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Abstract5

We re-engineer a pomset-based abstract semantics (and the associated semantic constraints) recently proposed for

compositionally specified choreographies for systems of components communicating over first-in-first-out channels.

We prove that the original semantics over-specifies components’ behaviour and that for this, but not only this reason,

the original semantic constraints are insufficient for the realizability of choreographies. We remove the problematic

over-specification in the semantics, extend the semantics to explicitly specified interaction pomset sets, define an

abstract syntax of choreographies and rephrase choreography semantics in terms of it, and newly provide a syntax-

independent definition of choreography well-formedness. We prove that choreographies well-formed in the new sense

are realizable and under a certain additional condition also causal-consistent reversible. Devising a set of rules for

inferring well-formedness of choreographies compositionally, we correct the semantic constraints originally claimed

sufficient for operands of individual composition operators. Our constraints and our definition of choreography well-

formedness are in certain ways also less restrictive than the original ones. In particular, we newly allow also chore-

ographies exploiting accidental event orderings.
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1. Introduction8

When designing a distributed application supposed to run on a given distributed system, a possible way to proceed9

is to first conceive a choreography, i.e. a model of interactions among the system components from the global point of10

view and of (possibly ambiguous) causal relationships between the interactions. Ideally, the choreography is realiz-11

able, i.e. component processes for its correct implementation can be obtained simply by its projection. Furthermore,12

it is desirable that the choreography is causal-consistent reversible, i.e. that its so obtained implementation is at every13

point of execution in principle ready to undo any of those, and only those past events e for which the following is true14

for every other past event e′: If among the by the choreography specified candidate causal interpretations of the past,15

there exist also such stating that e′ has causally depended on e, e′ has already been undone. Here ‘in principle’ means16

in case that every system component for each of its steps specified by the choreography projection implements also17

its inverse. The possibility of causal-consistent event undoing is important in, for example, system debugging [1, 2],18

system recovery [3], optimistic parallel discrete event simulation [4, 5] and reversible control of robots [6].19

The paper corrects and generalizes the work of Tuosto and Guanciale [7] (for which proofs have been provided20

in [8]) on compositional construction of realizable choreographies for systems in which (1) every communication21

channel is between a pair of two different components, (2) from any component to any other component, there is22

exactly one communication channel, and (3) every channel is an initially empty, infinite-capacity buffer in which23

messages are queued in the order of arrival and exactly the first in the queue is available for reception. Actually,24

Tuosto and Guanciale advocate choreographies that are highly abstract, i.e. without any detailed assumptions about25

the target distributed system. Still, when demonstrating the applicability of their approach, they concentrate on the26
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first-in-first-out (FIFO) channels case, and in the present paper, we discuss only this part of their work. For a discussion27

of earlier approaches to choreography semantics, the reader can refer to [7]. There one can find also a comparison28

explaining why it pays to go abstract, which we in certain aspects do to an even larger extent than [7].29

The elementary choreographies considered in [7] are empty and singleton sets of interaction instances. To execute30

an interaction means that on a certain channel, a certain message is sent (i.e. appended to the end of the queue),31

by the source component of the channel, and at some later point received (i.e. removed from the queue after it has32

become its first element), by the sink component of the channel. In other words, every interaction instance consists of33

a transmission instance and the corresponding reception instance.34

As, unlike [7], we study also possibilities for backward execution of choreographies, we additionally assume that35

any given channel supports also the following operations: (1) To delete the last element of its message queue, which36

is an instance of the inverse of transmitting the message on the channel and assumed to be executed by the source37

component of the channel, and (2) to add an instance of a given message to the start of the queue, which is an instance38

of the inverse of receiving the message on the channel and assumed to be executed by the sink component of the39

channel.40

The choreography composition operators considered in [7] are parallel composition (the operator specifies con-41

current execution of its operands), sequential composition at each component (the operator specifies that the operands42

are executed concurrently, except that at each component, transmission and reception instances belonging to the sec-43

ond operand are delayed until the component has completed its duties in the first operand), and choice (the operator44

specifies that either the first or the second operand is executed). Actually, iteration is also discussed, but only briefly45

and informally. The graphical syntax of the choreography specification language of [7] is presented in the Legend in46

Fig. 1, whereas the Figs. 1(a-f) present some example choreographies.47

In [7], semantics and projection are defined only for those choreographies which the paper considers well-formed.48

For this, a choreography must be elementary or a composition of well-formed choreographies whose semantics sat-49

isfies the constraints which [7] defines for operands of the particular composition operator. The semantics of a well-50

formed choreography is in [7] defined basically as a set of partially ordered multisets (pomsets) of actions, i.e. trans-51

missions and receptions. The component processes generated by the projection of a well-formed choreography are52

in [7] defined as (initialized, initially connected and deterministic) communicating state machines (CSMs) [9]. The53

CSM system of a given choreography is considered correct (i.e. the choreography is considered realizable) if, starting54

with every constituent CSM in the initial state (and every channel empty), it is (on the assumed channels) unable to55

reach a deadlock (i.e. a state in which it cannot proceed in spite of some channels non-empty or some constituent56

CSMs in a state with further actions specified) or execute a global action sequence not specified by the choreography57

semantics.58

All choreographies well-formed in the sense of [7] are allegedly realizable and causally unambiguous [8]. As59

such, they have been employed as a basis for the conception of choreographies for automated recovery [10]. The60

choreographies in the Figs. 1(d-f) are well-formed in the sense of [7], whereas those in the Figs. 1(a-c) are not.61

Nevertheless, we applied (the in [8] defined semantics-based version of) the projection function of [7] to all the62

choreographies. The thereby obtained CSM systems are presented in the Figs. 1(a′-f′), respectively (for a given63

message m, !m denotes transmission, and ?m reception). In the systems in the Figs. 1(d′-f′), black colour singles out64

those states which the constituent CSMs have after the system runs !z!w!x!y, !a?a!y?y and !z?z!b!x?x, respectively.65

The main contribution of [7] is allegedly a relaxation of the usual constraints (such as defined, for example, in66

[11, 12, 13]) for operands of the choice operator. Consider, however, the choreography in Fig. 1(a). The operands of67

its choice operator satisfy the usual constraints, which suffices for the realizability of the choreography, but the choice68

constraints of [7] are not satisfied, meaning that they are not strictly weaker than the former. The choreographies in69

the Figs. 1(b,c) are examples of two further interesting kinds of choreographies which are realizable, but unacceptable70

for [7]. The one in Fig. 1(b) belongs to realizable choreographies comprising also unrealizable sub-choreographies,71

whereas the one in Fig. 1(c) belongs to choreographies exploiting also information available only thanks to accidental72

event orderings (see the Example 1 below), which makes it a choreography whose CSM system cannot be faithfully73

represented by a synchronous transition system and is therefore inaccessible to efficient verification approaches such74

as that of [14].75

Example 1. Consider the choreography G = (G1+G2)+G3 in Fig. 1(c) and its CSM system in Fig. 1(c′). G3 specifies76

that the interactions A
x
−→B and B

y
−→A are concurrent and together enable A

v
−→B and B

u
−→A. It is, however, possible that77
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Figure 1: The choreography grammar of [7], (a-f) six choreographies, (a′-f′) the CSM systems obtained by projecting them as defined in [8], and

(f′′) the proposed new CSM system for the choreography (f). In the CSM systems (d′-f′), black colour singles out those states which the CSMs

have after the system runs !z!w!x!y, !a?a!y?y and !z?z!b!x?x, respectively.

their actions are executed in the order !x?x!y?y, i.e. as if B
y
−→A causally depended on A

x
−→B, or in the order !y?y!x?x,78

i.e. as if A
x
−→B causally depended on B

y
−→A. G1 specifies that in case that the first alternative causal interpretation of79

the run-time actions’ order is possible, it is legal that B
w
−→A follows instead of B

u
−→A. G2 specifies that in case that the80

second alternative causal interpretation of the run-time actions’ order is possible, it is legal that A
z
−→B follows instead81
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of A
v
−→B.82

For the component A, for example, the above means that it might or might not receive the information in which83

order !y and ?x occur in the particular system run. If it accidentally executes !x before ?y, it cannot deduce the order,84

whereas in the opposite case, it can deduce that the order is !y?x. In the second case, A knows that it can continue85

more liberally than in the first case, namely be unready for the message w and freely choose whether to send v or z.86

The choreographies in the Figs. 1(a-c) motivated us to reconsider the concept of well-formedness as defined in87

[7]. A detailed study of the constraints in [7] associated with individual composition operators revealed that they88

are more problematic than we expected. Namely, for none of the three considered operators, they are sufficient for89

the realizability of the composition. A proof of this are the choreographies in the Fig. 1(d-f): The operands of their90

top-most operator (parallel composition, choice or sequential composition, respectively) are realizable, whereas the91

choreographies as a whole are well-formed in the sense of [7], but not realizable. For example, each of the three system92

runs exposed in the Figs. 1(d′-f′) leads to a deadlock (what goes wrong in the three runs is described in Section 4, in93

the Examples 21, 20 and 22, respectively).94

Identification of the above described problems is our first contribution. In the following, we gradually identify also95

their sources, among which an influential one is a problematic feature of the choreography semantics of [7]. As another96

contribution, we, in Section 3, redefine the semantics and well-formedness, for terms of the choreography grammar97

of [7] generalized by defining that interaction pomset sets are also elementary choreographies. Our definitions of98

the semantics, projection and well-formedness of (generalized) choreographies are independent from the concrete99

choreography syntax, which in [7] is not the case. We prove that choreographies well-formed in the new sense are100

realizable and under a certain additional condition also causal-consistent reversible. As the third contribution, we, in101

