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SUMMARY Distributed execution of a service often means
that various places compete for the right to progress. If they ex-
change the right by explicit communication, there is a continuous
ow of protocol messages. If the maximum transit delay of the
communication medium is short, a better solution is to restrict
progress of places to their individual time windows. The pa-
per describes how to derive such time-sharing-based multi-party
protocols for well-formed services speci�ed in LOTOS/T+. The
method is compositional with respect to the structure of the given
service speci�cation, supporting alternative, sequential, interrupt
and parallel composition of services.
key words: distributed service implementation, protocol synthe-
sis, LOTOS/T+

1. Introduction

For its users, a distributed server is a black box in-
teracting with its environment through a set of service
access points (SAPs), as illustrated in Fig. 1(a). The
behaviour of a server at its SAPs is the service it o�ers.
The atomic instantaneous interactions constituting a
service are its primitives (SPs).

In a more detailed view (Fig. 1(b)), each SAP be-
longs to a particular place and is there supported by a
particular protocol entity (PE). If necessary, the PEs
communicate over a medium, i.e. execute a protocol

implementing the service. We limit our discussion to
protocols operating over reliable media.

For rapid prototyping of distributed servers, it
is important that derivation of protocol speci�cations
from service speci�cations can be automated [1]. The
subject of the present paper is protocol derivation based
on speci�cations written in LOTOS [2], [3], a standard
process-algebraic language for formal speci�cation of
concurrent and reactive systems. In the recent years,
many algorithms have been proposed for the purpose,
e.g. [4]{[12].

The most challenging problem in protocol synthe-
sis is implementation of distributed external choice.
External choice is the generic form of choice in LO-
TOS. For a pair of SPs, it means that a server virtually
permanently o�ers to its users the possibility to invoke
them, but takes care that at most one is actually in-
voked. If the SPs belong to di�erent places, the choice
is distributed and its implementation requires that the
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places repeatedly exchange the right to enable an SP.
Competing places can exchange the right either by

explicit communication or by time-sharing. Some pro-
tocol synthesis methods based on the �rst principle are
[4], [9]{[13]. A less desirable property of such proto-
cols is continuous communication of competing places.
If the maximum transit delay of the communication
medium is bounded and known, that can be avoided by
using time-sharing instead, as hinted in [6], [13], [14]. In
our paper, we use time-sharing to simplify the method
of [10] for compositional derivation of protocols.

The paper is organized as follows. We start with
some examples for illustration and motivation (Sec-
tion 2). Section 3 more precisely de�nes the adopted
speci�cation language, the server model, the concept
of a well-formed service, and the protocol derivation
problem. Section 4 describes the new protocol deriva-
tion method. Section 5 concludes the paper.

2. Motivation

Suppose that a distributed server consists of n termi-
nals (i.e. n PEs), connected by a local network. We
assume that the clocks of the terminals are well syn-
chronized, by a protocol (e.g. [15]) running in the back-
ground.

Let each terminal be a simple device communicat-
ing with its user through a single button (one of the
n SAPs). For such a button to be pushed (i.e. for
an SP to be executed at the place), it is necessary not
only that the user presses the button, but also that the
button is unlocked by the terminal.

Suppose that the users have to �nd the answer to
a question and then press their button. The task of
the distributed server is to ensure that only the but-
ton of the fastest competitor will be pushed. In other
words, the required service is to choose one among the
n possible SPs, where the choice is expected to depend
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Fig. 1 A distributed server (a) and its internal structure (b)
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Fig. 2 A purely message-based implementation of binary dis-
tributed external choice: (a) the service, (b) PE1, (c) PE2, and
(d) PE1 and PE2 combined over a reliable medium

exclusively on the behaviour of the service users, i.e.
not on internal decisions of the server.

Obviously, no two buttons may ever be unlocked
simultaneously, but every button must still be locked so
seldom that its user does not perceive it. That requires
that terminals are organized into a virtual token ring,
where only the current token owner may have its but-
ton unlocked. Protocol synthesis methods like [4], [9]{
[13] suggest that to pass the token, the owner sends a
message to the next terminal in the ring. The strategy
results in a continuous ow of messages (see Fig. 2).

Suppose that every terminal acts promptly, i.e.
that upon receiving the token, it checks its user in the
next time unit, and then, if the button has not been
pushed, immediately passes the token. Let d and dmax
denote the average and the maximum transit delay of
a protocol message, where we assume that even per-
manent worst-case conditions secure the required qual-
ity of the service. Every button will be unlocked ev-
ery (n � (d + 1)) time units on the average, and every
(n � (dmax + 1)) time units in the worst case.

The key observation of our paper is that termi-
nals can implement the worst-case periodic unlocking
without communicating. It is important only that upon
detecting that its button has been pushed, the win-
ning terminal immediately reports to the others, so that
they receive the message before they would unlock their
buttons again (see Fig. 3). The alternative strategy re-
quires only (n � 1) messages. In comparison to the
continuous message ow, this is a vast improvement.

