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A B S T R A C T

The paper is concerned with three types of cubic splines over a triangulation that are
characterized by three degrees of freedom associated with each vertex of the triangulation. The
splines differ in computational complexity, polynomial reproduction properties, and smoothness.
With the aim to make them a versatile tool for numerical analysis, a unified representation in
terms of locally supported basis functions is established. The construction of these functions is
based on geometric concepts and is expressed in the Bernstein–Bézier form. They are readily
applicable in a range of standard approximation methods, which is demonstrated by a number
of numerical experiments.

1. Introduction

Splines over triangulations are a widely used representation framework in numerical approximation methods. Thanks to the
flexibility of triangulations as a meshing technique, they can be used to approximate data on complicated domains and, within a
domain, by different levels of coarseness. In the classical sense, a spline over a triangulation is a function whose restriction to each
triangle of the triangulation is a bivariate polynomial of a fixed total degree. At vertices and across edges of the triangles, these
polynomials are glued together by a certain order of smoothness. High order of smoothness is desirable but not easy to achieve as
smoothness constraints depend on geometry of the triangulation. For low polynomial degrees (relative to smoothness order) this
prevents local and stable construction of general splines and affects their approximation power (see, e.g., [8]).

In this paper we consider three macro-elements, i.e., splines over a triangulation that are on each triangle uniquely determined
by a limited number of degrees of freedom related to the region in the vicinity of the triangle. Traditionally, such splines are
characterized by interpolation functionals associated with vertices of the triangulation and often (although undesirably) with
additional points on the edges or inside the triangles (see, e.g., [2,8]). We focus on splines that are locally polynomials of total
degree at most three, i.e., cubic splines, which are practically attractive on account of low evaluation cost. However, constructing
a fast convergent and smooth approximation of this type is not trivial.

In order to construct a spline that is 𝐶1-smooth at the vertices, it is natural to fix three degrees of freedom for each vertex which
intrinsically represent the value and the gradient of the spline at the vertex. On a triangle of the triangulation this amounts to nine
degrees of freedom if the three vertices of the triangle are considered. Since a bivariate cubic polynomial is determined by ten
degrees of freedom, there is only one free parameter left for each triangle. This is not sufficient to impose global 𝐶1-smoothness.
Keeping the construction limited to the nine degrees of freedom corresponding to a triangle, it is not even possible to achieve
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cubic precision. On a more positive note, it is sufficient to ensure reproduction of quadratic polynomials, e.g., by using the classical
Zienkiewicz element [1], which is the first macro-element that we take into consideration.

If the spline construction does not ensure the reproduction of polynomials to the highest possible degree, we cannot account for
ptimal convergence rates in approximation methods. To overcome this, we can sacrifice the complete locality of the construction
n a triangle and use also the degrees of freedom corresponding to the neighboring triangles. Using the technique for imposing
1-smoothness across an edge proposed in [5], we develop a 𝐶0-smooth macro-element that is, for a triangle with no edges on the
oundary of the domain, determined by eighteen degrees of freedom.

Global 𝐶1-smoothness of a macro-element is in approximation methods not always necessary and is indeed often renounced to
eep the construction computationally simple and effective. However, it often has a positive effect on the accuracy of solutions and
lso provides visually more pleasant results. A common approach for achieving 𝐶1-smoothness without increasing the spline degree
s to refine the triangulation in such a way that each triangle is split into three smaller triangles. A classical Clough–Tocher spline [3]
ver such a refinement has three degrees of freedom per vertex and additional degrees of freedom related to directional derivatives
long the edges. It is possible to reduce these extra degrees of freedom by restricting the directional derivatives to be linear but such
constraint only allows reproduction of quadratic polynomials. We instead follow the construction introduced in [11] that ensures

ull reproduction. This provides a 𝐶1-smooth macro-element with cubic precision that is based on the same amount of data as the
econd macro-element.

With the aim to use the described constructions in approximation methods, we establish a unified representation of the three
acro-elements in terms of locally supported basis functions. They are defined and analyzed using the Bernstein–Bézier techniques.

or each vertex, there are three basis functions that are uniquely determined by a choice of a triangle associated with the
ertex. This geometric approach reflects recent ideas in constructing B-spline-like bases for other common macro-elements (see,
.g., [4,6,7,9,14]).

Finally, we provide a numerical comparison of the macro-elements. The proposed representation is utilized in function
pproximation and solving boundary value problems. We perform tests of the best 𝐿2 function approximation and scattered data
pproximation. In the context of boundary value problems, we consider the model Poisson problem and conduct examples showing
he behavior of the macro-elements in the isoparametric finite element method and immersed penalized boundary method.

The remainder of the paper is organized as follows. In Section 2 we review relevant Bernstein–Bézier techniques for representing
ubic splines and imposing 𝐶1-smoothness. In Section 3 we provide the construction of the three macro-elements and define basis
unctions associated with the vertices of the triangulation. Section 4 contains numerical examples. We conclude the paper with some
emarks in Section 5.

. Bernstein–Bézier spline techniques

The aim of this section is to present some preliminaries related to the construction of cubic splines over a triangulation in terms
f the Bernstein–Bézier form. We give a particular emphasis on the constraints for (local) 𝐶1-smoothness that is tackled in Section 3.

.1. Cubic splines over a triangulation

Let 𝛩 ⊂ R2 be a polygonal domain. A triangulation ▵= (𝑉 ,𝐸, 𝑇 ) of 𝛩 is a discretization of the domain determined by a finite
et of vertices 𝑉 , a finite set of edges 𝐸, and a finite set of triangles 𝑇 .

More precisely, for 𝑛𝑣 ∈ N, the set 𝑉 = {𝒗1, 𝒗2,… , 𝒗𝑛𝑣} is a set of points in 𝛩. The set 𝐸 = {𝒆1, 𝒆2,… , 𝒆𝑛𝑒} consists of 𝑛𝑒 ∈ N line
egments, each of the form 𝒆𝑙 = [𝒗𝑖, 𝒗𝑗 ] for a pair of two distinct vertices 𝒗𝑖, 𝒗𝑗 ∈ 𝑉 . Similarly, the set 𝑇 = {𝒕1, 𝒕2,… , 𝒕𝑛𝑡} consists

of 𝑛𝑡 ∈ N triangles, each of the form 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] for a triplet of three affinely independent vertices 𝒗𝑖, 𝒗𝑗 , 𝒗𝑘 ∈ 𝑉 . Vice versa, 𝑉
and 𝐸 are the set of vertices and the set of edges of all triangles in 𝑇 , respectively. We impose that the intersection of two distinct
triangles from 𝑇 is empty, a point in 𝑉 , or a line segment in 𝐸, and the union of triangles in 𝑇 is 𝛩. Additionally, we denote by
𝐸𝑏 ⊆ 𝐸 the set of cardinality 𝑛𝑏𝑒 ∈ N comprising all edges that lie on the boundary of 𝛩.

The vector space of cubic splines over a triangulation ▵ of smoothness order 𝑟 ∈ {0, 1} is defined by

S𝑟3(▵) ∶=
{

𝑆 ∈ 𝐶𝑟(𝛩) ∶ 𝑆|𝒕𝑚 ∈ P3, 𝒕𝑚 ∈ 𝑇
}

,

where, in general, P𝑑 denotes the space of bivariate polynomials of total degree at most 𝑑 ∈ N0. The dimension of S03(▵) is 𝑛𝑣+2𝑛𝑒+𝑛𝑡.
Expressing the dimension of S13(▵) is much more complicated and is theoretically not fully resolved. It is known that

dim(S13(▵)) ≥ 3𝑛𝑏𝑣 + 2(𝑛𝑣 − 𝑛𝑏𝑣) + 1, (1)

where 𝑛𝑏𝑣 ∈ N is the number of points in 𝑉 that lie on the boundary of 𝛩. Moreover, the dimension depends on the geometry of
the triangulation and is larger than the lower bound in (1) if the triangulation has vertices in the interior of 𝛩 in which the edges
meet with only two different slopes (see, e.g., [8], for more details). Therefore, it is unclear how to construct and use such splines
in approximation methods. In Section 3 we consider related spline spaces that can be more easily characterized.

2.2. Bernstein–Bézier form

As the restriction 𝑆|𝒕𝑚 of a spline 𝑆 ∈ S03(▵) to a triangle 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] ∈ 𝑇 is an element of P3, it can be uniquely expressed
in the cubic Bernstein basis. Let
528
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D3 ∶=
{

(𝛿0, 𝛿1, 𝛿2) ∈ N3
0 ∶ 𝛿0 + 𝛿1 + 𝛿2 = 3

}

be a set consisting of ten multi-indices. For 𝒅 = (𝑑0, 𝑑1, 𝑑2) ∈ D3 we define the Bernstein basis polynomial 𝐵𝑚,𝒅 ∈ P3 associated with
the triangle 𝒕𝑚 as

𝐵𝑚,𝒅(𝒑) ∶=
3!