Section 4, prove some rules for inferring choreography well-formedness, and thereby virtually redefine constraints102

for operands of individual composition operators. Old and new choreography semantics and operand constraints are103

compared conceptually and on the example choreographies in the Figs. 1(a-f), for which (non-)well-formedness newly104

coincides with (un)realizability. First of all, however, we present, in Section 2, the basic concepts and notations used105

in the subsequent sections.106

2. Basic concepts and notations107

2.1. (Inter)actions and their instances108

We assume that choreographies are designed for a system with component set C. Elements of C are ranged over109

by c. Communication channels are assumed to be as defined in Section 1, where for given different components c and110

c′, the channel leading from c to c′ is denoted as cc′. Messages are ranged over by m.111

An interaction in which a given message m is passed over a given channel cc′ is denoted as c
m
−→ c′, whereas its112

constituent transmission and reception are denoted as cc′!m and cc′?m, respectively, with the channel identifier cc′113

possibly omitted in case of evident from the context.114

The universes of transmissions and receptions are denoted as, respectively, L! and L?. The universe L! ∪ L? of115

actions is denoted as L. Actions are ranged over by a, action sets by A, action sequences by α, and action sequence116

sets by A.117

The universe {a−1|a ∈ L} of action inverses (shortly i-actions) is denoted as L−1. The universe L ∪ L−1 of118

(i-)actions is ranged over by b. Sequences of (i-)actions are ranged over by β. An empty sequence is denoted as ǫ.119

For a given action sequence α of the form (cc′!mi)i=1...k or (cc′?mi)i=1...k, ms(α) denotes the message sequence120

(mi)i=1...k.121

For given action sequence α and action a of which it comprises an instance, rlst(α, a) denotes the action sequence122

obtained from α by removing its last instance of a.123

For a given action sequence α, pf(α) denotes the set of all its prefixes. For a given action sequence set A, max(A)124

denotes the action sequence set {α|(α ∈ A) ∧ ∄α′ ∈ (A \ {α}) : (α ∈ pf(α′))}.125

(Inter)action instances are alternatively called events. Events are ranged over by e, event sets by E, and event126

sequences by ε.127

For a given event e, λ(e) denotes its label, i.e. the (inter)action of which it is an instance. For a given action128

instance sequence ε = (ei)i=1...k, asq(ε) denotes the action sequence (λ(ei))i=1...k.129
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Interaction instances and their sets are alternatively (to expose their nature) ranged over by, respectively, g and G.130

For a given interaction instance g, e!
g denotes the constituent transmission instance, and e?

g the constituent reception131

instance.132

2.2. Partially ordered sets of (inter)action instances133

A binary relation on a given event set E is a subset of E × E. If it is reflexive, anti-symmetric and transitive, it is134

called partial order. The transitive closure of a given binary relation R is denoted as R⋆.135

A partially ordered set of events (shortly poset) is an event set E endowed with a partial order ≤ and denoted as136

(E,≤). Posets are ranged over by p, and their sets by P.137

If for given posets p = (E,≤) and p′ = (E′,≤′) there exist bijections φ : E → E′ and φ′ :≤→≤′ satisfying all the138

following:139

(1) ∀e ∈ E : (λ(e) = λ(φ(e)))140

(2) ∀(e, e′) ∈≤: (φ′((e, e′)) = (φ(e), φ(e′)))141

then p and p′ are isomorphic.142

For a given poset p = (E,≤), max(p) denotes the event set {e|(e ∈ E) ∧ ∄e′ ∈ (E \ {e}) : (e ≤ e′)}.143

For a given poset p = (E,≤), esq(p) denotes the set of all event sequences (ei)i=1...|E| that satisfy144

(E = {ei}i=1...|E|) ∧ ∀1 ≤ i < j ≤ |E| : (e j � ei).145

For a given poset p = (E,≤), pf(p) denotes the set of all its prefixes, i.e. the set of all posets (E′,≤′) that satisfy146

(E′ ⊆ E) ∧ (≤′=≤ ∩(E′ × E′)) ∧ (≤ ∩((E \ E′) × E′) = ∅).147

For a given poset set P, pf(P) denotes its prefix set {p|∃p′ ∈ P : (p ∈ pf(p′))}.148

For a given poset set P, max(P) denotes the poset set {p|(p ∈ P) ∧ ∄p′ ∈ (P \ {p}) : (p ∈ pf(p′))}.149

For a given poset set P, esq(P) denotes the event sequence set {ε|∃p ∈ pf(P) : (ε ∈ esq(p))}.150

For given poset p and action sequence α, pf(p, α) denotes the set of all posets p′ ∈ pf(p) whose esq(p′) comprises151

an event sequence ε with asq(ε) = α.152

For given poset set P and action sequence α, pf(P, α) denotes the poset set {p|∃p′ ∈ P : (p ∈ pf(p′, α))}.153

For a given poset set P, asq(P) denotes the action sequence set {α|(α ∈ L∗) ∧ (pf(P, α) , ∅)}154

For a given poset p, tri(p) denotes the set of all triplets ((E,≤), λ(e), (E∪ {e},≤′)) that satisfy155

((E ∪ {e},≤′) ∈ pf(p)) ∧ (e < E) ∧ ((E,≤) ∈ pf((E ∪ {e},≤′))).156

2.3. Partially ordered multisets of (inter)actions157

An (inter)action pomset (shortly pomset) is an isomorphism class of posets. The isomorphism class to which a158

given poset p = (E,≤) belongs is denoted as [p] or [E,≤]. Pomsets are ranged over by r, and their sets by R.159

A natural way to discuss properties of a given pomset is to discuss properties of a representative of the class.160

Likewise, a natural way to define a composition operator for pomsets is to do it in terms of selected representatives161

of individual operands, taking care that the representatives are non-intersecting (inter)action sets. When discussing162

or combining pomset sets, one would proceed analogously. We therefore define the following families of pomset and163

pomset set representatives:164

(1) For given pomset r and (possibly omitted) natural i, poi(r) = (Er,i,≤r,i) is the poset selected as the default repre-165

sentative of the class r (for the natural i), with Er,i∩Er′,i′ = ∅ for every pomset r′ and natural i′ with (r, i) , (r′, i′).166

(2) For given pomset set R and (possibly omitted) natural i, posi(R) denotes the poset set {poi(r)|r ∈ R}.167

For a given pomset r, pf(r) denotes its prefix set {[p]|p ∈ pf(po(r))}.168

For a given pomset set R, pf(R) denotes its prefix set {[p]|p ∈ pf(pos(R))}.169

For given pomset set R and action sequence α, pf(R, α) denotes the pomset set {[p]|p ∈ pf(pos(R), α)}.170

For a given action pomset set R, asq(R) denotes the action sequence set asq(pos(R)).171

For a given action pomset set R, λ(R) denotes the action set {a|(a ∈ L) ∧ ∃αa ∈ asq(R)},172

For a given action pomset set R, tri(R) denotes the triplet set {([p], a, [p′])|∃p′′ ∈ pos(R) : ((p, a, p′) ∈ tri(p′′))}.173
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2.4. State machines174

An initialized and initially connected state automaton M whose individual transitions represent individual175

(i-)actions (shortly state machine) is defined by a triplet (SM , sM ,TM) in which SM is its state set, sM its initial176

state, and TM its transition set.177

A state machine transition t is defined by a triplet (st, bt, s
′
t ) in which st is the state in which it starts, s′t is the state178

in which it ends, and bt is the executed (i-)action.179

If for given state machines M and M′, there exist bijections φ : SM → SM′ and φ′ : TM → TM′ satisfying all the180

following:181

(1) φ(sM) = sM′182

(2) ∀(s, a, s′) ∈ TM : (φ′((s, a, s′)) = (φ(s), a, φ(s′)))183

then M and M′ are isomorphic.184

For given state machine M, seq(M) denotes the (i-)action sequence set185

{(bi)i=1...k |(k = 0) ∨ ∃((si, bi, si+1))i=1...k ∈ (TM)+ : (s1 = sM)}.186

For given deterministic state machine M and (i-)action sequence β = (bi)i=1...k in seq(M), δM(β) denotes the only187

member of the state set {sk+1|((k = 0) ∧ (sk+1 = sM)) ∨ ∃((si, bi, si+1))i=1...k ∈ (TM)+ : (s1 = sM)}.188

For a given state machine M with no i-action transitions, rev(M) denotes the state machine189

(SM, sM ,TM ∪ {(s′, a−1, s)|(s, a, s′) ∈ TM}).190

2.5. Projections191

For a given component c, Lc denotes the set of all actions that are of the form cc′!m or c′c?m.192

For a given channel cc′, L!
cc′ denotes the set of all actions of the form cc′!m, and L?