If the described application is the only one running
on the local network, such optimization is quite irrel-
evant. There are, however, cases, where it is crucial.
Take, for example, the problem of factory automation.
A factory consists of numerous machines and humans
participating in a production process. They co-operate,
but also compete for resources. At any moment, there
are numerous concurrent activities, involving numerous
distributed choices. Each activity runs its own pro-
tocol for co-ordination of its participants, and most
of those protocols use the local communication net-
work, so the traÆc load might often be critically high.
Consequently, reducing a continuous message ow to
just a few messages is most welcome! One could ar-
gue that the described optimization typically requires
a very short dmax, while in an overloaded network, the
delay tends to grow. However, if the optimization is
introduced extensively, the network will no longer be
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Fig. 3 A time-sharing-based implementation of binary dis-
tributed external choice: the relevant parts of (a) PE1, (b) the
medium and (c) PE2, and (d) their combination

overloaded and dmax will probably become acceptable.
On the other hand, there are cases where time-

sharing is the inferior strategy. Let us return to our
�rst example. If time-sharing-based token-passing is
introduced, d virtually increases to dmax, i.e. but-
tons are on the average unlocked less often than with
message-based token-passing. If dmax is much longer
than d, the service implementation will probably be
judged with respect to its average performance, favour-
ing the message-based solution.

However, the above is true only if the nature of the
protocol doesn't inuence d and dmax. In the factory
example, extensive introduction of time-sharing might
decongest the medium to such an extent that dmax de-
creases below the previous d, so that the service quality
is better than with message-based token-passing.

Often the transit delay of the medium is most of
the time quite short, but exceptional conditions might
suddenly make it much longer than expected. If the
application is not critical, one can still introduce time-
sharing, estimating the maximum delay without consid-
ering the exceptional cases. However, all critical mes-
sages (in our �rst example, those reporting that a but-
ton has been pushed) must carry a time stamp, so that
an exception can be signalled if they arrive after the
deadline. Such a signal indicates that some SPs might
have been illegally executed after the violated deadline.

Finally, there are cases where none of the two alter-
native strategies provides the required service quality.
If the number of users in our �rst example is very large,
buttons will not be unlocked suÆciently often even if
token-passing is implemented in an optimal way. In
such a case, the degree of centralization has to be in-
creased, i.e. individual terminals must become respon-
sible for multiple buttons. If there are less terminals
involved in the distributed choice, they will receive the
token more often, while the choice between buttons be-
longing to the same terminal is a local matter.

To conclude, there are many cases where time-
sharing-based token-passing is the superior strategy.
However, devising of suitable time constraints might be
non-trivial, because individual SPs might be involved
into several distributed conicts simultaneously and be-
cause the transit delay of protocol messages might de-
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pend on the direction of communication. So although
time-sharing-based protocols introduce less messages,
we need a method for their systematic construction.
Such a method is proposed below.

3. Formalization of the Protocol Derivation

Problem

3.1 Speci�cation Language

The language we adopt for speci�cation of services and
protocols is LOTOS/T+, a timed version of LOTOS
formally de�ned in [6] and outlined in Table 1.

"stop" denotes a deadlock process.
"exit" denotes a process ready to successfully ter-

minate anytime, i.e. to execute a special event Æ.
A process speci�ed as "a;P2" or "a[T ];P2" exe-

cutes an atomic, instantaneous action a, followed by
process P2. T , if present, is an additional requirement
for t, the non-negative integer denoting the absolute
global time instant when a is executed. We need four
forms of T . An "x = t" speci�es that a stores t into
a variable x. A "t = x", an "x � t � x + d" or a
"t mod d 2 D" speci�es the legal values for t, respec-
tively an instant, a closed interval and a cyclic series of
instants.

A "P1[]P2" de�nes a process willing to behave as
P1 or as P2, where the choice is made upon the �rst
event (an action or Æ) of the selected alternative.

A "P1j[A]jP2" denotes a process executing pro-
cesses P1 and P2 concurrently and synchronized on all
actions listed in A and on Æ. A shorthand for the purely
asynchronous case is "P1jjjP2". "j[A]j" will sometimes
be used as a pre�x operator, combining and arbitrary
number of processes, where we de�ne that parallel com-
position of an empty list of processes is equivalent to
exit.

A "P1[> P2" denotes a process basically executing
P1, but as long as P1 doesn't successfully terminate,
ready to disable it and transfer control to P2, upon its
�rst event.

A "P1�P2" denotes a process which �rst executes
P1. When it successfully terminates, P2 is enabled.

A "hide A in P1" denotes process P1 with all its
actions listed in A hidden, i.e. not available for syn-

Table 1 Outline of the adopted speci�cation language

P ::= stop (untimed deadlock)
j exit (successful termination)
j a;P2 (action pre�x, untimed)
j a[T ];P2 (action pre�x, timed)
j P1[]P2 (choice)
j P1j[A]jP2 (parallel composition)
j P1[>P2 (disabling)
j P1�P2 (enabling)
j hide A in P1 (hiding)
j asap A in P1 ("as soon as possible" execution)
j Proc (process invocation)

Table 2 Server model

Server = hide Act(Medium) in asap Act(Medium) in
((jjj8pPEp)j[Act(Medium)]jMedium)

Medium = (Mediumjjj(jjj8p;p0;mMedium
p;p0

m ))

Medium
p;p0

m = (exit[]hide dp;p
0

m in

(sp;p
0

m [x = t];dp;p
0

m [x � t � x+ dp;p
0

];

((rp;p
0

m ;exit)[]exit)))

8p; p0; p00 : (dp;p
00

< (dp;p
0

+ dp
0;p00

))

chronization.
An "asap A in P1" denotes process P1 with all its

actions listed in A executed as soon as possible.
A "Proc" denotes an instance of a process called

Proc.
For a process P , let Act(P ) list all its non-hidden

actions.