𝑑0! 𝑑1! 𝑑2!
(

𝜏𝑚,𝑖(𝒑)
)𝑑0 (𝜏𝑚,𝑗 (𝒑)

)𝑑1 (𝜏𝑚,𝑘(𝒑)
)𝑑2 ,

here (𝜏𝑚,𝑖(𝒑), 𝜏𝑚,𝑗 (𝒑), 𝜏𝑚,𝑘(𝒑)) ∈ R3 denotes the barycentric coordinates of a point 𝒑 ∈ R2 with respect to 𝒕𝑚, i.e., the unique triplet
atisfying

1 = 𝜏𝑚,𝑖(𝒑) + 𝜏𝑚,𝑗 (𝒑) + 𝜏𝑚,𝑘(𝒑), 𝒑 = 𝜏𝑚,𝑖(𝒑)𝒗𝑖 + 𝜏𝑚,𝑗 (𝒑)𝒗𝑗 + 𝜏𝑚,𝑘(𝒑)𝒗𝑘.

t is well known that the polynomial 𝑆|𝒕𝑚 can be uniquely represented in the Bernstein–Bézier form

𝑆|𝒕𝑚 =
∑

𝒅∈D3

𝛽𝑚,𝒅(𝑆)𝐵𝑚,𝒅 ,

here 𝛽𝑚,𝒅 ∶ S03(▵) → R applied to 𝑆 corresponds to the dual functional of 𝐵𝑚,𝒅 applied to 𝑆|𝒕𝑚 . We refer the reader to, e.g., [8] for
ore details on this topic.

.3. Techniques for imposing 𝐶1-smoothness

A spline 𝑆 ∈ S03(▵) is 𝐶1-smooth at a vertex 𝒗𝑖 ∈ 𝑉 if and only if there exists a polynomial 𝑃 ∈ P3 such that 𝑆(𝒗𝑖) = 𝑃 (𝒗𝑖) and
𝑆|𝒕𝑚 (𝒗𝑖) = ∇𝑃 (𝒗𝑖) for every triangle 𝒕𝑚 ∈ 𝑇 with a vertex at 𝒗𝑖. Here and hereafter, ∇ denotes the gradient operator. Let us consider

he first order Taylor polynomial

𝑄𝑖(𝒑) = 𝑃 (𝒗𝑖) + ∇𝑃 (𝒗𝑖) ⋅ (𝒑 − 𝒗𝑖),

here ⋅ denotes the inner product of two vectors. As 𝑄𝑖(𝒗𝑖) = 𝑃 (𝒗𝑖) and ∇𝑄𝑖(𝒗𝑖) = ∇𝑃 (𝒗𝑖), the standard vertex interpolation formulas
or the Bernstein–Bézier form (see, e.g., [8]) imply

𝛽𝑚,(3,0,0)(𝑆) = 𝑄𝑖(𝒗𝑖), 𝛽𝑚,(2,1,0)(𝑆) = 𝑄𝑖(
2
3𝒗𝑖 +

1
3𝒗𝑗 ), 𝛽𝑚,(2,0,1)(𝑆) = 𝑄𝑖(

2
3𝒗𝑖 +

1
3𝒗𝑘), (2)

where 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘]. This provides a convenient alternative characterization of 𝐶1-smoothness at a vertex, i.e., 𝑆 is 𝐶1-smooth
t 𝒗𝑖 if and only if there exists a linear polynomial 𝑄𝑖 such that (2) holds for every triangle 𝒕𝑚 ∈ 𝑇 with a vertex at 𝒗𝑖. Hence, by

fixing a linear polynomial for each vertex, all but one coefficient in the Bernstein–Bézier form of 𝑆|𝒕𝑚 are uniquely determined.
Let us consider triangles 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] ∈ 𝑇 and 𝒕𝑚′ = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘′ ] ∈ 𝑇 that have the edge 𝒆𝑙 = [𝒗𝑖, 𝒗𝑗 ] ∈ 𝐸 ⧵ 𝐸𝑏 in common.

Provided that 𝑆 is 𝐶1-smooth at the vertices 𝒗𝑖 and 𝒗𝑗 , the 𝐶1-smoothness across [𝒗𝑖, 𝒗𝑗 ] can be achieved by selecting 𝛽𝑚,(1,1,1)(𝑆)
and 𝛽𝑚′ ,(1,1,1)(𝑆) such that the value of

𝜉𝑙(𝑆) ∶= 𝜏𝑚,𝑖(𝒗𝑘′ )𝛽𝑚,(2,1,0)(𝑆) + 𝜏𝑚,𝑗 (𝒗𝑘′ )𝛽𝑚,(1,2,0)(𝑆) + 𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(1,1,1)(𝑆) − 𝛽𝑚′ ,(1,1,1)(𝑆) (3)

is equal to zero. However, imposing 𝐶1-smoothness across all interior edges of ▵ is challenging as it results in a global system of
equations depending on the geometry of the triangulation. In fact, since for certain triangulations the lower bound (1) is attained,
fixing three degrees of freedom per vertex implies that such a global system in general does not have a solution.

A convenient technique for imposing 𝐶1-smoothness across a single edge 𝒆𝑙 without selecting an additional parameter was
proposed in [5]. If 𝑆|𝒕𝑚∪𝒕𝑚′ is 𝐶2-smooth, then

𝛽𝑚′ ,(1,0,2)(𝑆) = 𝜏𝑚,𝑖(𝒗𝑘′ )2𝛽𝑚,(3,0,0)(𝑆) + 2𝜏𝑚,𝑖(𝒗𝑘′ )𝜏𝑚,𝑗 (𝒗𝑘′ )𝛽𝑚,(2,1,0)(𝑆)

+ 𝜏𝑚,𝑗 (𝒗𝑘′ )2𝛽𝑚,(1,2,0)(𝑆) + 2𝜏𝑚,𝑖(𝒗𝑘′ )𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(2,0,1)(𝑆)

+ 2𝜏𝑚,𝑗 (𝒗𝑘′ )𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(1,1,1)(𝑆) + 𝜏𝑚,𝑘(𝒗𝑘′ )2𝛽𝑚,(1,0,2)(𝑆)

(4a)

and
𝛽𝑚′ ,(0,1,2)(𝑆) = 𝜏𝑚,𝑖(𝒗𝑘′ )2𝛽𝑚,(2,1,0)(𝑆) + 2𝜏𝑚,𝑖(𝒗𝑘′ )𝜏𝑚,𝑗 (𝒗𝑘′ )𝛽𝑚,(1,2,0)(𝑆)

+ 𝜏𝑚,𝑗 (𝒗𝑘′ )2𝛽𝑚,(0,3,0)(𝑆) + 2𝜏𝑚,𝑖(𝒗𝑘′ )𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(1,1,1)(𝑆)

+ 2𝜏𝑚,𝑗 (𝒗𝑘′ )𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(0,2,1)(𝑆) + 𝜏𝑚,𝑘(𝒗𝑘′ )2𝛽𝑚,(0,1,2)(𝑆).

(4b)

All the values appearing in (4) are fixed by vertex interpolation, i.e., by expressions analogous to (2), except for 𝛽𝑚,(1,1,1)(𝑆). Motivated
by this, we define the functional

𝛾𝑚,𝑘(𝑆) ∶=
1

2𝜏𝑚,𝑘(𝒗𝑘′ )(1 − 𝜏𝑚,𝑘(𝒗𝑘′ ))
(

𝛽𝑚′ ,(1,0,2)(𝑆) + 𝛽𝑚′ ,(0,1,2)(𝑆)

− 𝜏𝑚,𝑖(𝒗𝑘′ )2(𝛽𝑚,(3,0,0)(𝑆) + 𝛽𝑚,(2,1,0)(𝑆))

− 2𝜏𝑚,𝑖(𝒗𝑘′ )𝜏𝑚,𝑗 (𝒗𝑘′ )(𝛽𝑚,(2,1,0)(𝑆) + 𝛽𝑚,(1,2,0)(𝑆))

− 𝜏𝑚,𝑗 (𝒗𝑘′ )2(𝛽𝑚,(1,2,0)(𝑆) + 𝛽𝑚,(0,3,0)(𝑆))

− 2𝜏𝑚,𝑖(𝒗𝑘′ )𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(2,0,1)(𝑆)

− 2𝜏𝑚,𝑗 (𝒗𝑘′ )𝜏𝑚,𝑘(𝒗𝑘′ )𝛽𝑚,(0,2,1)(𝑆)
2 )

(5)
529
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which is obtained by combining the equations in (4) and expressing 𝛽𝑚,(1,1,1)(𝑆).
Setting 𝛽𝑚,(1,1,1)(𝑆) = 𝛾𝑚,𝑘(𝑆) and 𝛽𝑚′ ,(1,1,1)(𝑆) = 𝛾𝑚′ ,𝑘′ (𝑆) has some immediate benefits. Even if the assumptions leading to (4) do

not hold, such choice ensures that 𝜉𝑙(𝑆) = 0, i.e., 𝑆 is 𝐶1-smooth across 𝒆𝑙. Moreover, if the interpolation values at the vertices 𝒗𝑖,
𝒗𝑗 , 𝒗𝑘, 𝒗𝑘′ come from the same polynomial 𝑃 ∈ P3, then 𝑆|𝒕𝑚∪𝒕𝑚′ = 𝑃 . For the proofs of these statements we refer the reader to [5].