cc′ the set of all actions of the193

form cc′?m.194

For given action sequence α and action setA, α⇂A denotes α after the deletion of every element that is not inA.195

For given action sequence α and component c, α⇂c denotes α⇂Lc
.196

F denotes the universe of all action sequences α that for every channel cc′ satisfy ms(α⇂L?
cc′

) ∈ pf(ms(α⇂L!
cc′

)), i.e.197

respect the FIFO rule.198

For given action instance set E and action setA, E⇂A denotes the event set {e|(e ∈ E) ∧ (λ(e) ∈ A)}.199

For given action instance set E and component c, E⇂c denotes E⇂Lc
.200

For given action instance sequence ε and action set A, ε⇂A denotes ε after the deletion of every element e with201

λ(e) < A.202

For given action instance sequence ε and component c, ε⇂c denotes ε⇂Lc
.203

For given action instance poset p = (E,≤) and component c, p⇂c denotes the poset (E⇂c,≤ ∩((E⇂c) × (E⇂c))).204

For given action instance poset set P and component c, P⇂c denotes the poset set {p⇂c|p ∈ P}.205

For given poset set P and event e, P \ e denotes the poset set {(E \ {e},≤ ∩((E \ {e}) × (E \ {e})))|(E,≤) ∈ P}.206

For a given action pomset set R, asqF (R) denotes the action sequence set asq(R) ∩ F .207

For given action pomset set R and component c, R⇂c denotes the pomset set {[p]|p ∈ pos(R)⇂c}.208

For given action pomset set R and component c, asqc(R) denotes the action sequence set asq(R⇂c).209

2.6. Causal interpretations210

This section is very important: As we later on define that the semantics of a given choreography G is an action211

pomset set [[G]], with the legal global action sequences of G those in asq([[G]]), here we actually define (see how the212

Definition 3 in Section 3.2 uses the below defined concepts) (1) how individual action sequences in asq([[G]]) inherit213

the causal relationships of the corresponding event sequences of the default representatives of individual pomsets in214

[[G]] and (2) the CSM that is the projection of G onto a given component c. In the definition of the latter, we take care215

that for every action sequence α ∈ asqc([[G]]), the resulting state of the CSM corresponds to what individual pomsets216

in [[G]]⇂c specify about the causal relationships between individual action instances in α.217

Note that every action a denotes the class of all action instances e with λ(e) = a. For given action a and natural i,218

let ea,i denote the default representative of the class a for the natural i.219

Note that every action sequence α denotes the class of all action instance sequences ε with asq(ε) = α. A natural220

way to causally interpret a given action sequence α is to interpret the default representative of the class. For given221
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action sequence α = (ai)i=1...k and natural 1 ≤ j ≤ k, let ev(α, j) denote the event eα j ,|(ai)i=1... j⇂{a j}
|. For a given action222

sequence α, the default representative of the class, denoted as esq(α), is the action instance sequence (ev(α, i))i=1...|α|.223

Note that in the representative, any given ith instance of a given action a is conveniently called ea,i. For a given action224

sequence α, Eα denotes the action instance set {ev(α, i)}i=1...|α|.225

For given action instance poset p = (E,≤) and action instance sequence ε = (ei)1...k in esq(pf(p)), let po(p, ε)226

denote the action instance poset (Easq(ε),≤
′) with ≤′= {(ev(asq(ε), i), ev(asq(ε), j))|(1 ≤ i ≤ j ≤ k) ∧ (ei ≤ e j)}. Note227

that po(p, ε) virtually refers to the events in ε and defines for them the same partial order as the corresponding prefix228

of p, but brings the convenience that for any given 1 ≤ i ≤ k, the ith event in ε is called by the name of the ith event in229

the default representative esq(asq(ε)) of the class asq(ε), which makes ≤′ the partial order which the pair (p, ε) defines230

for the event set Easq(ε).231

For given action instance poset p and action sequenceα, let cip(α) denote the action instance poset set {po(p, ε)|(ε ∈232

esq(pf(p))) ∧ ({asq(ε)} = max(pf(α) ∩ asq({p}))). Informally, to compute cip(α), one would take the longest prefix233

of α that complies to p, find all the possible ways for interpreting the prefix as a legal event sequence ε of p, and for234

every such ε take the poset po(p, ε), because the latter can be regarded as one of the (partial) causal interpretations235

which p specifies for α (hence the name cip(α)).236

The set of all causal interpretations which a given action pomset set R (e.g. the semantics of a given choreography)237

specifies for a given action sequence α, denoted as ciR(α), is the action instance poset set {p|∃r ∈ R : (p ∈ cipo(r)(α))}.238

If for a given action pomset set R, there is an action sequence α ∈ asq(R) satisfying |max(ciR(α))| > 1, then R239

(and any choreography whose semantics it is) is called causally ambiguous.240

If for a given action pomset set R, there exist a component c and an action sequence α ∈ asqc(R) satisfying241

|max(ciR⇂c
(α))| > 1, then R (and any choreography whose semantics it is) is called locally causally ambiguous.242

The (minimally liberal) cumulative causal interpretation which a given action pomset set R specifies for a given243

action sequence α, denoted as cciR(α), is the action instance poset244

({e|∃(E,≤) ∈ ciR(α) : (e ∈ E)}, {(e, e′)|∃(E,≤) ∈ ciR(α) : ((e, e′) ∈≤)}⋆).245

For given action pomset set R and action sequence α, maxR(α) denotes the event set max(cciR(α)).246

For given action pomset set R and action sequence α, civR(α) denotes the action instance poset set vector247

(cipo(r)(α))r∈R.248

For given action pomset set R and component c, smc(R) denotes a deterministic state machine M satisfying249

(seq(M) = asqc(R)) ∧ ∀α ∈ asqc(R) : (δM(α) = civR⇂c
(α)).250

3. Well-formed generalized choreographies251

3.1. Generalized choreographies and their normal form252

Definition 1 (Generalized choreographies). Generalized choreographies (shortly choreographies) are terms derived253

by the following grammar (parentheses not necessary for disambiguation can be omitted):254

G ::= 0 | c
m
−→c′ | R | (G1|G2) | (G1; G2) | (G1 +G2)255

In the grammar, 0 denotes an empty choreography, c
m
−→ c′ is assumed to be an interaction, R is assumed to be a non-256

empty set of interaction pomsets, ‘|’ is the parallel composition operator, ‘;’ is the sequential composition operator,257

and ‘+’ is the choice operator.258

To abstract away from the concrete syntax of choreographies, we define for them a normal form:259

Definition 2 (Normal form of choreographies). The normal form of a choreography G, denoted as 〈〈G〉〉, is a non-260

empty set of interaction pomsets. For our six choreography types, it is defined, respectively, as follows:261

〈〈0〉〉 = {[{}, {}]}262

〈〈c
m
−→c′〉〉 = {[{g}, {(g, g)}]}where g is an instance of c

m
−→c′.263

〈〈R〉〉 = R.264

〈〈G1|G2〉〉 = {[G1 ∪ G2,≤1 ∪ ≤2]|((G1,≤1), (G2,≤2)) ∈ pos1(〈〈G1〉〉) × pos2(〈〈G2〉〉)}265

〈〈G1; G2〉〉 = {[G1 ∪ G2, (≤1 ∪ ≤2 ∪(G1 × G2))⋆]|((G1,≤2), (G2,≤2)) ∈ pos1(〈〈G1〉〉) × pos2(〈〈G2〉〉)}266

〈〈G1 +G2〉〉 = 〈〈G1〉〉 ∪ 〈〈G2〉〉267
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The pomsets in the normal form of a given choreography G are the alternatives between which the system is268

supposed to choose when executing G. For an empty choreography, the only alternative is to execute no interaction269

instances. For a choreography c
m
−→ c′, the only alternative is to execute an instance of c

m
−→ c′. The alternatives of270

a G1 + G2 are the alternatives of G1 and the alternatives of G2. The alternatives of a G1|G2 are all those defined as271

parallel composition of an alternative of G1 and an alternative of G2. The alternatives of a G1; G2 are all those defined272

as strict sequential composition of an alternative of G1 and an alternative of G2 (at the high level of abstraction adopted273

in 〈〈G1; G2〉〉, it is not visible that strict sequencing of a pair of interaction instances in general does not preclude some274

concurrency of their constituent action instances). The alternatives of an interaction pomset set R are the pomsets in275

R (i.e., choreographies of this type are by definition already in the normal form, which reveals that the remaining five276

choreography types are just syntax sugar).277

Example 2. For the choreography G = A
x
−→ B|(B

y
−→ C + (A

x
−→ B; (B

z
−→ A|A

z
−→ C))), 〈〈G〉〉 is a set consisting of two278

pomsets. In the first one, there are an A
x
−→B and a B

y
−→C, unordered. In the second one, there are two A

x
−→B, a B

z
−→A279

and an A
z
−→C, where the only ordering is that one of the A

x
−→B is before the B

z
−→A and the A

z
−→C.280

3.2. Choreography semantics281

The semantics of choreographies is in [7] defined as a function of their concrete syntax, whereas we define it282

as a function of their normal form. Namely, recall that in the normal form 〈〈G〉〉 of a given choreography G, each283

of the constituent alternatives of G is represented by a pomset specifying the alternative very abstractly, in terms of284

interactions. To obtain the semantics of G, we refine every pomset r in 〈〈G〉〉 into a pomset r′ specifying the alternative285

of G less abstractly, in terms of actions. To obtain r′, we take the interaction instance poset p that is the default286

representative of the isomorphism class r, refine it into the action instance poset [[p]] below (see Definition 4) defined287

as the semantics of p, and set r′ to the isomorphism class to which p′ belongs:288