3.2 Server Model

We assume that a distributed server interacts with its
users at places 1 to N . In the following, let p, p0 and p00

denote three di�erent places. Each place p is supported
by a PE PEp. The remaining process in the server
is Medium, the communication medium. The server
structure is outlined in Table 2.

The PEs execute service primitives s. If place(s),
the pre-assigned place of an s, is p, the executor of s
is PEp. A PEp might also send a protocol message m

to a p0, by an sp;p
0

m , or receive m from p0, by an rp
0;p

m .

All sp;p
0

m and rp;p
0

m are executed as soon as possible and
hidden from service users.

After Medium accepts from a PEp a message m
for a PEp0 , it delivers it to place p0 upon a hidden action

dp;p
0

m , after a transit delay which is not greater than a

dp;p
0

negligibly short from the point of service users.
So received by p0, m waits (in a local bu�er which is
formally also a part of Medium) until claimed by PEp0

upon an rp;p
0

m . When there is no message in transit,
Medium is ready to successfully terminate.

3.3 Well-Formed Services

We de�ne that a service process S is well-formed if it
cannot deadlock and is structured as outlined in Ta-
ble 3 (where necessary, use parentheses to make a ser-
vice speci�cation uniquely parsable).

Note the restricted use of stop. If a service pro-
cess deadlocks, it can only be the "(S1jjjstop)" part

Table 3 Outline of the service speci�cation sublanguage

S ::= s;exit
j s;S2 where s 62 Act(S2)
j S1[]S2 where Act(S1) \Act(S2) = ;
j S1j[Act(S1) \Act(S2)]jS2

j (S1jjjstop)[>S2 where Act(S1) \ Act(S2) = ;
j S1�S2 where Act(S1) \Act(S2) = ;



4
IEICE TRANS. ??, VOL.E82{??, NO.1 JANUARY 1999

of an S of the form "(S1jjjstop)[> S2", so that when
"S1jjjstop" deadlocks, S is still able to continue, by
starting S2.

Note also that exit never occurs in a decisive po-
sition. In other words, whenever a service reaches a
state where it may continue either as an S1 or an S2,
the next event can only be an SP (i.e. never a Æ), either
a starting SP of S1 or a starting SP of S2. With addi-
tional restrictions, we secure that such S1 and S2 have
di�erent starting SPs, so that service users can make
the choice by selecting either an SP in S1 or an SP in
S2. For example, "exit[](s;S)" is not well-formed, be-
cause there is a decisive exit. "((s1; s2; exit)jjjstop)[>
(s2; s3; exit)" is also ill-formed, because upon execution
of s1, it reduces to "((s2; exit)jjjstop)[> (s2; s3; exit)",
which can continue either by the left or by the right s2.

Hence a well-formed service progresses steadily and
deterministically. Determinism is not really a restric-
tion, for non-determinism can always be simulated by
interpreting di�erent SPs as equivalent, or by synchro-
nizing users only on the non-dummy SPs not intended
for hiding. Even the restriction that S1 in an "S1[>S2"
must never terminate successfully can be circumvented
by introduction of dummy SPs, e.g. by enhancing the
service into a well-formed
((((S1�(done; exit))jjjstop)[>((term; exit)[]S2))
j[Act(S2) + fdone; termg]j((done; term; exit)[]S2))
To simplify protocol synthesis, we also require that

no s is executed more than once. Again interpreting
di�erent SPs as equivalent can help.

3.4 Protocol Derivation Problem

Given a well-formed service S and place(s) for all s in
Act(S), we are looking for such PEp that Server will
be equivalent to S from the point of service users, for-
mally (Server te S), where te denotes untimed testing
equivalence [16].

For a service S, let Mp(S) denote the required
PEp. In other words, we are looking for a transfor-
mation M capable to generate a correct protocol for
any well-formed service and any partitioning of SPs.
We require that M is compositional, i.e. that for every
service S speci�ed as a composition of a pair of services
S1 and S2, every Mp(S) is a composition of processes
Mp(S1) and Mp(S2).

Let M(S) denote (jjj8pMp(S)), i.e. the proto-
col for S. Let predicate PPp(S) indicate whether
Act(Mp(S)) is non-empty, i.e. whether p participates
in M(S).

4. Principles of Protocol Derivation

Principles of protocol derivation will be discussed on an
illustrative example presented in Table 4. In the exam-
ple, the derived PE speci�cations are already simpli�ed
modulo timed weak bisimulation equivalence �t [14].