3. Cubic macro-elements

In this section we present three constructions of cubic splines over a triangulation ▵, each of them determined by three degrees
of freedom associated with every vertex of ▵. The splines are specified by providing the Bernstein–Bézier form on each triangle of
▵ in terms of linear polynomials 𝑄𝑖 associated with the vertices 𝒗𝑖 ∈ 𝑉 . For the first and third construction this is a reinterpretation
of the results derived in [1,11], respectively, whereas the second construction appears to be new. In the second part of the section
we propose locally supported basis functions for a numerically convenient representation of the considered splines.

3.1. 𝐶0-smooth macro-element with quadratic precision

First, we recast the Zienkiewicz element [1] that provides a 𝐶0-smooth spline construction over ▵ with quadratic precision.
Let 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] ∈ 𝑇 be an arbitrary triangle of ▵. We prescribe a spline 𝑆 ∈ S03(▵) by setting

𝛽𝑚,(3,0,0)(𝑆) = 𝑄𝑖(𝒗𝑖), 𝛽𝑚,(2,1,0)(𝑆) = 𝑄𝑖(
2
3𝒗𝑖 +

1
3𝒗𝑗 ), 𝛽𝑚,(2,0,1)(𝑆) = 𝑄𝑖(

2
3𝒗𝑖 +

1
3𝒗𝑘), (6a)

𝛽𝑚,(0,3,0)(𝑆) = 𝑄𝑗 (𝒗𝑗 ), 𝛽𝑚,(0,2,1)(𝑆) = 𝑄𝑗 (
2
3𝒗𝑗 +

1
3𝒗𝑘), 𝛽𝑚,(1,2,0)(𝑆) = 𝑄𝑗 (

2
3𝒗𝑗 +

1
3𝒗𝑖), (6b)

𝛽𝑚,(0,0,3)(𝑆) = 𝑄𝑘(𝒗𝑘), 𝛽𝑚,(1,0,2)(𝑆) = 𝑄𝑘(
2
3𝒗𝑘 +

1
3𝒗𝑖), 𝛽𝑚,(0,1,2)(𝑆) = 𝑄𝑘(

2
3𝒗𝑘 +

1
3𝒗𝑗 ), (6c)

and

𝛽𝑚,(1,1,1)(𝑆) =
1
3𝑄𝑖(

1
2𝒗𝑖 +

1
4𝒗𝑗 +

1
4𝒗𝑘) +

1
3𝑄𝑗 (

1
2𝒗𝑗 +

1
4𝒗𝑘 +

1
4𝒗𝑖) +

1
3𝑄𝑘(

1
2𝒗𝑘 +

1
4𝒗𝑖 +

1
4𝒗𝑗 ). (7)

Following the discussion in Section 2.3, such a spline is 𝐶1-smooth at each vertex of ▵ but only 𝐶0-smooth across the edges of ▵.
We denote by S1 ⊂ S03(▵) the vector space consisting of all splines that can be obtained by the described construction. It holds

hat dim(S1) = 3𝑛𝑣 and P2 ⊂ S1.

.2. 𝐶0-smooth macro-element with cubic precision

Next, we describe the Bernstein–Bézier form on a triangle 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] ∈ 𝑇 that provides a 𝐶0-smooth spline construction
over ▵ with cubic precision. For this we assume that 𝒕𝑚 has at most two edges in 𝐸𝑏. Additionally, we choose the ordering of the
vertices of 𝒕𝑚 in such a way that [𝒗𝑖, 𝒗𝑗 ] ∈ 𝐸 ⧵ 𝐸𝑏 and, if 𝒕𝑚 has at most one boundary edge, [𝒗𝑗 , 𝒗𝑘] ∈ 𝐸 ⧵ 𝐸𝑏.

We prescribe a spline 𝑆 ∈ S03(▵) by setting 𝛽𝑚,𝒅(𝑆), 𝒅 ∈ D3 ⧵ {(1, 1, 1)}, as in (6) and

𝛽𝑚,(1,1,1)(𝑆) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
3 𝛾𝑚,𝑘(𝑆) +

1
3 𝛾𝑚,𝑖(𝑆) +

1
3 𝛾𝑚,𝑗 (𝑆) if all edges of 𝒕𝑚 are in 𝐸 ⧵ 𝐸𝑏,

1
2 𝛾𝑚,𝑘(𝑆) +

1
2 𝛾𝑚,𝑖(𝑆) if two edges of 𝒕𝑚 are in 𝐸 ⧵ 𝐸𝑏,

𝛾𝑚,𝑘(𝑆) if one edge of 𝒕𝑚 is in 𝐸 ⧵ 𝐸𝑏,

where the functionals 𝛾𝑚,𝑖, 𝛾𝑚,𝑗 , 𝛾𝑚,𝑘 are defined as in (5). Following the discussion in Section 2.3, the resulting spline is again
𝐶1-smooth at each vertex of ▵ and 𝐶0-smooth across the edges of ▵. The main difference in comparison with the spline given in
Section 3.1 is that the value 𝛽𝑚,(1,1,1)(𝑆) depends not only on the polynomials 𝑄𝑖, 𝑄𝑗 , 𝑄𝑘 but also on the polynomials associated with
the vertices of the triangles in 𝑇 that share an edge with 𝒕𝑚. Nonetheless, the construction remains local.

We denote by S2 ⊂ S03(▵) the vector space consisting of all splines that can be obtained by the described construction. It holds
that dim(S2) = 3𝑛𝑣 and P3 ⊂ S2.

3.3. 𝐶1-smooth macro-element with cubic precision

In order to obtain a 𝐶1-smooth spline, a standard macro-element approach is to split each triangle of the triangulation into
a number of smaller ones. Here, we use the Clough–Tocher splitting [3] which refines a triangle 𝒕𝑚 = [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] ∈ 𝑇 into three
triangles

𝒕𝑚𝑘
= [𝒗𝑖, 𝒗𝑗 , 𝒗𝑖𝑗𝑘], 𝒕𝑚𝑖

= [𝒗𝑗 , 𝒗𝑘, 𝒗𝑖𝑗𝑘], 𝒕𝑚𝑗
= [𝒗𝑘, 𝒗𝑖, 𝒗𝑖𝑗𝑘]

determined by the split point 𝒗𝑖𝑗𝑘 = 1
3𝒗𝑖 +

1
3𝒗𝑗 +

1
3𝒗𝑘. These triangles define a finer triangulation denoted by ▵CT. For an illustration,

ee Fig. 1 (left).
In what follows we provide a 𝐶1-smooth spline construction over ▵CT inspired by [11]. It differs from the classical one in that

t does not introduce extra degrees of freedom related to directional derivatives along the edges. As it was already proposed in [3],
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Fig. 1. A triangulation ▵ of the unit square depicted by the uninterrupted lines. The figure on the left also shows the Clough–Tocher refinement ▵CT of ▵
determined by the dotted lines. The figure on the right depicts a configuration of triangles associated with the vertices of ▵ suitable for construction of basis
unctions. Each triangle is obtained as the smallest triangle that contains the gray colored points in the vicinity of the vertex.

hese degrees of freedom can be simply avoided by imposing that the directional derivatives are linear but such a constraint reduces
recision of splines to quadratic polynomials. On the other hand, the concepts introduced in [11] ensure cubic precision.