Definition 3 (Semantics of choreographies). The semantics of a given choreography G, denoted as [[G]], is the action289

pomset set {[[[p]]]|p ∈ pos(〈〈G〉〉)}. More precisely:290

(1) The projection of G onto a given component c is the state machine smc([[G]]).291

(2) The action sequences which the CSM system of G is allowed to execute are those in asq([[G]]).292

(3) The causal interpretations supposed to be respected when undoing action instances of a given action sequence293

α ∈ asq([[G]]), i.e. the candidate causal interpretations of α, are the posets in ci[[G]](α). In other words, one has to294

respect the cumulative causal interpretation cci[[G]](α). In other words, in the system state resulting from α, the295

undoing of the element of α in a given ith position is allowed exactly if ev(α, i) ∈ max[[G]](α).296

In our semantics of a given interaction instance poset, each of the interaction instances is represented by its297

constituent action instances, and in the resulting action instance set, two different members e and e′ are considered298

directly ordered (there is also ordering because of the transitivity of the ordering relation) exactly if either (1) they are299

the transmission instance and the reception instance of the same interaction instance or (2) the interaction instances300

to which they belong are ordered and the ordering is inherited. The inheritance is assumed to exist exactly if a certain301

predicate Ord below (see Section 3.4) (re)defined on action pairs is true on the pair of the actions of which e and e′302

are instances:303

Definition 4 (Semantics of interaction instance posets). The semantics of a given interaction instance poset304

p = (G,≤), denoted as [[p]], is the action instance poset305

(
⋃

g∈G{e
!
g, e

?
g}, ((
⋃

g∈G{(e
!
g, e

!
g), (e!

g, e
?
g), (e?

g, e
?
g)})∪

{(e, e′)|∃(g, g′) ∈≤: ((g , g′) ∧ ((e, e′) ∈ {e!
g, e

?
g} × {e

!
g′
, e?

g′
}) ∧ Ord(λ(e), λ(e′)))})⋆).

306

In different contexts, different definitions of the predicate Ord may be meaningful. If one defines that Ord(a, a′)307

for a given action pair (a, a′) is true exactly if there is a component c with (a, a′) ∈ Lc × Lc, i.e. a component able308

to secure that a given instance of a′ is delayed until after a given instance of a, our choreography semantics becomes309

that of [7] (except that we have written its definition in a more abstract style). In other words, [7] virtually assumes310

the above version of Ord. As for (the in [8] defined semantics-based version of) the choreography projection function311
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Figure 2: (a) A choreography, (b) the specified action pomset, and (c) the CSM system obtained by projection.

of Tuosto and Guanciale, it can be for our purposes considered identical to ours, because the CSM which it returns312

for a given component c is for locally causally unambiguous choreographies G ([7] allows no others) isomorphic to313

smc([[G]]).314

Example 3. Consider the choreography G = (G1+G2); G3 in Fig. 1(f). 〈〈G〉〉 consists of two interaction pomsets, an r1315

representing the alternative G1; G3 and an r2 representing the alternative G2; G3. r2 specifies A
z
−→C followed by C

b
−→B316

followed by A
x
−→B. In [[G]], the pomset is refined into (the isomorphism class of) the action set {!z, ?z, !b, ?b, !x, ?x}317

endowed with a partial order ≤2 depending on the assumed version of Ord. For every version, !z ≤2?z, !b ≤2?b318

and !x ≤2?x. In case of the Ord of [7], also !z ≤2?x, ?b ≤2?x and ?z ≤2!b, meaning that in this case, !b and !x are319

concurrent, whereas for ?x, ≤2 specifies that B must delay it until after ?b, in spite of the fact that the message x from320

A possibly arrives to B before the message b from C. Similarly, the refinement of r1 in case of the Ord of [7] specifies321

that in G1; G3, !a and the !x of G3 are concurrent, but ?a must nevertheless occur before the ?x of G3, in spite of the322

fact that the message x of G3 from A possibly arrives to B before the message a from C.323

Example 4. Consider the choreography G = G1|G2 in Fig. 2(a). The only action pomset in [[G]] for the Ord of [7],324

presented in Fig. 2(b), has four ways to execute the action sequence !x!x?x, i.e. the event sequence e!x,1e!x,2e?x,1: As325

first, e!x,1 can be either the left or the right instance of !x in Fig. 2(b) (e!x,2 is in both cases the remaining instance). As326

second, e?x,1 can be either the left or the right instance of ?x in Fig. 2(b). In the (left,left) and in the (right,right) case,327

e!x,1 causally precedes e?x,1, and e!x,2 does not. In the (left,right) and in the (right,left) case, e!x,2 causally precedes e?x,1,328

and e!x,1 does not. The two partial orders on the event set {e!x,1, e!x,2, e?x,1} are the two candidate causal interpretations329

which [[G]] specifies for the sequence !x!x?x. As for the cumulative causal interpretation of the latter, it specifies that330

e!x,1 and e!x,2 both causally precede e?x,1.331

Example 5. Consider the choreography G = (G1 + G2) + G3 in Fig. 1(c) and assume the Ord of [7]. For the action332

sequence ?x!y (i.e. the event sequence e?x,1e!y,1) of B, the only member of [[G1]]⇂B specifies that e?x,1 causally precedes333

e!y,1, and the only member of [[G3]]⇂B specifies that e?x,1 and e!y,1 are concurrent. As for the only pomset in [[G2]]⇂B,334

the longest prefix of ?x!y complying to it is the empty one. For this reason, the pomset specifies only how the events335

in the empty prefix of e?x,1e!y,1 are ordered, which is a causal interpretation already included in what the first or the336

second one tells about the sequence ?x!y. As for the cumulative causal interpretation of the latter, it specifies that e?x,1337

causally precedes e!y,1.338

3.3. Reception-completeness339

Example 6. Let us return to Example 3. In the CSM system of G, presented in Fig. 1(f′), it is clearly visible that every340

smc([[G]]) chooses between its left branch, i.e. (a sub-machine isomorphic to) smc([[G1; G3]]), and its right branch, i.e.341

(a sub-machine isomorphic to) smc([[G2; G3]]). Because of the unnecessary reception delayings in the only members342

of [[G1; G3]] and [[G2; G3]], smB([[G1; G3]]) is without the action sequence ?x?x?a and smB([[G2; G3]]) is without the343

action sequence ?x?b. Consequently, ?x fails to be specified in the initial state of smB([[G2; G3]]), in spite of the fact that344

it would be executable in this position within the CSM system of G2; G3. Consequently, smB([[G]]) fails to comprise345
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the information that an instance of x received in its initial state might as well have been sent by smA([[G2; G3]]), and not346

only by smA([[G1; G3]]). Consequently, the initial ?x in smB([[G]]) unjustly cancels the execution of smB([[G2; G3]]),347

which is the reason why the CSM system of G possibly deadlocks, in spite of the fact that G1; G3 and G2; G3 are both348

realizable. Similarly, ?x fails to be specified in the state of smB([[G1; G3]]) resulting from ?x, in spite of the fact that it349

would be executable in this position within the CSM system of G1; G3. This, however, is not problematic, because a350

second instance of x can only be sent by smA([[G1; G3]]).351

The problem described in Example 6 originates in the fact that for the Ord of [7], the choreography [[G2; G3]],352

although realizable, is not reception-complete, where the latter choreography property is defined as follows:353

Definition 5 (Reception-completeness). A given choreography is reception-complete if its CSM system cannot reach354

any state in which the message queue of a certain channel is non-empty, but the sink component of the channel is355

currently unable to receive the first message in the queue.356

Example 3 and its continuation in Example 6 indicate that reception-incompleteness of a given realizable chore-357

ography G has at least two undesirable implications: First, in the implementation of G obtained by its projection,358

components’ behaviour is constrained more than necessary. Second, such a G is a problematic operand of the choice359

operator. The latter is very inconvenient for the conception of choreography well-formedness, because abstractly, ev-360

ery choreography is choice between a certain set of interaction pomsets. On top of this, even an individual interaction361

pomset can be unrealizable for the sole reason of being a reception-incomplete choreography:362

Example 7. The choreography G in Fig. 1(d) specifies a single interaction pomset, consisting of an A
x
−→B, a C

y
−→B,363

a C
b
−→ Z and an A

w
−→ B, with A

x
−→ B preceding C

z
−→ B, and C

y
−→ B preceding A

w
−→ B. In case of the Ord of [7], [[G]]364

specifies that !x, !y, !z and !w are concurrent, whereas ?x precedes ?z, and ?y precedes ?w. The resulting CSM system365

of G, presented in Fig. 1(d′), has the run !z!w!x!y, leading to a state in which the message w is in the channel AB in366

front of x, and the message z is in the channel CB in front of y, but the only actions currently enabled by B are ?x and367