Table 4 An example service and its protocol

S = ((S1j[a]jS2)�(g;exit))
S1 = ((a; exit)[](b; (((e; f ; exit)jjjstop)[>(d; exit))))
S2 = ((a; exit)[](c;exit))
place(a) = place(g) = 1
place(b) = place(e) = 2
place(c) = place(d) = place(f) = 3

M1(S) �t ((M1(S1)j[a; s
1;3
a ]jM2(S2))�(g; exit))

M1(S1) �t ((a[Ta]; ((s
1;2
a ; exit)jjj(s1;3a ;exit)))[](r2;1

b
; r3;1

d
;exit))

M1(S2) �t ((a[Ta]; s
1;3
a ; exit)[](r3;1c ;exit))

M2(S) �t ((r
1;2
a ;exit)[]((b[Tb]; ((s

2;1
b

;exit)jjj(s2;3
b

;exit)))

�((e[Te]; s
2;3
e ; stop)[>(r3;2

d
;exit))))

M3(S) �t (M3(S1)j[r
1;3
a ]jM3(S2))

M3(S1) �t ((r
1;3
a ;exit)

[](r2;3
b

; ((r2;3e ; f ; stop)

[>(d[Td]; ((s
3;1
d

; exit)jjj(s3;2
d

;exit))))))

M3(S2) �t ((r
1;3
a ;exit)[](c[Tc]; s

3;1
c ;exit))

d1;2 = d2;1 = 3 , d2;3 = d3;2 = 4 , d3;1 = d1;3 = 5
Ta = (t mod 12 = 0)
Tb = (t mod 12 2 f4; 5; 6; 7; 8g)
Tc = (t mod 12 = 6)
Td = (t mod 10 = 0)
Te = (t mod 10 = 5)

4.1 Basic Strategy

The service implementation strategy is to have every
s executed by PEplace(s) and immediately reported to
all p needing such a report, formally RPp(s). If s is
reported to p within a particular protocol M(S), that
is denoted by RPp(s; S). Take, for example, a service
of the form "S1j[a]jS2", where S1 is "a; b; exit", S2 is
"a; c; exit", a and b belong to a place p, and c belongs
to a place p0. Within S2, a at p guards c at p0, hence
within M(S2), p must report a to p0, formally RPp0(a),
more precisely, RPp0(a; S2). Within M(S1), reporting
of a to p0 is not necessary, formally :RPp0(a; S1).

Beside reports on individual SPs, there are no
other protocol messages, as distributed conicts are
managed by time constraints. For an m reporting an
s, it is only important that it unambiguously identi�es
s, so without loss of generality, we assume that m is
the SP identi�er s. As for reception of an m, the strat-
egy is that the recipient PEp receives it as soon as it is
delivered to p.

Action reporting should be kept to a minimum,
while respecting the following rules.

1) In an S speci�ed as "s;S2", s is an immediate
guard of the starting SPs of S2. Hence if s belongs
to a p, and a starting SP of S2 to a p0, that requires
RPp0(s; S). In our example, RP3(b) and RP3(e).

2) In an S speci�ed as "S1�S2", the ending SPs
of S1 are immediate guards of the starting SPs of S2.
Hence if there is an ending SP s of S1 at a p, and a
starting SP of S2 at a p0, RPp0(s; S1) is required. In
our example, RP1(c) and RP1(d).

3) In an S speci�ed as "(S1jjjstop)[> S2", the
starting SPs of S2 are disruptive for the SPs of S1.
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Table 5 Transformation Mp(S)

Mp(s; exit) := if place(s) = p then

(s[Ts]; (jjj8p0jRP
p0 (s;S)(s

p;p0

s ;exit)))

else if RPp(s; S) then (r
place(s);p
s ; exit)

else exit endif endif
Mp(s;S2) :=Mp((s; exit)�S2)
Mp(S1j[Act(S1) \Act(S2)]jS2) :=
(Mp(S1)j[Act(Mp(S1)) \ Act(Mp(S2))]jMp(S2))
Mp(S1�S2) := (if PPp(S1) then Mp(S1)� endif Mp(S2))
Mp(S1[]S2) := (Mp(S1)[]Mp(S2))
Mp((S1 jjjstop)[>S2) := ((Mp(S1)jjjstop)[>Mp(S2))

Hence if there is a starting SP s of S2 at a p, and an SP
of S1 at a p0, RPp0(s; S2) is required. In our example,
RP2(d).

4) In an S speci�ed as "S1[]S2", the starting SPs
of S2 are disruptive for the starting SPs of S1. Hence if
there is a starting SP s of S2 at a p, and a starting SP
of S1 at a p0, RPp0(s; S2) is required. Analogously, if
there is a starting SP s of S1 at a p, and a starting SP
of S2 at a p0, RPp0(s; S1) is required. In our example,
RP2(a; S1), RP1(b; S1), RP3(a; S2) and RP1(c; S2).

5) For an M((S1jjjstop)[> S2), we require that
PPp(S1) implies PPp(S2) for every p, so that every par-
ticipant is informed of the disabling. If not otherwise,
a PPp(S2) can be secured by setting to true RPp(s; S2)
for an s in S2.

