember 1995.

[3℄ H. Garavel and M. Sighireanu, Towards a se
ond

generation of formal des
ription te
hniques - rationale

for the design of E-LOTOS, in: J.-F. Groote, B. Luttik,

and J. van Wamel (eds.), Pro
. of the 3rd International

Workshop on Formal Methods for Industrial Criti
al

Systems FMICS'98, Amsterdam, The Netherlands,

May 1998, 187{230.

[4℄ C. A. R. Hoare, Communi
ating Sequential Pro
esses,

Prenti
e-Hall International, 1985.

[5℄ ISO, LOTOS { A Formal Des
ription Te
hnique Based

on the Temporal Ordering of Observational Behaviour,

ISO 8807, ISO { Information Pro
essing Systems {

Open Systems Inter
onne
tion, 1989.

[6℄ ISO/IEC, Enhan
ements to LOTOS (E-LOTOS),

ISO/IEC 15437, ISO { Information Te
hnology, 2001.

[7℄ M. Kapus-Kolar, Spe
ifying broad
ast
ommuni
ation

in a sublanguage of E-LOTOS, in: B. Zaj
 and M.

Tkal�
i�
 (eds.), Pro
. of the IEEE EUROCON'2003:

Computer as a Tool, Ljubljana, September 2003, vol.II,

pp. 2{6.

[8℄ M. Kapus-Kolar, Spe
ifying a
tion priorities in a

sublanguage of E-LOTOS, in: D. Begu�si�
, N. Ro�zi�

(eds.), Pro
. of the 11th International Conferen
e on

Software, Tele
ommuni
ations & Computer Networks

SoftCOM'2003, Split, O
tober 2003, pp. 247{251.

[9℄ M. Kapus-Kolar, Spe
ifying late de
isions in a subset

of E-LOTOS, submitted for publi
ation, 2003.

[10℄ A. Verdejo, E-LOTOS: Tutorial and Semanti
s, M.S.

thesis, Universidad Complutense de Madrid, 1999.

[11℄ C. A. Vissers, G. S
ollo, M. van Sinderen, and H.

Brinksma, Spe
i�
ation styles in distributed systems

design and veri�
ation, Theoreti
al Computer S
ien
e

89 (1991) 179{206.

Monika Kapus-Kolar re
eived the B.S. degree in

ele
tri
al engineering from the University of Mari-

bor, Slovenia, in 1981, and the M.S. and Ph.D.

degrees in
omputer s
ien
e from the University

of Ljubljana, Slovenia, in 1984 and 1989, respe
-

tively. Sin
e 1981 she has been with the Jo�zef Ste-

fan Institute, Ljubljana, where she is
urrently a

resear
her at the Department of Digital Commu-

ni
ations and Networks. Her
urrent resear
h in-

terests in
lude formal spe
i�
ation te
hniques and

methods for development of distributed systems

and
omputer networks.

14