?y, meaning that the messages waiting for reception will never be received, which makes G for the particular Ord not368

only reception-incomplete, but also unrealizable.369

3.4. A different version of the predicate Ord370

If a given realizable choreography G fails to be reception-complete for the assumed version of Ord, this originates371

in the properties of the particular Ord. As reception-incompleteness is undesirable, our version of Ord is such that372

for any action a and reception c′c?m, Ord(a, c′c?m) is true only if a is also a reception on the channel c′c (in all other373

aspects, the new default Ord is the same as that of [7]):374

Definition 6 (Predicate Ord). For given actions a and a′, Ord(a, a′) denotes that (a, a′) is a (cc′!m, cc′′!m′), a375

(c′c?m, cc′′!m′) or a (c′c?m, c′c?m′).376

The only consequence of our modification of the default Ord is that the members of the CSM system of a given377

choreography G newly comprise complete information on the local states in which individual kinds of messages378

are possibly available for reception in case that components consistently choose between the pomsets in [[G]]. This379

increases the chances that messages are removed from channels in time and properly interpreted. It also simplifies380

safety assessment of candidate implementations of individual CSMs, and possibly helps CSM implementers to choose381

from a wider range of safe reduced implementations. In other words, while the new Ord possibly means more action382

instance concurrency in [[G]] and, hence, larger action sequence sets of individual CSMs, which possibly increases the383

need for implementing just their reduced versions, it on the other hand brings more implementation freedom:384

Example 8. Let us return to Example 7. For the new Ord, ?x, ?y, ?z and ?w are concurrent in [[G]]. Consequently,385

smB([[G]]) is ready to execute them in any order, and G is both realizable and reception-complete.386

Example 9. Let us return to Example 6. For the new Ord, the CSM system of G is the one presented in Fig. 1(f′′).387

As in the only member of [[G2; G3]], ?x is no longer preceded by ?b, both smB([[G1; G3]]) and smB([[G2; G3]]) can start388

with ?x. Consequently, the initial ?x in smB([[G]]) is no longer decisive.389
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Example 10. Let us return to Example 9. When implementing the new smB([[G]]), it is not safe to omit the branch390

?b following ?x, because the CSM comprises no guarantee that in case that the rest of the system decides to support391

the omitted branch, it will support also at least one of the other two actions possible in the CSM after ?x. On the392

other hand, it is safe to omit the initial ?x, because in case that the rest of the system decides to support the omitted393

branch, it thereby supports one of the CSM’s action sequences ?x?a, ?x?x?a and ?x?b, thereby supporting (because394

in each of the sequences, the last reception is not on the same channel as any other) also initial execution of ?a or ?b.395

In smA([[G]]), the situation is less complicated, because in case that one or two of the initial actions are omitted, the396

remaining alternative is a transmission and as such non-blockable.397

Formally, the reasoning employed in Example 10 is as follows:398

Proposition 1. If a given CSM system with every CSM deterministic and possessing no i-action transitions is a399

correct implementation of a given choreography, it remains its correct implementation also if one of the CSMs, a state400

machine M, is modified into a deterministic state machine M′ for which in case of seq(M) , seq(M′), there is a pair401

(α, a) satisfying all the following:402

(1) (a ∈ L) ∧ (αa ∈ seq(M))403

(2) seq(M′) = {α′|(α′ ∈ seq(M)) ∧ (αa < pf(a′))}404

(3) If there is no transmission a′ with αa′ ∈ seq(M′), there is an action sequence set A ⊆ (seq(M)\seq(M′)) satisfying405

all the following:406

(3.1) ∀αaα′ ∈ (seq(M) \ seq(M′)) : ∃αaα′′ ∈ A : ((α′ ∈ pf(α′′)) ∨ (α′′ ∈ pf(α′)))407

(3.2) For every sequence αaα′ ∈ A, there is a pair (α′′, a′) satisfying all the following:408

(3.2.1) (α′′ ∈ (L?)∗) ∧ (a′ ∈ L?) ∧ (α′′a′ = aα′) ∧ (αa′ ∈ seq(M′))409

(3.2.2) No member of α′′ is a reception on the same channel as a′.410

Proof. Suppose that the premise is true. If seq(M) = seq(M′), then δM′ (α) of individual α ∈ seq(M′) is irrelevant for411

the correctness of the implementation. If seq(M) , seq(M′) and a pair (α, a) with the described properties exists, all412

the following is true:413

(1) The only possible problem is that the M′ executes α and then deadlocks.414

(2) If there is a transmission a′ with αa′ ∈ seq(M′), M′ is not blocked after α.415

(3) Otherwise, the deadlock occurs because a after α is not an option for M′, whereas all the alternative options are416

receptions never enabled by the rest of the system.417

(4) In the latter case, the correctness of the original implementation implies that the deadlock occurs because the rest418

of the system decides that M′ should execute an action sequence starting with an αaα′ ∈ A.419

(5) Consider the pair (α′′, a′) that presumably exists for such an αaα′. As the original implementation is correct, the420

rest of the system sends all the messages necessary for the execution of α′′a′.421

(6) As no reception in α′′ is on the same channel as a′, M′ can, hence, execute a′ also immediately after α, thereby422

avoiding the deadlock.423

3.5. Auto-concurrency424

The following example shows that an individual interaction pomset can be unrealizable even for the new (in the425

rest of the paper the default) Ord:426

Example 11. Consider the choreography G = G1|G2 in Fig. 2(a). The only action pomset in [[G]], presented in427

Fig. 2(b), specifies that it is illegal to execute the four transmissions in the order !x!z!y!x. However, the CSM system428

of G, presented in Fig. 2(c), has also a run starting with !x!z?x!y!x, a run in which B misinterprets the message x of429

G2 as the message x of G1 and consequently sends y prematurely.430

The above considered choreography G is unrealizable because of Ac([[G]]) with Ac the following predicate denot-431

ing the presence of auto-concurrency:432

Definition 7 (Predicate Ac). For a given action pomset set R, Ac(R) denotes that for some poset (E,≤) ∈ pos(R) and433

event pair (e, e′) ∈ E × E with λ(e) = λ(e′), neither e ≤ e′ nor e′ ≤ e is true.434
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Lemma 1. If a given choreography G satisfies (|〈〈G〉〉| = 1) ∧ ¬Ac([[G]]), it is realizable and reception-complete.435

Proof. Suppose that the premise is true. The only member of pos(〈〈G〉〉) is a interaction instance poset (G,≤′). The only436

member of pos([[G]]) is by definition an action instance poset (E,≤) isomorphic to the poset p = (
⋃

g∈G{e
!
g, e

?
g},R

⋆) with437

R = (
⋃

g∈G{(e
!
g, e

!
g), (e!

g, e
?
g), (e?

g, e
?
g)})∪{(e, e′)|∃(g, g′) ∈≤′: ((g , g′)∧ ((e, e′) ∈ {e!

g, e
?
g}× {e

!
g′
, e?

g′
})∧Ord(λ(e), λ(e′)))}.438

Without loss of generality, we assume that (E,≤) = p. The CSM system of G satisfies all the following:439

(1) For every component c, the action sequencesα executable by smc([[G]]) are exactly those satisfying pf(p⇂c, α) , ∅.440

(2) For every component c and action sequence α executable by smc([[G]]), by ¬Ac([[G]]), pf(p⇂c, α) comprises a441

single prefix of p⇂c, and the state of smc([[G]]) after α is virtually denoted exactly by the prefix.442

(3) By (2) and (3), every component c implements exactly the events in E⇂c, and is ready to execute them exactly in443

the orders compatible with ≤.444

(4) ∀(e, e′) ∈ R : ((∃g ∈ G : ((e, e′) = (e!
g, e

?
g))) ∨ (∃c ∈ C : ((λ(e), λ(e′)) ∈ Lc × Lc)))445

I.e., every ordering in ≤ which does not result from the remaining ones is either between a transmission instance446

and the corresponding reception instance, in which case it is implemented by the particular channel, or between447

two events implemented by the same component, in which case it is implemented by the component.448

(5) If no deadlock ever occurs and no component ever misinterprets a received message (i.e. interprets its reception449

as a certain e?
g in spite of the fact that it is actually e?

g′ of a g′ ∈ (G \ {g})), then, by (3) and (4), the system in every450

run executes exactly the events in E, in an order compatible with ≤.451

(6) ∀g ∈ G, (e, e?
g) ∈ R : ((e = e!

g)∨452

∃g′ ∈ G, c, c′,m,m′ : ((λ(g) = c
m
−→c′) ∧ (λ(g′) = c

m′

−−→c′) ∧ (e = e?
g′ ) ∧ ((e!

g′ , e
!
g) ∈≤)))453

I.e., for every reception instance e?
g ∈ E, every event e ∈ E that is one of its immediate preconditions is either the454

corresponding transmission instance e!
g or a reception instance whose corresponding transmission instance occurs455

on the same channel and is a precondition for e!
g. In both cases, the enabling of e?

g by the channel is delayed until456

after e.457

(7) By ¬Ac([[G]]) and (6), no component ever misinterprets a received message.458

(8) By (5)-(7), the system never reaches a state in which a component is on some of its currently non-empty incoming459

channels unable to receive the first message in the queue.460

(9) By (5)-(8), the system in every run executes exactly the events in E, in an order compatible with ≤.461