6) For an M(S1[]S2), we require (PPp(S1) =
PPp(S2)) for every p, so that every participant is in-
formed of the choice. If not otherwise, a PPp(Sk) can
be secured by setting to true RPp(s; Sk) for an s in Sk.
In our example, RP3(a; S1).

7) To implement an RPp(s; S) for an S speci�ed as
"S1j[Acts]jS2" with s in Acts, it suÆces to implement
RPp(s; S1) or RPp(s; S2). In our example, we were free
to decide whether RP2(a) should imply RP2(a; S2) or
not. However, if it did, RP2(c) would also be required
by the rule 6 above.

Transformation M is speci�ed in Table 5, where
Ts is the time constraint of s, de�ned in Section 4.2.

4.2 Time Sharing

The necessary time constraints are implemented as
static time-sharing. Each s is assigned its time con-
straint Ts of the form "t mod ds 2 Ds". The con-
straints should be such that SPs are enabled as often
as possible, while respecting the following restrictions,
in which t satis�es Ts and t0 is the �rst time satisfying
((t0 � t) ^ (t0 mod ds0 2 Ds0)).

1) If in an "S1[]S2", s is a starting SP of S1 and
s0 a starting SP of S2, or vice versa, and (place(s) 6=

place(s0)), then (t0 > (t + dplace(s);place(s
0))), so that

with rule 4 in Section 4.1, PEplace(s0) detects s before
it would enable s0 again.

2) If in an "(S1jjjstop)[> S2", s is a starting SP
of S2 and s0 an SP of S1, and (place(s) 6= place(s0)),

then (t0 > (t+ dplace(s);place(s
0))), so that with rule 3 in

Section 4.1, PEplace(s0) detects s before it would enable
s0 again.

3) If in an "(S1jjjstop)[>S2", s is an SP of S1 and
s0 a starting SP of S2, then for every p with RPp(s; S1),

(t0 > (t+dplace(s);p)), so that reporting of s (if it occurs)
is completed before s0 is enabled again.

Computing time constraints for a service, �rst par-
tition SPs in such a way that an SP and the SPs for
which it is disruptive are always in the same group. In
our example, there are groups fa; b; cg and fe; f; dg.

Computing constraints for such a group, �rst �nd
the restrictions applying to individual pairs of SPs. An
individual SP might be subject to several such restric-
tions, possibly stemming from various composition op-
erators from various levels of the service speci�cation.
For our example group fa; b; cg, there are four restric-
tions of type 1, respectively regulating enabling of a
after b, of b after a, of a after c, and of c after a. The
�rst two restrictions stem from the "[]" operator in S1,
while the other two from the "[]" operator in S2.

A set of restrictions for a group of SPs can usually
be satis�ed in multiple ways, di�ering in how often in-
dividual SPs are enabled. For our group fa; b; cg, one
possible combination of Ta, Tb and Tc is given in Ta-
ble 4. An alternative solution can be computed with
the following generally applicable strategy:

1) Find such constraints that SPs are enabled in
turns, so that the next SP is enabled in the time instant
after the arrival deadline of reports on the previous SP.
Suppose that in our example, a is enabled at time 0.
The latest arrival time of reports on a is 5, so b is en-
abled at time 6. The latest arrival time of reports on
b is 10, so c is enabled at time 11. The latest arrival
time of reports on c is 16, so a is enabled again at
time 17, i.e. at time 0 of the next cycle. Hence Ta
is "t mod 17 = 0", Tb is "t mod 17 = 6", and Tc is
"t mod 17 = 11".

2) Having found such a correct, though not neces-
sarily optimal solution, further relax the constraints as
much as possible. For our example, such a relaxation
would give "t mod 17 2 f0; 1; 2g" for Ta, "t mod 17 2
f6 : : : 13g" for Tb, and "t mod 17 2 f8 : : : 11g" for Tc.
The new solution enables SPs more often, but has a
longer cycle.

4.3 Implementation of Individual Service Primitives

Implementing an "s; exit", we implement execution
and reporting of s. The resulting server �rst executes
s at place(s), at a legal t. Afterwards, all the required
reports are sent concurrently. They are promptly re-
ceived, and the server successfully terminates. Modulo
te, the hidden exchange of reports is irrelevant for the
service, and so is the fact that s is not enabled contin-
uously. Hence the protocol has all the required proper-
ties.
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Table 6 Outline of proof for S = (S1j[Act(S1) \ Act(S2)]jS2)

(S1j[Act(S1) \ Act(S2)]jS2)
(1) te ((hide Act(Medium) in asap Act(Medium) in (M(S1)j[Act(Medium)]jMedium))j[Act(S1) \ Act(S2)]j

(hide Act(Medium) in asap Act(Medium) in (M(S2)j[Act(Medium)]jMedium)))
(2) te hide Act(Medium) in ((asap Act(Medium) in (M(S1)j[Act(Medium)]jMedium))j[Act(S1) \ Act(S2)]j

(asap Act(Medium) in (M(S2)j[Act(Medium)]jMedium)))
(3) te hide Act(Medium) in ((M(S1)j[Act(Med(S1))]jMed(S1))j[Act(S1) \Act(S2)]j(M(S2)j[Act(Med(S2))]jMed(S2)))