We prescribe a spline 𝑆 ∈ S13(▵CT) by first setting

𝛽𝑚𝑘 ,(3,0,0)(𝑆) = 𝑄𝑖(𝒗𝑖), 𝛽𝑚𝑘 ,(2,1,0)(𝑆) = 𝑄𝑖(
2
3𝒗𝑖 +

1
3𝒗𝑗 ), 𝛽𝑚𝑘 ,(2,0,1)(𝑆) = 𝑄𝑖(

2
3𝒗𝑖 +

1
3𝒗𝑖𝑗𝑘),

𝛽𝑚𝑘 ,(0,3,0)(𝑆) = 𝑄𝑗 (𝒗𝑗 ), 𝛽𝑚𝑘 ,(1,2,0)(𝑆) = 𝑄𝑗 (
2
3𝒗𝑗 +

1
3𝒗𝑖), 𝛽𝑚𝑘 ,(0,2,1)(𝑆) = 𝑄𝑗 (

2
3𝒗𝑗 +

1
3𝒗𝑖𝑗𝑘),

and, assuming 𝒕𝑚 has at most two edges in 𝐸𝑏,

𝛽𝑚𝑘 ,(1,1,1)(𝑆) =
1
3
𝑄𝑖(

2
3𝒗𝑖 +

1
3𝒗𝑗 ) +

1
3
𝑄𝑗 (

2
3𝒗𝑗 +

1
3𝒗𝑖)

+ 1
3

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛾𝑚,𝑘(𝑆) if [𝒗𝑖, 𝒗𝑗 ] ∈ 𝐸 ⧵ 𝐸𝑏,
1
2 𝛾𝑚,𝑖(𝑆) +

1
2 𝛾𝑚,𝑗 (𝑆) if [𝒗𝑖, 𝒗𝑗 ] ∈ 𝐸𝑏 and [𝒗𝑗 , 𝒗𝑘], [𝒗𝑘, 𝒗𝑖] ∈ 𝐸 ⧵ 𝐸𝑏,

𝛾𝑚,𝑗 (𝑆) if [𝒗𝑖, 𝒗𝑗 ], [𝒗𝑗 , 𝒗𝑘] ∈ 𝐸𝑏 and [𝒗𝑘, 𝒗𝑖] ∈ 𝐸 ⧵ 𝐸𝑏,

𝛾𝑚,𝑖(𝑆) if [𝒗𝑖, 𝒗𝑗 ], [𝒗𝑘, 𝒗𝑖] ∈ 𝐸𝑏 and [𝒗𝑗 , 𝒗𝑘] ∈ 𝐸 ⧵ 𝐸𝑏.

We analogously define the values 𝛽𝑚𝑗 ,(𝑑0 ,𝑑1 ,𝑑2)(𝑆) and 𝛽𝑚𝑖 ,(𝑑0 ,𝑑1 ,𝑑2)(𝑆) for 𝑑2 ≤ 1. The remaining values are given by

𝛽𝑚𝑘 ,(1,0,2)(𝑆) = 𝛽𝑚𝑗 ,(0,1,2)(𝑆) =
1
3 𝛽𝑚𝑘 ,(2,0,1)(𝑆) +

1
3 𝛽𝑚𝑘 ,(1,1,1)(𝑆) +

1
3 𝛽𝑚𝑗 ,(1,1,1)(𝑆),

𝛽𝑚𝑖 ,(1,0,2)(𝑆) = 𝛽𝑚𝑘 ,(0,1,2)(𝑆) =
1
3 𝛽𝑚𝑖 ,(2,0,1)(𝑆) +

1
3 𝛽𝑚𝑖 ,(1,1,1)(𝑆) +

1
3 𝛽𝑚𝑘 ,(1,1,1)(𝑆),

𝛽𝑚𝑗 ,(1,0,2)(𝑆) = 𝛽𝑚𝑖 ,(0,1,2)(𝑆) =
1
3 𝛽𝑚𝑗 ,(2,0,1)(𝑆) +

1
3 𝛽𝑚𝑗 ,(1,1,1)(𝑆) +

1
3 𝛽𝑚𝑖 ,(1,1,1)(𝑆),

nd

𝛽𝑚𝑘 ,(0,0,3)(𝑆) = 𝛽𝑚𝑖 ,(0,0,3)(𝑆) = 𝛽𝑚𝑗 ,(0,0,3)(𝑆) =
1
3 𝛽𝑚𝑘 ,(1,0,2)(𝑆) +

1
3 𝛽𝑚𝑖 ,(1,0,2)(𝑆) +

1
3 𝛽𝑚𝑗 ,(1,0,2)(𝑆).

ollowing the discussion in Section 2.3, the resulting spline is 𝐶1-smooth at each vertex of ▵ and also 𝐶1-smooth across each edge
f ▵. Moreover, it is by construction 𝐶1-smooth inside each triangle of ▵ and consequently 𝐶1-smooth everywhere on the domain
.

We denote by S3 ⊂ S13(▵CT) the vector space consisting of all splines that can be obtained by the described construction. It holds
hat dim(S3) = 3𝑛𝑣 and P3 ⊂ S3.

.4. Basis functions

In the following we define basis functions for the spaces S𝓁 , 𝓁 = 1, 2, 3. For a fixed 𝓁, we associate with every vertex 𝒗𝑖 ∈ 𝑉
𝓁

531
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Fig. 2. Contour plots of the basis functions 𝐵𝓁
𝑖,𝑟 for 𝑟 = 0, 1, 2 and 𝓁 = 1, 2, 3 that are associated with the vertex 𝒗𝑖 in the interior of the domain and defined

based on the triangle [𝒒𝑖,0 , 𝒒𝑖,1 , 𝒒𝑖,2] shown in Fig. 1.

The function 𝐵𝓁
𝑖,𝑟 ∈ S𝓁 is uniquely specified by choosing a linear polynomial 𝑄𝑖,𝑟 and setting 𝑄𝑖 = 𝑄𝑖,𝑟 and 𝑄𝑗 = 0, 𝑗 ≠ 𝑖, in the

construction of splines described in Sections 3.1, 3.2, and 3.3. Independently of the choice of 𝑄𝑖,𝑟, this definition ensures that the
support of 𝐵𝓁

𝑖,𝑟 is local. The construction in Section 3.1 implies that the support of 𝐵1
𝑖,𝑟 is contained in the union of triangles of ▵

that have a vertex at 𝒗𝑖. The supports of 𝐵2
𝑖,𝑟 and 𝐵3

𝑖,𝑟 are, according to the constructions in Sections 3.2 and 3.3, supplemented by
the triangles of ▵ that share an edge with a triangle that is in the support of 𝐵1

𝑖,𝑟.
Any choice of linearly independent linear polynomials 𝑄𝑖,𝑟, 𝑟 = 0, 1, 2, yields a set of linearly independent functions 𝐵𝓁

𝑖,𝑟. Endorsing
he ideas introduced in [4], we opt for polynomials determined by a barycentric coordinate system. Let [𝒒𝑖,0, 𝒒𝑖,1, 𝒒𝑖,2] ⊂ R2 be a
riangle of a small area that contains 𝒗𝑖 and the point 5

6𝒗𝑖+
1
6𝒗𝑗 for every edge [𝒗𝑖, 𝒗𝑗 ] ∈ 𝐸. Such choice is motivated by the stability

analysis in [10] and numerical tests made in Example 3 (presented in Section 4). Fig. 1 (right) shows an example of such triangles
that have minimal area.
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Fig. 3. Contour plots of the basis functions 𝐵𝓁
𝑗,𝑟 for 𝑟 = 0, 1, 2 and 𝓁 = 1, 2, 3 that are associated with the vertex 𝒗𝑗 on the boundary of the domain and defined

based on the triangle [𝒒𝑗,0 , 𝒒𝑗,1 , 𝒒𝑗,2] shown in Fig. 1. Notice that the functions 𝐵𝓁
𝑗,0 are zero on the boundary since the points 𝒒𝑗,1 and 𝒒𝑗,2 (marked in Fig. 1) lie

on the boundary of the domain.

We define (𝑄𝑖,0, 𝑄𝑖,1, 𝑄𝑖,2) to be the barycentric coordinates with respect to [𝒒𝑖,0, 𝒒𝑖,1, 𝒒𝑖,2]. One obvious property of these linear
polynomials is that 𝑄𝑖,𝑟(𝒒𝑖,𝑟) = 1 and 𝑄𝑖,𝑟(𝒒𝑖,𝜌) = 0 for every 𝜌 ∈ {0, 1, 2} ⧵ {𝑟}. Examples of the resulting functions 𝐵𝓁

𝑖,𝑟 are shown in
Figs. 2 and 3.