3.6. Local choice462

Example 12. Let us return to Example 9. For the new Ord, G1; G3 and G2; G3 are realizable and reception-complete463

choreographies. In the new CSM system of G, components in every run consistently choose whether the system464

should execute (an action sequence complying to) [[G1; G3]] or (one complying to) [[G2; G3]]. More precisely, all the465

following is true: Whenever a component c stops supporting one of the alternative action pomset sets, this is at a point466

at which both alternatives have further actions specified for c. The cancellation of support happens because c executes467

an action that is at the particular point legal only for the selected alternative. There is at most one component (in the468

particular case A) for which the decisive action can only be a transmission. For all the other components, it can only469

be a reception. In every system run, the choice between the two alternatives is, hence, made (if ever) locally, by the470

component that can only choose upon a transmission, and gradually communicated to (in the particular case all) the471

other components (for example, if [[G2; G3]] is selected instead of [[G1; G3]], C is informed of this upon ?z, and B upon472

?b).473

Speaking formally, the choice considered in Example 12 is local because the particular pair of action pomset sets474

satisfies the following predicate:475

Definition 8 (Predicate Lc). For given non-empty action pomset sets R1 and R2, Lc(R1,R2) denotes that there exists476

such a component set C′ with |C′| ≤ 1 that for every component c, action sequence α ∈ (asqc(R1)∩asqc(R2)), i ∈ {1, 2}477

and action a with αa ∈ (asqc(Ri) \ asqc(R3−i)), all the following is true:478

(1) ∃a′ ∈ L : (αa′ ∈ asqc(R3−i))479
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(2) (c ∈ C′)⇔ (a ∈ L!)480

Lemma 2. If given realizable and reception-complete choreographies G1 and G2 satisfy Lc([[G1]], [[G2]]), the chore-481

ography G = G1 +G2 is realizable and reception-complete.482

Proof. Suppose that the premise is true. For given i ∈ {1, 2} and component c, let Ai,c denote asqc([[Gi]]). By483

Lc([[G1]], [[G2]]), there is a component set C′ for which all the following is true:484

(1) |C′| ≤ 1485

(2) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ∃a′ ∈ L : (αa′ ∈ A3−i,c))486

(3) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ((c ∈ C′)⇔ (a ∈ L!)))487

The CSM system of G satisfies all the following:488

(4) For every c ∈ C, smc([[G]]) chooses between (a sub-machine isomorphic to) smc([[G1]]) and (a sub-machine489

isomorphic to) smc([[G2]]).490

(5) The moment when an smc([[Gi]]) is selected is when after executing an α ∈ (A1,c ∩ A2,c), c executes an action a491

with αa ∈ (Ai,c \ A3−i,c).492

(6) If a is a c′c?m, then the message received results from a transmission instance impossible in smc′ ([[G3−i]]), for493

otherwise, by the reception-completeness of G3−i, smc([[G3−i]]) would also be ready for c′c?m immediately after494

α, which would contradict αa < A3−i,c.495

(7) If a is a c′c?m, then, by (6), the choice at c is made after c′ has selected smc′ ([[Gi]]).496

(8) By (3)-(7), only a member of C′ can be the first component c to make the choice between smc([[G1]]) and497

smc([[G2]]), and thereby the choice between (a CSM system component-wise isomorphic to) the CSM system of498

G1 and (a CSM system component-wise isomorphic to) the CSM system of G2.499

(9) By (1) and (3)-(8), the choice between the two alternative CSM systems is made, if ever, by the only member of500

C′, and every other component follows it consistently.501

(10) By (9), every run of the CSM system of G is virtually a run of one of the alternative CSM systems.502

(11) By (2), (10) and the realizability and reception-completeness of G1 and G2, G is also realizable and reception-503

complete.504

At this point, it is interesting to note three things: As first, Lc([[G1]], [[G2]]) in Lemma 2 is a sufficient constraint505

for individually acceptable G1 and G2 in the role of operands of the choice operator. As second, in comparison to the506

corresponding constraint in [7] (partially presented in Section 4.2), ours is much simpler. The latter is possible because507

we newly expect operands to be reception-complete, which is crucial for the step (6) in the proof of Lemma 2. More508

precisely, the reception-completeness of G1 and G2 helps because it removes the need for considering also non-initial509

actions in the futures of individual decision points of individual members of the CSM system of G1 + G2 (see the510

Example 13 below). As third, our constraint drops the usual assumption, adopted also in [7], that in individual local511

decision points, all initial actions of the possible futures must be decisive (see the Example 14 below).512

Example 13. Let us return to Example 12, more precisely to the old CSM system of G. To correctly answer the513

question whether it is acceptable that B possibly selects its left alternative already upon an initial ?x, one has to514

consider also the non-initial ?x in the right alternative, for only then one can answer the question whether the latter515

instance of ?x is possibly enabled by the rest of the system already before ?b. As we know, the answer to the latter516

question is positive, which in the new CSM of B is evident simply from the initial ?x in the right alternative.517

Example 14. Consider the choreography G = G1 + G2 with G1 and G2 the realizable and reception-complete chore-518

ographies A
x
−→B|A

y
−→B and A

x
−→B|A

z
−→B, respectively. The choice between G1 and G2 is made by A, possibly already519

upon its first action, but only if the action is !y or !z. If the action is !x, the choice is delayed until the next decision520

point. Nevertheless, Lc([[G1]], [[G2]]), whereas for [7], G is unacceptable.521
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3.7. Well-formedness522

Well-formedness of choreographies is in [7] defined in terms of their topmost operator and the semantics of its523

operands, whereas we define it in terms of the semantics of choreographies themselves, with the help of the following524

recursively defined predicate denoting well-branchedness of a given action pomset set:525

Definition 9 (Predicate Wb). For a given action pomset set R, Wb(R) denotes that either |R| = 1 or there exist non-526

empty pomset sets R1 ⊂ R and R2 ⊂ R satisfying (R1 ∪ R2 = R) ∧Wb(R1) ∧Wb(R2) ∧ Lc(R1,R2).527

Definition 10 (Well-formedness). A given choreographyG is well-formed, denoted as Wf (G), if ¬Ac([[G]])∧Wb([[G]]).528

Proposition 2. If a given choreography G satisfies Wf (G), it is realizable and reception-complete.529

Proof. The proof is by induction, assuming Wf (G) and that every choreography G′ with Wf (G′)∧ (|〈〈G′〉〉| < |〈〈G〉〉|) is530

realizable and reception-complete:531

(1) By Wf (G), there is a non-empty interaction pomset set (i.e. a choreography)R ⊆ 〈〈G〉〉 with ([[R]] = [[G]])∧ (|R| =532

|[[R]]|) ∧Wf (R).533

(2) By [[R]] = [[G]], it suffices to prove that R is realizable and reception-complete.534

(3) If |R| = 1, then |〈〈R〉〉| = 1 and, by Wf (R), ¬Ac([[R]]) and, by Lemma 1, R is realizable and reception-complete.535

(4) If |R| > 1, then, by (|R| = |[[R]]|) ∧Wf (R), there exist non-empty interaction pomset sets (i.e. choreographies) R1536

and R2 satisfying (R1 ⊂ R) ∧ (R2 ⊂ R) ∧ (R1 ∪ R2 = R) ∧Wf (R1) ∧Wf (R2) ∧ Lc([[R1]], [[R2]]).537

(5) By (|〈〈R1〉〉| < |〈〈G〉〉|) ∧ (|〈〈R2〉〉| < |〈〈G〉〉|) ∧Wf (R1) ∧Wf (R2), R1 and R2 are realizable and reception-complete.538

(6) By (5), Lc([[R1]], [[R2]]) and Lemma 2, the choreography G′ = R1 + R2 is realizable and reception-complete.539

(7) By [[G′]] = [[G]] and (6), R is realizable and reception-complete.540

It seems that when Tuosto and Guanciale defined well-formedness in [7], their plan, though not optimally executed,541

was the same as ours, namely to enforce ‘no auto-concurrency and only local choice’. For the assumed kind of542

channels, avoiding specification of auto-concurrency is a reasonable decision, for note the following: Even if two543

instances of a given interaction are specified as concurrent in a given choreography G, so that the corresponding544

transmission instances are concurrent in [[G]], the corresponding message instances are ordered by the channel on545

which they are sent. It is just that their order is decided not earlier than at run-time, but this can be more faithfully546

specified as the possibility of two alternative orderings of the two interaction instances. Analogously, it can be helpful547

to explicitly specify that the recipient of the two message instances has two different possibilities for attributing them548

to the two interaction instances:549

Example 15. The choreographies G1 and G2 in the Figs. 3(a) and 3(b), respectively, for every component c satisfy550

seq(smc([[G1]])) = seq(smc([[G2]])), but have different semantics. Only [[G2]] faithfully represents the fact that in the551

system, the two instances of y are ordered by the channel, and that A freely chooses whether the first received instance552

of y should be attributed to the left or to the right instance of B
y
−→ A. Consequently, G2 is realizable, whereas its553

abstraction G1 is not. In the latter, the two instances of B
y
−→A are presented as concurrent and each guard exactly one554

of the interactions A
a
−→ B and A

b
−→ B. According to [[G1]] it is therefore illegal that the CSM system of G1 possibly555

executes the action sequence !x!z?z!y?y!a, in which the message of the right instance of B
y
−→A is interpreted by A as556

the message of the left instance of B
y
−→A.557

3.8. Causal-consistent reversibility558

In this section we assume that the CSM which a given choreography G defines for a given component c is559

rev(smc([[G]])). Note that for a given well-formed choreography G, a given action sequence α ∈ asq([[G]]) is exe-560

cutable by the CSM system of G exactly if it is in asqF ([[G]]). In the following we prove that a given well-formed561

choreography G is causal-consistent reversible exactly if there is no action sequence α ∈ asqF ([[G]]) for which the cu-562

mulative causal interpretation cci[[G]](α) would specify some intra-channel concurrency of transmissions or receptions,563

i.e. exactly if ¬Ic([[G]]) with Ic the following predicate:564
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Figure 3: Two choreographies.