Med(S) = (jjj8sj9p:RPp(s;S)(j[s]j8pjRPp(s;S)Med
p
s))

Med
p
s = (exit[](s[x = t]; s

place(s);p
s [t = x]; r

place(s);p
s [x � t � x+ dplace(s);p];exit))

(4) te hide Act(Medium) in ((M(S1)j[Act(Med(S1))]jMed(S1))j[(Act(S1) \ Act(S2)) [ (Act(Med(S1)) \ Act(Med(S2)))]j
(M(S2)j[Act(Med(S2))]jMed(S2)))

(5) te hide Act(Medium) in ((M(S1)j[Act(M(S1)) \ Act(M(S2))]jM(S2))j[Act(Med(S1)) [ Act(Med(S2))]j
(Med(S1)j[Act(Med(S1)) \ Act(Med(S2))]jMed(S2)))

(6) te hide Act(Medium) in ((M(S1)j[Act(M(S1)) \ Act(M(S2))]jM(S2))j[Act(Med(S))]jMed(S))
(7) te hide Act(Medium) in asap Act(Medium) in (((jjj8pMp(S1))j[Act(M(S1)) \ Act(M(S2))]j(jjj8pMp(S2)))

j[Act(Medium)]jMedium)
(8) te hide Act(Medium) in asap Act(Medium) in ((jjj8p(Mp(S1)j[Act(Mp(S1)) \Act(Mp(S2))]jMp(S2)))

j[Act(Medium)]jMedium)
(9) te hide Act(Medium) in asap Act(Medium) in ((jjj8pMp(S))j[Act(Medium)]jMedium)

4.4 Implementation of Parallel Composition

Executing an S speci�ed as "S1j[Act(S1)\Act(S2)]jS2",
each place p executesMp(S1) andMp(S2) concurrently
and synchronized on their common actions [10].

The correctness proof is outlined in Table 6. As
in the following sections, we assume that M(S1) and
M(S2) have all the expected properties.

In the �rst step, each Sk in S is replaced with its
distributed implementation. That is possible because
for every s on which S1 and S2 are synchronized, the
time constraint is the same in every M(Sk), namely
Ts, so that once s is logically enabled, it is repeatedly
available in both M(Sk) simultaneously.

In the second step, hiding of protocol exchanges is
moved one level higher.

In the third step, the irrelevant parts of the
two media are omitted. Knowing that both partial
protocols actually execute their protocol exchanges
promptly, the asap constraints are encoded directly as
time constraints of the media.

In the fourth step, the two partial servers are syn-
chronized on their common protocol exchanges. In such
a server, no partial server ever hinders prompt report
transmission in its peer or delays a report reception in
its peer more than the medium might do. Hence all the
time constraints necessary for prevention of divergence
in execution of S1 or S2 are still valid, implying that
any SP trace executable by a partial server within the
new context is valid, implying that every executable SP
trace is valid. On the other hand, if users invoke SPs
strictly one after another and with time gaps longer
than the maximum transit delay, the server repeatedly
enters (by executing all the outstanding transmissions
and receptions of SP reports) a state in which both par-
tial servers are stable, i.e. ready for all their legal next
SPs, so that the entire server is in a stable state and
ready for all the legal next SPs. Every legal SP trace is

executable in such a way, and the server has no stable
states besides those reachable as above. Hence the ex-
ecutable SP traces of the server are exactly the traces
of S, and the server never refuses their invocation.

In the �fth step, processes are regrouped into the
M processes and the medium processes. Regrouping
has originally been studied for LOTOS processes [17],
but as tick steps modelling time progress may be in-
terpreted as ordinary actions on which all concurrent
processes synchronize, the rules obviously also apply to
LOTOS/T+ processes.

In the sixth step, the medium is simpli�ed by
merging individual pairs of identical, fully synchronized
Medps . Suitably regrouped, the remaining Medps con-
stitute exactly Med(S).

Knowing that eachM(Sk) is always ready to trans-
mit and receive SP reports as soon as possible, some
time constraints of the medium are in the seventh step
converted into the usual asap constraints. Also, the
irrelevant parts of the medium are re-introduced and
the structure of each M(Sk) is revealed.

In the eighth step, the M processes are regrouped
into pairs belonging to individual places. In the ninth
step, the resulting server is recognized as exactly the
proposed distributed implementation of S. That con-
cludes the proof.

4.5 Implementation of Sequential Composition

Executing an S speci�ed as "S1 � S2", any p with
:PPp(S1) executes justMp(S2). For such a p,Mp(S1)
is equivalent to exit, hence we may pretend thatMp(S)
is actually "Mp(S1)jjjMp(S2)".

For a p with PPp(S1), Mp(S) is "Mp(S1) �
Mp(S2)", but we pretend that it is actually
"Mp(S1)jjjMp(S2)" while an additional local constraint
takes care thatMp(S2) doesn't start untilMp(S1) isn't
ready for Æ. For the scheme to work, Mp(S1) must
never enable Æ as an alternative to an action.
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By induction, we prove that the latter is true for
any Mp(S).