Remark 1. In the construction of basis functions for the Powell–Sabin macro-element provided in [4], the triangle [𝒒𝑖,0, 𝒒𝑖,1, 𝒒𝑖,2]
associated with a vertex 𝒗𝑖 ∈ 𝑉 is constrained to contain a certain set of points in order to ensure the nonnegativity of basis functions.
This is not the case here as it is unclear how to achieve nonnegativity of the basis functions for S2 and S3. On the other hand, for
the considered basis of S1, the nonnegativity can be easily enforced by requiring that [𝒒𝑖,0, 𝒒𝑖,1, 𝒒𝑖,2] contains the point 2

3𝒗𝑖 +
1
3𝒗𝑗 for

every edge [𝒗𝑖, 𝒗𝑗 ] ∈ 𝐸 with a vertex at 𝒗𝑖 and the point 1
2𝒗𝑖 +

1
4𝒗𝑗 +

1
4𝒗𝑘 for every triangle [𝒗𝑖, 𝒗𝑗 , 𝒗𝑘] ∈ 𝑇 with a vertex at 𝒗𝑖. This

can be directly observed from (6) and (7) by definition of the basis functions 𝐵1 , 𝑟 = 0, 1, 2.
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3.5. Spline representation

A spline 𝑆 ∈ S𝓁 , 𝓁 ∈ {1, 2, 3}, can be uniquely represented as a linear combination of the basis functions 𝐵𝓁
𝑖,𝑟 for 𝒗𝑖 ∈ 𝑉 and

∈ {0, 1, 2}. To express the coefficients of this representation, we introduce the linear functionals

𝛽𝓁𝑖,𝑟(𝑆) ∶= 𝑆(𝒗𝑖) + ∇𝑆(𝒗𝑖) ⋅ (𝒒𝑖,𝑟 − 𝒗𝑖). (8)

Let 𝑄𝑖 be the linear polynomial that by constructions in Sections 3.1, 3.2, 3.3 specifies the value and the gradient of 𝑆 at 𝒗𝑖.
rom the discussion in Section 2.3 we see that 𝛽𝓁𝑖,𝑟(𝑆) = 𝑄𝑖(𝒒𝑖,𝑟). In particular, by definitions of the basis functions in Section 3.4,
e have

𝛽𝓁𝑖,𝑟(𝐵
𝓁
𝑗,𝜌) =

{

1 if 𝑖 = 𝑗 and 𝑟 = 𝜌,
0 otherwise,

nd hence

𝑆 =
𝑛𝑣
∑

𝑖=1

2
∑

𝑟=0
𝛽𝓁𝑖,𝑟(𝑆)𝐵

𝓁
𝑖,𝑟. (9)

his result has some interesting consequences.
As the constant (𝑥, 𝑦) ↦ 1 is an element of S𝓁 , (8) and (9) imply

1 =
𝑛𝑣
∑

𝑖=1

2
∑

𝑟=0
𝐵𝓁
𝑖,𝑟(𝑥, 𝑦)

or every (𝑥, 𝑦) ∈ 𝛩, i.e., the basis functions form a partition of unity. Moreover, considering the linear polynomials (𝑥, 𝑦) ↦ 𝑥 and
𝑥, 𝑦) ↦ 𝑦, it follows by the same line of arguments that

(𝑥, 𝑦) =
𝑛𝑣
∑

𝑖=1

2
∑

𝑟=0
𝒒𝑖,𝑟𝐵𝓁

𝑖,𝑟(𝑥, 𝑦)

or every (𝑥, 𝑦) ∈ 𝛩, i.e., the points 𝒒𝑖,𝑟, 𝑟 = 0, 1, 2, that define the triangle associated with 𝒗𝑖 ∈ 𝑉 are the Greville points of the basis
functions 𝐵𝓁

𝑖,𝑟.

4. Numerical comparison

This section provides a number of numerical examples with the aim to demonstrate the behavior of the cubic splines presented in
Section 3. We consider the problems of finding the best (discrete) 𝐿2 approximation to a function and solving the Poisson boundary
value problem via the isoparametric finite element method and the immersed penalized boundary method.

4.1. Preliminaries

In what follows we deal with methods that require the representation of a spline 𝑆 ∈ S𝓁 , 𝓁 ∈ {1, 2, 3}, in terms of basis functions.
For this purpose we use the bases introduced in Section 3.4. To make the notation simpler, we denote the functions 𝐵𝓁

𝑖,𝑟, 𝑖 = 1, 2,… , 𝑛𝑣,
𝑟 = 0, 1, 2, for a fixed 𝓁 by 𝑆𝑘 with the indices 𝑘 ranging from 1 to 𝑁 = 3𝑛𝑣. The spline 𝑆 is expressed in the form

𝑆 =
𝑁
∑

𝑘=1
𝑐𝑘𝑆𝑘 (10)

or coefficients 𝑐𝑘 ∈ R. Additionally, we assume that the basis functions are enumerated in such a way that 𝑆1, 𝑆2,… , 𝑆𝑛 for 𝑛 < 𝑁
re zero on the boundary of 𝛩, and 𝑆𝑛+1, 𝑆𝑛+2,… , 𝑆𝑁 are nonzero on the boundary of 𝛩. This arrangement is important for the
inite element method described in Section 4.3.

xample 1. Let 𝛩 be the unit square partitioned by the triangulation ▵ shown in Fig. 1. The triangulation has 16 vertices, hence
= 48. The basis functions are determined by the shaded triangles, one for each vertex. For each vertex on the boundary of 𝛩 that

s shared by two collinear edges, i.e., a boundary vertex that is not a corner of the square, the triangle is positioned in a way that
wo of its vertices lie on the boundary. This means that of the three basis functions associated with the vertex only two are nonzero
n the boundary (see Fig. 3), which implies that 𝑛 = 24. An important aspect of such choice is that it in general ensures that the
estrictions of 𝑆𝑛+1, 𝑆𝑛+2,… , 𝑆𝑁 to 𝜕𝛩 are linearly independent (see [6] for a more detailed discussion).

xample 2. Fig. 4 shows three subsequent refinements of the triangulation presented in Example 1 and together with it forms
sequence of four triangulations. In each step we refine the triangulation by subdividing each triangle into four smaller triangles

etermined by the vertices and midpoints of the edges. We also adjust and supplement the set of triangles associated with the
ertices so that the basis functions on the refined triangulations satisfy the properties discussed in Example 1.
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Fig. 4. A sequence of triangulations obtained by subsequently refining the triangulation of the unit square shown in Fig. 1.

Fig. 5. The condition numbers of matrices arising in different approximation methods with respect to the scaling factor 𝜔 that determines the size of triangles
sed in the construction of the basis functions for S𝓁 , 𝓁 = 1, 2, 3, as described in Example 3.

In the process of refinement described in Example 2, the length ℎ of the longest edge in the triangulation is halved, which
llows us to numerically inspect the convergence rates of the methods. With respect to the polynomial precision properties, it is
xpected that the methods based on S1 converge with rate at most 3, and the methods based on S2 and S3 converge with rate at
ost 4, i.e., the approximation error in the best case behaves as (ℎ3) and (ℎ4), respectively. In the numerical tests conducted

ver the triangulations from Examples 1 and 2, the approximation error is measured as the maximal absolute difference between
xact solution and approximation computed on the 401 × 401 uniform grid of points in the unit square.

The methods described in Sections 4.2 and 4.3 reduce to solving a system of linear equations 𝑨𝒄 = 𝒃. The matrix 𝑨 is of size
ither 𝑁 × 𝑁 or 𝑛 × 𝑛, and the vectors 𝒄 and 𝒃 are of length either 𝑁 or 𝑛. In this respect the elements of 𝒄 are either all or the
irst 𝑛 coefficients 𝑐𝑘 in (10) collected increasingly by 𝑘. The elements of 𝑨 are denoted by either 𝑎𝑁𝑗,𝑘 or 𝑎𝑛𝑗,𝑘, and the elements of 𝒃
re denoted by either 𝑏𝑁𝑗 or 𝑏𝑛𝑗 with the indices 𝑗 and 𝑘 ranging from 1 to 𝑁 or 𝑛, respectively. We measure stability of the spline
epresentation by the 2-norm condition number (cond) of the matrix 𝑨.

xample 3. For the triangulation discussed in Example 1 we inspect the condition numbers of the matrices 𝑨 arising in the best
2 approximation (Example 4), finite element method (Example 8), and immersed penalized boundary method (Example 10) with

espect to the size of the triangles that define the basis functions. Suppose [𝒒𝑖,0, 𝒒𝑖,1, 𝒒𝑖,2] are the triangles associated with the vertices
𝑖 ∈ 𝑉 depicted in Fig. 1 (right), and let

𝒒𝜔𝑖,𝑟 = 𝒗𝑖 + 𝜔(𝒒𝑖,𝑟 − 𝒗𝑖), 𝑟 = 0, 1, 2,

or a factor 𝜔 > 0. Fig. 5 depicts the condition numbers in dependence of 𝜔 ∈ [0.2, 6] for the considered basis of S𝓁 , 𝓁 ∈ {1, 2, 3},
etermined by the triangles [𝒒𝜔𝑖,0, 𝒒

𝜔
𝑖,1, 𝒒

𝜔
𝑖,2]. The results indicate that 𝜔 = 1 ensures near-optimal stability.