Definition 11 (Predicate Ic). For a given action pomset set R, Ic(R) denotes that there exist an action sequence α ∈565

asqF (R), a channel cc′ and different events ea,i and ea′,i′ in maxR(α) with (a, a′) ∈ ((L!
cc′ × L

!
cc′ ) ∪ (L?

cc′ × L
?
cc′)).566

For given well-formed choreography G and (i-)action sequence β executable by its CSM system, let stG(β) denote567

the system state after β.568

Lemma 3. For any given choreography G satisfying Wf (G) ∧ ¬Ic([[G]]), action sequence α ∈ asqF ([[G]]) and action569

instance ea,i ∈ max[[G]](α), stG(α) is a state in which the CSM system of G can execute a−1.570

Proof. The action a is a cc′!m or a c′c?m. Let M denote the CSM smc([[G]]).571

(1) By ea,i ∈ max[[G]](α): ea,i ∈ max[[G]]⇂c
(α⇂c)572

(2) By (1), there is an action sequence α′a ∈ seq(M) with δM(α′a) = δM(α⇂c).573

(3) By (2): (δM(α′a), a−1, δM(α′)) ∈ Trev(M)574

(4) By (3), α⇂ca−1 ∈ seq(rev(M)) and, hence, in stG(α) the component c is ready for a−1.575

(5) If a is a c′c?m, the channel c′c is always ready for a−1.576

(6) If a is a cc′!m, then in stG(α), by (ea,i ∈ max[[G]](α)) ∧ ¬Ic([[G]]), the last element of the message queue of the577

channel cc′ is an instance of m, implying that the channel is ready for a−1.578

Next we prove that in case of Wf (G) ∧ ¬Ic([[G]]), any executed action inverse removes from the action history the579

last instance of the action and thereby transforms the action sequence into one that is also executable by the system.580

Moreover, we prove that the undone action instance is one that is allowed to be undone at the point, and that the581

undoing transforms the system state into the one resulting from the resulting action sequence.582

Lemma 4. For any given choreography G satisfying Wf (G) ∧ ¬Ic([[G]]), action sequence α ∈ asqF ([[G]]) and action583

a for which the CSM system of G is able to execute the (i-)action sequence αa−1, all the following is true:584

(a) max[[G]](α)⇂a = {ea,|α⇂{a} |}585

(b) rlst(α, a) ∈ asqF ([[G]])586

(c) stG(αa−1) = stG(rlst(α, a))587

Proof. The action a is a cc′!m or a c′c?m. Let M denote the CSM smc([[G]]).588

(1) As αa−1 is executable by the system, there is an action sequence α′a ∈ seq(M) with δM(α′a) = δM(α⇂c).589

(2) As the last element of the action sequence α′a is a, max[[G]]⇂c
(α′a) comprises at least ea,|(α′a)⇂{a}|.590
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(3) If a is a c′c?m, then, by ¬Ic([[G]]), ea,|(α′a)⇂{a}| is for every action sequence α′′ ∈ seq(M) with δM(α′′) = δM(α′a)591

the only event in max[[G]]⇂c
(α′′) that is an instance of a reception on the channel c′c.592

(4) If a is a cc′!m, then, by ¬Ic([[G]]), ea,|(α′a)⇂{a}| is for every action sequence α′′ ∈ seq(M) with δM(α′′) = δM(α′a)593

the only event in max[[G]]⇂c
(α′′) that is an instance of a transmission on the channel c′c.594

(5) By (3), (4) and δM(α′a) = δM(α⇂c), rev(M) has exactly one state s with (δM(α⇂c), a−1, s) ∈ Trev(M), namely the595

state (cipo(r)(α⇂c) \ ea,|(α′a)⇂{a}|)r∈[[G]]⇂c
.596

(6) If a is a c′c?m, ea,|(α′a)⇂{a}| is, by (3), for every action sequence α′′ ∈ asqF ([[G]]) with δM(α′′⇂c) = δM(α′a) the only597

event in max[[G]](α
′′) that is an instance of a reception on the channel c′c.598

(7) If a is a cc′!m, ea,|(α′a)⇂{a}| is, by (4), for every action sequence α′′ ∈ asqF ([[G]]) with δM(α′′⇂c) = δM(α′a) and599

α′′a−1 executable by the system the only event in max[[G]](α
′′) that is an instance of a transmission on the channel600

cc′.601

(8) If a is a c′c?m, then, by δM(α′a) = δM(α⇂c) and (6), ea,|(α′a)⇂{a}| is the only instance of a in max[[G]](α) and in α602

denotes the last reception on the channel c′c.603

(9) If a is a cc′!m, then, by δM(α′a) = δM(α⇂c) and (7), ea,|(α′a)⇂{a}| is the only instance of a in max[[G]](α) and in α604

denotes the last transmission on the channel cc′.605

(10) By (8) and (9): ea,|(α′a)⇂{a}| = ea,|α⇂{a}|606

(11) By (8)-(10): (max[[G]](α)⇂a = {ea,|α⇂{a}|}) ∧ (rlst(α, a) ∈ asqF ([[G]]))607

(12) By (5) and (8)-(11), stG(αa−1) = stG(rlst(α, a)).608

From the Lemmas 3 and 4 it is already evident that in case of Wf (G) ∧ ¬Ic([[G]]), the CSM system of G allows609

event undoing exactly where appropriate, and in the only form appropriate. For completeness, however, we next610

prove causal-consistent reversibility of the default implementation of G also formally. Here note that our definition611

of causal-consistent reversibility of the implementation in no way differs from the classical one, which is (see, for612

example, the overview paper [15]) that any action instance can be undone, provided that all its consequences (if any,613

with respect to the employed causal interpretation function, in our case cci[[G]]) are undone beforehand. To prove the614

property, it suffices to prove (as we do below) that the implementation is a state machine possessing the following615

properties [15]:616

(1) For every transition (s, a, s′) with a ∈ L, there is also the inverse transition (s′, a−1, s), and for every transition617

(s, a−1, s′) with a−1 ∈ L−1, there is also the inverse transition (s′, a, s).618

(2) Any two transition sequences with a common starting state have a common ending state exactly if they are causally619

equivalent, i.e. if they have the same effect on the causal history of the system.620

Proposition 3. If a given choreography G satisfies Wf (G) ∧ ¬Ic([[G]]), it is causal-consistent reversible.621

Proof. Suppose that the premise is true. Hence, all the following is true:622

(1) The CSM system of G is a state machine M.623

(2) By Lemma 4, M is deterministic.624

(3) By Wf (G) and Lemma 4: seq(M) ∩ L∗ = asqF ([[G]])625

(4) By Lemma 4: SM = {stG(α)|α ∈ asqF ([[G]])}626

(5) For any action sequence α and action a with αa−1 ∈ seq(M), there is, by Lemma 4, an eα,i ∈ max[[G]](α).627

(6) For any action sequences α ∈ seq(M) and ea,i ∈ max[[G]](α), there is an action sequence α′a ∈ seq(M) with628

δM(α) = δM(α′a).629

(7) For any action sequences α and action a with αa ∈ seq(M), ea,|αa⇂{a}| ∈ max[[G]](αa).630

(8) For any action sequence α and action a with αa ∈ seq(M), the transition (δM(α), a, δM(αa)) ∈ TM is, by (7) and631

the Lemmas 3 and 4, in TM accompanied by the transition (δM(αa), a−1, δM(α)).632

(9) Besides the inverse transitions, M has no other i-action transition, for otherwise, by (5)-(8), (a) of Lemma 4 is633

contradicted.634

(10) Let M′ denote the state machine635

({stG(α)|α ∈ asqF ([[G]])}, stG(ǫ), {(stG(α), a, stG(αa))|(a ∈ L) ∧ (αa ∈ asqF ([[G]]))}).636

(11) By (1)-(9): M = rev(M′)637
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(12) For any two action sequences α and α′ in asqF ([[G]]), by ¬Ic([[G]]):638