1) If S is an "s; exit", that is obviously true.
2) If S is an "S1j[: : :]jS2" or an "S1�S2", Mp(S)

inherits the property from Mp(S1) and Mp(S2).
3) If S is an "(S1jjjstop)[> S2", such inheritance

works provided that PPp(S1) implies PPp(S2), and
that is secured by rule 5 in Section 4.1.

4) If S is an "S1[]S2", such inheritance works pro-
vided that (PPp(S1) = PPp(S2)), and that is secured
by rule 6 in Section 4.1.

Hence we may indeed pretend that all p execute
"Mp(S1)jjjMp(S2)", while the additional local con-
straints take care of the rest.

With ((Act(S1)\Act(S2)) = ;), "Mp(S1)jjjMp(S2)"
is exactly Mp(S1j[Act(S1) \ Act(S2)]jS2). In other
words, the server basically executes the protocol for
"S1j[Act(S1)\Act(S2)]jS2", for which Section 4.4 guar-
antees that it is correct.

Proving M(S), it remains to prove that the ad-
ditional constraints secure that S2 is executed strictly
after S1. It suÆces to prove that no starting SP s0 of S2
is ever executed before an ending SP s of S1. If s and
s0 both belong to a p0, the additional constraint at p0 is
de�nitely suÆcient. If s belongs to another place p, the
constraint is suÆcient provided that s is reported to p0,
and that is secured by rule 1 or rule 2 in Section 4.1.
That concludes the proof.

4.6 Implementation of Choice

Executing an S speci�ed as "S1[]S2", every p chooses
between Mp(S1) and Mp(S2). ((Act(S1) \ Act(S2)) =
;) implies ((Act(M(S1)) \ Act(M(S2))) = ;), hence
M(S1) and M(S2) don't interfere. To prove M(S),
it suÆces to prove that the local choices are globally
consistent.

Without loss of generality, we assume that the �rst
event in an Mp(S) belongs to Mp(S1).

1) If it is a Æ, there is no action alternative to it
in Mp(S) (see Section 4.5), implying that Mp(S1) and
Mp(S2) are both equivalent to exit, implying that any
choice at p is globally consistent.

2) If it is an action, it is the �rst SP executed in
S1 or such an SP s has already been executed. Hence
the choice at p is globally consistent provided that no
SP of S2 has been executed so far. Let s0 be the �rst
SP executed in S2. If it has been executed before s,
place(s) has, according to rule 1 in Section 4.2, executed
s after detecting s0 upon an action in Mplace(s)(S2) (s

0

itself or reception of a report on it). If s0 has been
executed after s, place(s0) has, according to rule 1 in
Section 4.2, executed it after detecting s upon an action
in Mplace(s0)(S1) (s itself or reception of a report on
it). But no p can execute an action in Mp(S1) after an
action in Mp(S2), or vice versa, hence there has been
no such s0. That concludes the proof.

4.7 Implementation of Disabling

Executing an S speci�ed as "(S1jjjstop)[> S2", every
p basically executes Mp(S2), though it might execute
a part of Mp(S1) before Mp(S2) starts. ((Act(S1) \
Act(S2)) = ;) implies ((Act(Mp(S1))\Act(Mp(S2))) =
;), hence M(S1) and M(S2) don't interfere. To prove
M(S), it suÆces to prove that no p abandons Mp(S1)
prematurely, that no SP in M(S1) occurs after the
�rst SP in M(S2), and that every message sent within
M(S1) is also received.

A p abandons Mp(S1) upon the �rst event in
Mp(S2). That might be prematurely only if the event
is executed before the �rst SP in M(S2), but in that
case, it is a Æ and there is no action alternative to it
in Mp(S) (see Section 4.5), implying that Mp(S1) and
Mp(S2) are both equivalent to exit, implying that p
may abandon Mp(S1) anytime.

To prove the rest, let s be the �rst SP in M(S2)
and s0 an SP executed in M(S1). If s0 has been exe-
cuted after s, place(s0) has, according to rule 2 in Sec-
tion 4.2, executed it after detecting s upon an action
in Mplace(s0)(S2) (s itself or reception of a report on
it). But no p can execute an action in Mp(S1) after an
action in Mp(S2), hence s0 must have been executed
before s. That implies that a report on s0 could be still
in transit or in the input bu�er, but according to rule
3 in Section 4.2, that is impossible. That concludes the
proof.

4.8 Possibilities for Further Optimization

The �rst optimization concerns implementation of an
"S1 � S2". For implementation of sequential compo-
sition, it suÆces that an ending place of S1 reports to
the starting places of S2 only its last SP of S1 [18].

The second optimization concerns implementation
of an "(S1jjjstop)[> S2". For implementation of dis-
abling, reception of reports belonging to M(S1) is ir-
relevant after activation of M(S2), i.e. rule 3 in Sec-
tion 4.2 is redundant for it. If we neglect the rule, such
a report, if sent, will still reach the destination place,
though it might remain in the input bu�er.

Both types of optimization might cause that some
reports are not received as originally planned. Hence
such optimization is allowed only to an extent not in-
volving reports for which prompt reception is crucial.

Another possible optimization concerns the con-
tents of protocol messages. Originally, messages are
strictly di�erent. That is not always necessary, though
possibilities for message reuse are not always easily
identi�able.