The expressions for the elements of 𝑨 and 𝒃 typically include integrals over a domain. If 𝑆 is a spline over a triangulation ▵ of
he domain 𝛩 that is defined piecewise on each triangle 𝒕𝑚, 𝑚 ∈

{

1, 2,… , 𝑛𝑡
}

, of ▵ by a polynomial 𝑃𝑚, the integral of 𝑆 over the
domain is always considered as the sum of integrals of 𝑃𝑚 over the triangles of ▵. More precisely,

∫𝛩
𝑆 d𝛩 =

𝑛𝑡
∑

𝑚=1

(

∫𝒕𝑚
𝑃𝑚 d𝒕𝑚

)

.
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Table 1
Approximation errors and condition numbers for the problem described in Example 4.
𝑁 S1 S2 S3

Error cond Error cond Error cond

48 1.88e−01 4.94e+01 1.97e−01 3.97e+01 2.07e−01 4.45e+01
153 1.86e−02 4.58e+01 9.62e−03 4.12e+01 9.20e−03 4.25e+01
543 2.33e−03 4.69e+01 8.49e−04 4.66e+01 8.15e−04 5.08e+01
2043 3.89e−04 4.95e+01 8.99e−05 5.04e+01 8.39e−05 5.71e+01

Fig. 6. Errors of the approximations from S𝓁 , 𝓁 = 1, 2, 3, for the problem discussed in Example 4 (left) and the convergence of the coefficient vectors corresponding
to the discrete best 𝐿2 approximation when the number of points is increased as described in Example 5 (right).

In the following we briefly discuss some common methods for function approximation and solving boundary value problems and
provide several numerical examples. We comment the results in Section 5.

4.2. Function approximations

Let 𝛩 be a polygonal domain and ▵ its triangulation. The best 𝐿2 approximation 𝑆 ∈ S𝓁 , 𝓁 ∈ {1, 2, 3}, of a given function
𝐹 ∈ 𝐿2(𝛩), i.e., the solution to the minimization problem

argmin
𝑆∈S𝓁 ∫𝛩

(𝐹 − 𝑆)2 d𝛩,

is determined by the conditions

∫𝛩
(𝐹 − 𝑆) 𝑆𝑗 d𝛩 = 0, 𝑗 = 1, 2,… , 𝑁. (11)

If we represent 𝑆 in the form (10), the computation of the unknown coefficients 𝑐𝑘 amounts to solving the system 𝑨𝒄 = 𝒃 determined
by

𝑎𝑁𝑗,𝑘 = ∫𝛩
𝑆𝑘 𝑆𝑗 d𝛩, 𝑏𝑁𝑗 = ∫𝛩

𝐹 𝑆𝑗 d𝛩.

The matrix 𝑨 is the Gram matrix associated with the functions 𝑆1, 𝑆2,… , 𝑆𝑁 .

Example 4. We compute the best 𝐿2 approximation in S𝓁 , 𝓁 = 1, 2, 3, to the Franke’s test function

𝐹 (𝑥, 𝑦) = 0.75 exp
(

− 1
4 (9𝑥 − 2)2 − 1

4 (9𝑦 − 2)2
)

+ 0.75 exp
(

− 1
49 (9𝑥 + 1)2 − 1

10 (9𝑦 + 1)
)

+ 0.5 exp
(

− 1
4 (9𝑥 − 7)2 − 1

4 (9𝑦 − 3)2
)

− 0.2 exp
(

−(9𝑥 − 4)2 − (9𝑦 − 7)2
)

(12)

n the unit square partitioned by the sequence of triangulations discussed in Example 2. The results are provided in Table 1. Fig. 6
left) depicts the errors with respect to the length of the longest edge of the underlying triangulation. Fig. 7 shows the contour plots
f the approximations over the initial triangulation.
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Fig. 7. Contour plots of the Franke’s test function and its best 𝐿2 approximations in S𝓁 , 𝓁 = 1, 2, 3.

Table 2
Approximation errors and condition numbers for the problem described in Example 5.
𝑁 S1 S2 S3

Error cond Error cond Error cond

48 1.76e−01 4.63e+01 1.85e−01 3.69e+01 1.95e−01 4.15e+01
153 1.87e−02 3.91e+01 9.59e−03 3.41e+01 9.20e−03 3.63e+01
543 2.33e−03 3.87e+01 8.48e−04 3.45e+01 8.18e−04 3.81e+01
2043 3.90e−04 3.90e+01 9.00e−05 3.55e+01 8.38e−05 4.21e+01

In the discrete version of the best 𝐿2 approximation we use given values 𝐹 (𝒑𝑑 ), 𝑑 = 1, 2,… ,𝑀 , at 𝑀 ≥ 𝑁 points 𝒑𝑑 ∈ 𝛩 and
search for

argmin
𝑆∈S𝓁

𝑀
∑

𝑑=1

(

𝐹 (𝒑𝑑 ) − 𝑆(𝒑𝑑 )
)2 .

To this end, we replace the conditions in (11) by
𝑀
∑

𝑑=1

(

𝐹 (𝒑𝑑 ) − 𝑆(𝒑𝑑 )
)

𝑆𝑗 (𝒑𝑑 ) = 0, 𝑗 = 1, 2,… , 𝑁.

This yields the system 𝑨𝒄 = 𝒃 determined by

𝑎𝑁𝑗,𝑘 =
𝑀
∑

𝑑=1
𝑆𝑘(𝒑𝑑 )𝑆𝑗 (𝒑𝑑 ), 𝑏𝑁𝑗 =

𝑀
∑

𝑑=1
𝐹 (𝒑𝑑 )𝑆𝑗 (𝒑𝑑 ).

Alternatively, the vector of coefficients 𝒄 can be expressed as the best least squares solution to the overdetermined system 𝑺 𝒄 = 𝒇 ,
where 𝑺 ∈ R𝑀×𝑁 is the collocation matrix determined by element 𝑆𝑘(𝒑𝑑 ) at position (𝑑, 𝑘), and 𝒇 ∈ R𝑀 is the vector with element
𝐹 (𝒑𝑑 ) at position 𝑑.

Example 5. We repeat Example 4 for the discrete best 𝐿2 approximation based on the 201 × 201 uniform grid of points in the unit
square. Table 2 reveals that results are similar to the ones observed in Example 4. For the triangulation discussed in Example 1, Fig. 6
(right) shows linear decay in 2-norm of the difference between the coefficient vector corresponding to the best 𝐿2 approximation
and the coefficient vector corresponding to the discrete best 𝐿2 approximation on the 𝑚 × 𝑚 uniform grid of points (𝑀 = 𝑚2) for
𝑚 ∈ {101, 201,… , 1001}.

Since scattered function data to be approximated is often subjected to noise, it is common to use a penalty term in the
minimization of the discrete 𝐿2 norm to prevent high oscillation of the approximant. Following [12], we can search for

argmin
𝑆∈S𝓁

( 𝑀
∑

𝑑=1

(

𝐹 (𝒑𝑑 ) − 𝑆(𝒑𝑑 )
)2 + 𝜆∫𝛩

𝒆 ⋅ (𝑯𝑆 ⊙𝑯𝑆 ) ⋅ 𝒆 d𝛩

)

,

where 𝜆 ≥ 0 is the penalty parameter, 𝒆 = (1, 1), 𝑯𝑆 is the Hessian matrix of 𝑆, and ⊙ denotes the Hadamard product. The solution
to the penalized discrete best 𝐿2 approximation problem can be computed by solving the system 𝑨𝒄 = 𝒃 for

𝑨 = 𝑺𝑇𝑺 + 𝜆𝑯 , 𝒃 = 𝑺𝑇 𝒇 ,

where 𝑯 ∈ R𝑁×𝑁 is determined by the element ∫ 𝒆 ⋅ (𝑯 ⊙𝑯 ) ⋅ 𝒆 d𝛩 at position (𝑗, 𝑘).
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Fig. 8. The approximation error with respect to the penalty parameter 𝜆 and noise magnitude 𝜈 for the problem described in Example 6.

Example 6. As in Example 5 we approximate the function (12), but this time we corrupt the function values computed on
the 201 × 201 uniform grid of points by adding random noise drawn from the standard uniform distribution on the interval
(−𝜈, 𝜈) for 𝜈 > 0. We consider approximations obtained by the penalized method over the triangulation shown in Fig. 4 (left).
Fig. 8 (left) shows the approximation errors in dependence of 𝜆 ∈ [10−8, 102] with 𝜈 fixed to 0.25. The dotted lines correspond to
the approximations obtained for uncorrupted data (𝜈 = 0). On the other hand, Fig. 8 (right) shows the approximation errors in
dependence of 𝜈 ∈ [0.025, 0.6] where for each 𝜈 and each spline space the value of 𝜆 is computed in advance to be near-optimal.
The dotted lines correspond to the approximations obtained without penalization (𝜆 = 0). Note that on the unit square the function
12) attains values between 0 and 1.22 and thus the values of 𝜈 in this test represent magnitudes of noise approximately from 2 to
0 percent of the function range.

.3. Approximations to boundary value problems

Let 𝛺 ⊂ R2 be a connected bounded domain that can be parametrized by a 𝐶1-smooth mapping 𝑃 ∈ S𝓁×S𝓁 defined on a polygonal
domain 𝛩 ⊂ R2 triangulated by ▵. We assume 𝑃 is a bijection with a nonvanishing Jacobian on 𝛩 that maps the boundary 𝜕𝛩 of 𝛩
to the boundary 𝜕𝛺 of 𝛺.

Example 7. Fig. 9 (left) shows a domain 𝛺 that can be exactly parametrized on the unit square 𝛩 by a geometry mapping
𝑃 ∈ P2 × P2. Both components of this mapping (shown in the middle and on the right of Fig. 9) are contained in S𝓁 , 𝓁 ∈ {1, 2, 3},
nd can be represented by the basis functions 𝑆1, 𝑆2,… , 𝑆𝑁 with the help of (8) and (9).

For given functions 𝐹 ∈ 𝐿2(𝛺) and 𝐺 ∈ 𝐿2(𝜕𝛺) we consider the boundary value problem governed by the Poisson equation and
he Dirichlet boundary conditions. The goal is to find the function 𝑈 satisfying

{

−∇2𝑈 (𝒑) = 𝐹 (𝒑) if 𝒑 ∈ 𝛺 ⧵ 𝜕𝛺,

𝑈 (𝒑) = 𝐺(𝒑) if 𝒑 ∈ 𝜕𝛺.
(13)

n the isoparametric finite element method based on S𝓁 we search for an approximation to 𝑈 of the form 𝑆 ◦𝑃−1, 𝑆 ∈ S𝓁 . After the
alerkin discretization in span(𝑆1 ◦𝑃−1, 𝑆2 ◦𝑃−1,… , 𝑆𝑛 ◦𝑃−1) this amounts to finding 𝑆 that admits

∫𝛺
∇(𝑆 ◦𝑃−1) ⋅ ∇(𝑆𝑗 ◦𝑃

−1) d𝛺 = ∫𝛺
𝐹 (𝑆𝑗 ◦𝑃

−1) d𝛺, 𝑗 = 1, 2,… , 𝑛,

r, equivalently,

∫𝛩
∇𝑆 ⋅ 𝑱−1

𝑃 𝑱−𝑇
𝑃 ⋅ ∇𝑆𝑗

|

|

det(𝑱𝑃 )|| d𝛩 = ∫𝛩
(𝐹 ◦𝑃 )𝑆𝑗

|

|

det(𝑱𝑃 )|| d𝛩, 𝑗 = 1, 2,… , 𝑛, (14)

here 𝑱𝑃 is the Jacobian matrix of 𝑃 .
We modify the expression (10) of 𝑆 to

𝑆 = 𝑆0 +
𝑛
∑

𝑐𝑘𝑆𝑘, 𝑆0 =
𝑁
∑

𝑐𝑘𝑆𝑘.
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Fig. 9. A domain with curved boundary 𝛺 (left) discussed in Example 7, which is contained in the unit square 𝛩. The domain 𝛺 can be parametrized by a
mapping whose components are quadratic polynomials (the contour plots of the first and the second component are shown in the middle and on the right,
respectively). The left figure also depicts the partition of the domain that is obtained by using this mapping to map the triangulation from Example 1.

Table 3
Approximation errors and condition numbers for the problem described in Example 8.
𝑛 S1 S2 S3

Error cond Error cond Error cond

24 1.25e−01 8.04e+00 1.20e−01 1.20e+01 1.12e−01 1.27e+01
109 3.82e−02 3.82e+01 2.00e−02 4.35e+01 1.89e−02 4.55e+01
459 5.69e−03 1.55e+02 1.28e−03 1.71e+02 1.35e−03 1.79e+02
1879 7.85e−04 6.20e+02 1.06e−04 6.80e+02 1.09e−04 7.11e+02

Table 4
Approximation errors and condition numbers for the problem described in Example 9.
𝑛 S1 S2 S3

Error cond Error cond Error cond

24 1.91e−01 8.63e+00 9.36e−02 9.85e+00 9.45e−02 1.05e+01
109 3.49e−02 3.36e+01 3.29e−02 3.54e+01 3.07e−02 3.74e+01
459 5.92e−03 1.44e+02 2.24e−03 1.40e+02 2.22e−03 1.48e+02
1879 9.83e−04 5.98e+02 1.99e−04 5.86e+02 2.07e−04 6.10e+02

First, we compute the coefficients 𝑐𝑘, 𝑘 = 𝑛+1, 𝑛+2,… , 𝑁 , so that 𝑆0 is the discrete best 𝐿2 approximation to 𝐺 ◦𝑃 for a dense set
of points on the boundary of 𝛩. Then we transform (14) into the system 𝑨𝒄 = 𝒃 determined by

𝑎𝑛𝑗,𝑘 = ∫𝛩
∇𝑆𝑘 ⋅ 𝑱−1

𝑃 𝑱−𝑇
𝑃 ⋅ ∇𝑆𝑗

|

|

det(𝑱𝑃 )|| d𝛩, 𝑏𝑛𝑗 = ∫𝛩

(

(𝐹 ◦𝑃 )𝑆𝑗 − ∇𝑆0 ⋅ 𝑱−1
𝑃 𝑱−𝑇

𝑃 ⋅ ∇𝑆𝑗
)

|

|

det(𝑱𝑃 )|| d𝛩.

The matrix 𝑨 is the isoparametric stiffness matrix associated with the functions 𝑆1, 𝑆2,… , 𝑆𝑛.

Example 8. Let 𝑃 (𝑥, 𝑦) = (𝑥, 𝑦) and 𝛺 = 𝛩 the unit square triangulated by the sequence of triangulations discussed in Example 2.
Applying the finite element method, we approximate the solution to the problem (13) with the manufactured solution

𝑈 (𝑥, 𝑦) = sin (2𝜋(1 − 𝑥)(1 − 𝑦)) . (15)

The results are provided in Table 3 and in Fig. 10 (left).

Example 9. We repeat Example 8 for the mapping 𝑃 and domains 𝛺 and 𝛩 as defined in Example 7. The results are provided in
Table 4 and Fig. 10 (right). Here, the approximation errors are computed based on the 401 × 401 uniform grid of points mapped
by 𝑃 . Fig. 11 shows the contour plots of the approximations obtained for the initial triangulation.

In [13] an interesting alternative to the finite element method is proposed. As in the finite element method, the problem (13)
is observed in the weak formulation but by considering all basis functions as test functions. The boundary conditions are imposed
approximately with a penalty parameter, hence the name immersed penalty boundary method.

Instead of a parametric mapping between 𝛩 and 𝛺, we choose a polygonal domain 𝛩 in such a way that it contains 𝛺. Also, we
choose 𝑀 ∈ N points 𝒑 , 𝑑 = 1, 2,… ,𝑀 , on the boundary of 𝛺. Moreover, we opt for a penalty parameter 𝜆 > 0 to ensure that 𝑆
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Fig. 10. Errors of approximations from S𝓁 , 𝓁 = 1, 2, 3, for the problems discussed in Examples 8 and 9 with respect to the length ℎ of the longest edge in the
triangulation.