5. Concluding Remarks

At least during periods of strong network congestion,
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time-sharing-based virtual token-passing is superior to
message-based passing.

Protocols with time-sharing-based token-passing
are much simpler, because PEs report only what they
have done, while in purely message-based protocols,
places sometimes report also their current unwilling-
ness for particular actions, i.e. that they are in some
aspect passive [4], [10].

By letting protocol messages carry data as appro-
priate, the proposed service implementation strategy
can be easily generalized to services with data-carrying
SPs (see, for example, [19]).

The proposed strategy is also suitable for timed
services. Protocol synthesis for such a service proceeds
as for an untimed service, except that one �rst narrows
the time windows of individual SPs to an extent which
can be satis�ed in a distributed implementation [6]. If
time-sharing is used, it might be that an SP, even when
already logically enabled, is available for execution only
from time to time. So when allotting time to individual
places, care must be taken that the originally speci�ed
time constraints of their SPs are met.

Derivation of time-sharing-based protocols from
LOTOS-based service speci�cations is a bit tricky, be-
cause an SP might be speci�ed as a rendezvous of sev-
eral concurrent services S1 to Sn. One must be aware
that such an SP is available only when available in all
the protocols M(S1) to M(Sn). However, there are
speci�cation styles for which the concept of multiren-
dezvous is indispensable, in particular the extremely
expressive constraint-oriented style [20].
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1 Introdution

In [1℄, we have proposed a method for deriving protool spei�ations from servie spei�ations written in

LOTOS/T+ [2℄. The method is based on the following assumptions:

1. When a plae p exeutes a servie primitive (SP) s for whih reporting to another plae p

0

is spei�ed, it

transmits the required report on s with no delay.

2. The worst-ase transit delay for the protool message is a �nite and globally known d

p;p

0

.

3. When the message reahes p

0

, it is with no delay aepted by PE

p

0

, the protool entity of the plae.

However, we have disovered that the third assumption is not always true in the derived protools. Fortunately,

the error an be easily orreted.

2 An Example of an Erroneous Protool

Take the servie \a;S", where S is \(((b; exit)jjjstop)[> (; exit))". In the servie, SP a is followed by SP b

potentially disrupted by SP . Let a, b and  belong to di�erent plaes p, p

0

and p

00

, respetively, where d

p

00

;p

0

is

2.

Aording to [1℄, a possible solution for the distributed onit between b and  is to allow exeution of b at

times 0,4,8..., and exeution of  at times 1,5,9.... With these restritions, a prompt report on  reahes p

0

before

b is enabled again. a must also be reported, both to p

0

and p

00

, for it guards exeution of b and .

Suppose that PE

p

00

reeives a report on a at time 3, and afterwards exeutes  at time 5. On the other hand,

suppose that PE

p

0

reeives a report on a muh later, at time 8. Aording to [1℄, this is also the moment when

PE

p

0

starts exeuting the protool for S. Hene at time 8, PE

p

0

suddenly beomes ready both for b and for a

report on . A report on  is already in the input bu�er, having reahed p

0

at time 7 or earlier. However, that

does not prevent PE

p

0

from exeuting b instead, but b after  is illegal.

3 A Solution to the Problem

The problem lies in how [1℄ enodes the intended behaviour of protool entities. Take M(S

1

) and M(S

2

), the

protools derived for a servie S

1

and a subsequent servie S

2

. For a PE

p

with duties in M(S

1

), [1℄ de�nes that

M

p

(S

1

�S

2

), its behaviour within the protoolM(S

1

�S

2

), is \M

p

(S

1

)�M

p

(S

2

)". HeneM

p

(S

1

) andM

p

(S

2

)

are in strong sequential omposition, while protool message reeptions in M

p

(S

2

) should atually ommute with

ations in M

p

(S

1

).

A starting ation of M

p

(S

2

) might be an SP or a protool message reeption. Let SS

p

(S

2

) be the set of those

starting ations whih are SPs.

1



If SS

p

(S

2

) is empty, \M

p

(S

1

)jjjM

p

(S

2

)", i.e. parallel omposition of M

p

(S

1

) and M

p

(S

2

), is an adequate

M

p

(S

1

�S

2

), beause a premature start of M

p

(S

2

) is prevented already by other plaes.

If SS

p

(S

2

) is not empty, an adequate M

p

(S

1

�S

2

) is

\(M

p

(S

1

)�((jjj

8s2SS

p

(S

2

)

(s; stop))[>exit))j[SS

p

(S

2

)℄jM

p

(S

2

)",

where the operator \j[SS

p

(S

2

)℄j" de�nes that the two parallel proesses may exeute ations in SS

p

(S

2

) and

suessful termination \exit" only in o-operation. Hene as in the ase of \M

p

(S

1

)�M

p

(S

2

)", PE

p

takes are

that ations in SS

p

(S

2

) never our before suessful termination of M

p

(S

1

).

As a onlusion, we observe that M

p

(S

1

� S

2

) is the only ase where [1℄ introdues guarding of protool

message reeptions. Hene with the desribe orretion, all message are indeed aepted with no delay.
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