Fig. 11. Contour plots of the function (15) and its approximations from S𝓁 , 𝓁 = 1, 2, 3, which are obtained by the isoparametric finite element method as
discussed in Example 9.

approximately satisfies the boundary conditions and a penalty parameter 𝜇 > 0 to ensure that 𝑆 is approximately 𝐶1-smooth. Then
we search for an approximation 𝑆 ∈ S𝓁 that solves

argmin
𝑆∈S𝓁

⎛

⎜

⎜

⎝

𝑁
∑

𝑗=1

(

∫𝛩

(

𝐹 + ∇2𝑆
)

𝑆𝑗 d𝛩
)2

+ 𝜆
𝑀
∑

𝑑=1

(

𝐺(𝒑𝑑 ) − 𝑆(𝒑𝑑 )
)2 + 𝜇

𝑛𝑒−𝑛𝑏𝑒
∑

𝑙=1
𝜉𝑙(𝑆)2

⎞

⎟

⎟

⎠

,

where 𝜉𝑙 is as defined in (3) and we impose (for notational convenience) that the edges in 𝐸 ⧵ 𝐸𝑏 are enumerated by the indices
from 1 to 𝑛𝑒 − 𝑛𝑏𝑒. As 𝑆 ∈ S3 is 𝐶1-smooth, the third sum in the objective function should be ignored for 𝓁 = 3. The solution to the
minimization problem expressed in the form (10) can be obtained by solving the system 𝑨𝒄 = 𝒃 for

𝑨 = 𝑳𝑇𝑳 + 𝜆𝑺𝑇𝑺 + 𝜇𝑬𝑇𝑬, 𝒃 = −𝑳𝑇 𝒇 + 𝜆𝑺𝑇 𝒈,

where

• 𝑳 ∈ R𝑁×𝑁 is determined by the element ∫𝛩(∇
2𝑆𝑘)𝑆𝑗 d𝛩 at position (𝑗, 𝑘),

• 𝑺 ∈ R𝑀×𝑁 is determined by the element 𝑆𝑘(𝒑𝑑 ) at position (𝑑, 𝑘),
• 𝑬 ∈ R(𝑛𝑒−𝑛𝑏𝑒 )×𝑁 is determined by the element 𝜉𝑙(𝑆𝑘) at position (𝑙, 𝑘),
• 𝒇 ∈ R𝑁 is determined by the element ∫𝛩 𝐹 𝑆𝑗 d𝛩 at position 𝑗, and
• 𝒈 ∈ R𝑀 is determined by the element 𝐺(𝒑𝑙) at position 𝑙.

Example 10. We consider the problem from Example 8 and solve it by using the immersed penalized boundary method on the
unit square. We opt for 𝜆 = 1, 𝜇 = 1, and 𝑀 = 800 with the points 𝒑𝑑 spaced uniformly along the boundary of the domain. The
results are provided in Table 5 and Fig. 12 (left).
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Table 5
Approximation errors and condition numbers for the problem described in Example 10.
𝑁 S1 S2 S3

Error cond Error cond Error cond

48 3.00e−01 4.52e+02 1.56e−01 2.88e+02 1.29e−01 2.57e+02
153 8.09e−02 4.44e+03 2.41e−02 4.33e+03 1.92e−02 3.51e+03
543 1.21e−02 5.67e+04 3.75e−03 6.36e+04 1.52e−03 5.26e+04
2043 2.80e−03 8.15e+05 8.53e−04 9.57e+05 1.12e−04 8.23e+05

Fig. 12. Errors of approximations from S𝓁 , 𝓁 = 1, 2, 3, for the problems discussed in Examples 10 and 11 with respect to the length ℎ of the longest edge in the
triangulation.

Table 6
Approximation errors and condition numbers for the problem described in Example 11.
𝑁 S1 S2 S3

Error cond Error cond Error cond

48 3.00e−01 4.52e+02 1.56e−01 2.88e+02 1.29e−01 2.57e+02
153 8.09e−02 4.44e+03 2.41e−02 4.33e+03 1.92e−02 3.51e+03
543 1.21e−02 5.67e+04 3.75e−03 6.36e+04 1.52e−03 5.26e+04
2043 2.80e−03 8.15e+05 8.53e−04 9.57e+05 1.12e−04 8.23e+05

Example 11. This is a counterpart to Example 9. The domain 𝛺 presented in Example 7 is contained in the unit square 𝛩. To
apply the immersed penalized boundary method we use the same parameters 𝜆, 𝜇, and 𝑀 as in Example 10 but map the uniformly
spaced points from the boundary of the unit square to the boundary of 𝛺 by 𝑃 to obtain 𝒑𝑑 ∈ 𝜕𝛺. The results are provided in
Table 6 and Fig. 12 (right). The approximation errors are computed in the same way as in Example 9. Fig. 13 shows contour plots
of the approximations over the initial triangulation.

Example 12. Finally, we report some more details on the choice of the penalization parameters 𝜆 and 𝜇 in Example 11. We focus
on the approximations over the triangulation shown in Fig. 4 (left). Fig. 14 (left) justifies the choice 𝜆 = 1. For 𝜇 = 1 it shows
he relation between the approximation error on the entire domain and on the boundary when the parameter 𝜆, which controls
he importance of the boundary condition, takes the values between 10−4 and 104. Fig. 14 (right) supports the choice 𝜇 = 1. For
= 1 it shows the relation between the approximation error and the 𝐶1-smoothness error when the parameter 𝜇, which controls

he importance of smoothness, takes the values between 10−4 and 104. The 𝐶1-smoothness error of an approximation 𝑆 is measured
s the maximal absolute value of 𝜉𝑙(𝑆), 𝑙 = 1, 2,… , 𝑛𝑒 − 𝑛𝑏𝑒.

. Conclusion

In the paper, three cubic macro-elements were considered that have the same characterization, i.e., they are determined by
ssigning three degrees of freedom to each vertex of the triangulation. However, the macro-elements differ in several aspects.

The first one is the classical Zienkiewicz element, which is on a triangle of the triangulation constructed by considering only
he data corresponding to the three vertices of the triangle. It does not reproduce cubic polynomials and is only 𝐶0-smooth, but
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Fig. 13. Contour plots of the function (15) and its approximations from S𝓁 , 𝓁 = 1, 2, 3, which are obtained by the immersed penalized boundary method as
discussed in Example 11.

Fig. 14. Impact of the penalization parameters 𝜆 and 𝜇 on the accuracy of the approximations discussed in Example 12.

it is simple to compute. The second one has cubic precision, which is achieved by taking advantage of the data corresponding to
neighboring triangles. This considerably complicates the implementation but does not significantly increase the computational cost.
However, the macro-element is still only 𝐶0-smooth. The third approach guarantees both cubic precision and 𝐶1-smoothness, thanks
to using the underlying Clough–Tocher refinement of the triangulation. The disadvantage is that the refinement triples the number
of triangles to work with and correspondingly slows down the computations.

It was shown in the paper that despite different constructions, the considered macro-elements can be represented in a similar
way by a basis consisting of three basis functions per vertex. The basis was utilized to numerically inspect the macro-elements
in a variety of approximation methods. Tests indicate that in terms of stability the proposed representations behave very much
alike. However, there is, as expected, no definite answer which of the three macro-elements performs best in terms of accuracy and
computational cost, and the choice must be made with respect to the problem at hand. We finish with some remarks drawing the
conclusions from the numerical experiments presented in Section 4.

Remark 2. The lack of cubic precision implies nonoptimal convergence speed, which is a serious shortcoming when high-accuracy
approximation is needed. This is clearly indicated in Examples 4, 5, 8, and 9.

Remark 3. In the approximation of noisy data reported in Example 6 all three macro-elements perform comparably. Rather
surprisingly, neither the cubic precision nor the 𝐶1-smoothness provide noteworthy advantage.

Remark 4. For the considered problems of the best 𝐿2 approximation (Examples 4 and 5) and solving the Poisson boundary
problem via the finite element method (Examples 8 and 9), the two macro-elements with cubic precision provide practically identical
accuracy. Nonetheless, the appearance of the approximations is considerably different as the 𝐶0-smooth macro-element is prone to
sharp transitions across the edges of the triangulation. This suggests the following. When only accuracy is important, it might be more
efficient to use the 𝐶0-smooth macro-element. If visual appearance matters, the results indicate that the 𝐶1-smooth macro-element
does not impair the quality of approximation.
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Remark 5. The lack of 𝐶1-smoothness in the immersed penalized boundary method (Examples 10 and 11) clearly degrades the
onvergence rate of the approximations. The 𝐶0-smooth approximations are less accurate than those obtained by the finite element
ethod (Examples 8 and 9). The use of a penalty parameter to sanction the 𝐶1-smoothness violation improves the visual appearance

of the approximations (see Fig. 13) but does not match the accuracy of the 𝐶1-smooth approximations. In fact, the 𝐶1-smooth
acro-element performs remarkably well and provides as accurate results as in the finite element method.
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