(stG(α) = stG(α′))⇔ ((civ[[G]]⇂c
(α⇂c))c∈C = (civ[[G]]⇂c

(α′⇂c))c∈C)639

(13) For any two action sequences α and α′ in asqF ([[G]]), because components, by Wf (G), consistently choose640

between pomsets in [[G]]: ((civ[[G]]⇂c
(α⇂c))c∈C = (civ[[G]]⇂c

(α′⇂c))c∈C)⇔ (civ[[G]](α) = civ[[G]](α
′))641

(14) By ¬Ac([[G]]): (civ[[G]](α) = civ[[G]](α
′))⇔ (cci[[G]](α) = cci[[G]](α

′))642

(15) Let M′′ denote the state machine643

({cci[[G]](α)|α ∈ asqF ([[G]])}, cci[[G]](ǫ), {(cci[[G]](α), a, cci[[G]](αa))|(a ∈ L) ∧ (αa ∈ asqF ([[G]]))}).644

(16) By (10)-(15), M is isomorphic to rev(M′′).645

(17) M′′ is an implementation of G in which the current state is denoted exactly by the current causal history.646

(18) By (16) and (17), M is a state machine in which given transition sequences starting in the same state end in the647

same state exactly if they have the same effect on the causal history, i.e., if they are causally equivalent.648

(19) By (16)-(18) and [15], the CSM system of G is its causal-consistent reversible implementation.649

Proposition 4. If a given choreography G satisfies Wf (G) ∧ Ic([[G]]), it is not causal-consistent reversible.650

Proof. Suppose that the premise is true. Hence, all the following is true:651

(1) For any action sequence α ∈ asqF ([[G]]), channel cc′ and different events ea,i and ea′ ,i′ in max[[G]](α) satisfying652

(a, a′) ∈ L?
cc′ × L

?
cc′ , those elements of α that are the transmission instance corresponding to ea,i and ea′ ,i′ are653

concurrent from the aspect of every poset (E,≤) ∈ ci[[G]](α) with {ea,i, ea′,i′} ⊆ E.654

(2) By Ic([[G]]) and (1), there exist such action sequence α ∈ asqF ([[G]]), channel cc′ and different events ea,i and ea′ ,i′655

in max[[G]](α) that (a, a′) ∈ L!
cc′ × L

!
cc′ .656

(3) For any action sequence α ∈ asqF ([[G]]) and different events ecc′!m,i and ecc′!m′ ,i′ in max[[G]](α), the system state657

after α should allow both cc′!m−1 and cc′!m′−1, which is possible only if the last element of the message queue of658

the channel cc′ is an instance of both m and m′, but as, by ¬Ac([[G]]), m , m′, this is impossible.659

4. Inference of choreography well-formedness660

Having proved that all well-formed choreographies G are realizable, reception-complete and in case of ¬Ic([[G]])661

causal-consistent reversible, we in this section prove a set of inference rules that can be useful in proving that a662

given choreography is well-formed. In Section 4.1, we point out some direct consequences of our observations in663

previous sections, among them well-formedness of elementary choreographies. In the Sections 4.2-4.4, we study664

well-formedness inference for choice, parallel composition and sequential composition, respectively. For each of665

the composition operators, we prove that in case that its operands are well-formed and satisfy certain additional666

constraints, the composition is also well-formed. The constraints suggested for operands of individual composition667

operators are compared with those suggested in [7], both conceptually and on examples. Thereby we reveal in which668

points the old constraints are inadequate.669

4.1. Four simple inference rules670

Proposition 5. If a choreography G satisfies (|[[G]]| = 1) ∧ ¬Ac([[G]]), then Wf (G).671

Proof. By |[[G]]| = 1, Wb([[G]]). Hence, by ¬Ac([[G]]), Wf (G).672

Proposition 6. If a choreography G is of the form 0 or c
m
−→c′, then Wf (G).673

Proof. Every such G satisfies the premise of Proposition 5.674

Proposition 7. If given choreographies G and G′ satisfy ([[G]] = [[G′]]) ∧Wf (G), then Wf (G′).675

Proof. For each of the choreographies, well-formedness is defined exclusively in terms of its semantics.676

Example 16. Consider the choreography G = (G1 + G2); G3 in Fig. 1(b) and the choreography G4 = (G1; G3) +677

(G2; G3). A compositional proof of well-formedness exists only for G4, because in G, the sub-choreography G1 +G2678

is not well-formed. By ([[G]] = [[G4]]) ∧Wf (G4), however, G is also well-formed.679

Proposition 8. If for a given choreography G, there exist non-empty pomsets R1 and R2 with (R1 ∪ R2 = 〈〈G〉〉) ∧680

Wf (R1 + R2), then W f (G).681

Proof. By [[G]] = [[R1 + R2]] and Proposition 7.682
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4.2. Well-formedness inference for choice683

Our constraint for given well-formed choreographies G1 and G2 in the role of operands of the choice operator684

(shortly choice constraint) is simply Lc([[G1]], [[G2]]).685

Proposition 9. If given choreographies G1 and G2 satisfy Wf (G1) ∧Wf (G2) ∧ Lc([[G1]], [[G2]]), then Wf (G1 +G2).686

Proof. Suppose that the premise is true. Hence, all the following is true:687

(1) For every i ∈ {1, 2}, by Wf (Gi): ¬Ac([[Gi]]) ∧Wb([[Gi]])688

(2) By ¬Ac([[G1]]) ∧ ¬Ac([[G2]]) : ¬Ac([[G1 +G2]])689

(3) By Wb([[G1]]) ∧Wb([[G2]]) ∧ Lc([[G1]], [[G2]]) : Wb([[G1 +G2]])690

(4) By (2) and (3): Wf (G1 +G2)691

From Definition 8 it is evident that our choice constraint Lc([[G1]], [[G2]]) is defined in terms of action sequences692

executable by individual components, in no way considering the candidate causal interpretations of the sequences. As693

such, the constraint comprises no restrictions of causal ambiguity, whereas the choice constraint of [7] has virtually694

been conceived with the intent to rule out the possibility that in G1 +G2, there is causal ambiguity other than that in695

G1 or G2 individually.696

Example 17. Consider the choreography G = (G1 +G2)+G3 in Fig. 1(c). For each of the choreographies G1, G2 and697

G3, the old semantics is the same as the new one, and all are well-formed both in the old and in the new sense. The698

choice G1 +G2 is non-local, whereas the choices G1 +G3 and G2 +G3 introduce causal ambiguity (recall Example 5).699

Consequently, none of the choices satisfies the old version of the choice constraint. With the new one, however, it is700

possible to compositionally prove Wf (G), as follows:701

By Wf (G2)∧Wf (G3)∧Lc([[G2]], [[G3]]), the choreography G4 = G2+G3 is well-formed (the component responsible702

for the choice between G2 and G3 is A). By Wf (G1) ∧Wf (G4) ∧ Lc([[G1]], [[G4]]), the choreography G5 = G1 + G4 is703

well-formed (the component responsible for the choice between G1 and G4 is B). By ([[G]] = [[G5]]) ∧Wf (G5), G is704

also well-formed.705

The old choice constraint has been defined in terms of the candidate causal interpretations of action sequences706

executable by individual components. If in G1 +G2, there is a lot of parallelism and not much causal ambiguity, the707

approach can be very convenient. For this reason, we also provide a pomset-based choice constraint. Like [7], we708

intend it for operands Gi without auto-concurrency whose semantics satisfies the following predicate implying their709

local causal unambiguity:710

Definition 12 (Predicate Lu). For a given action pomset set R, Lu(R) denotes that for every component c and action711

sequence α ∈ asq(R⇂c), | pf(R⇂c, α)| = 1.712

Example 18. Let us return to Example 5. Among the prefixes of the action pomsets in [[G]]⇂B, there are also a pomset713

specifying concurrent execution of ?x and !y and a pomset specifying their sequential execution. The action sequence714

?x!y ∈ asq([[G]]⇂B) is a legal permutation of both pomsets. Hence, ¬Lu([[G]]).715

In the constraint Lc([[G1]], [[G2]]), every CSM smc([[Gi]]) is regarded as an executor of action sequences, i.e. as716

a machine that in each step takes the sequence α of its past actions and, by executing an action a, enhances it into717

the action sequence α′ = αa. Formally, such a step is the triplet (α, a, α′). In case of Lu([[G1]]) ∧ Lu([[G2]]), the718

triplet can alternatively be regarded as the triplet (r, a, r′) with r and r′ the action pomsets that are the unique maximal719

candidate causal interpretations of α and α′, respectively. In the alternative view, the step set of individual smc([[Gi]])720

is, hence, the triplet set tri([[Gi]]⇂c), whereas the corresponding rephrasing of (the relevant specialization of) the pred-721

icate Lc is the following predicate Lc′, with Lc′([[G1]], [[G2]]) our pomset-based choice constraint for locally causally722

unambiguous operands:723

Definition 13 (Predicate Lc′). For given non-empty action pomset sets R1 and R2, Lc′(R1,R2) denotes that Lu(R1) ∧724

Lu(R2) and that there exists such a component set C′ with |C′| ≤ 1 that for every component c, pomset r ∈ (pf(R1⇂c)∩725

pf(R2⇂c)), i ∈ {1, 2} and (r, a, r′) ∈ tri(Ri⇂c) with r′ < pf(R3−i⇂c), all the following is true:726
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(1) ∄(r, a, r1) ∈ tri(R3−i⇂c)727

(2) ∃(r, a′, r2) ∈ tri(R3−i⇂c)728

(3) (c ∈ C′)⇔ (a ∈ L!)729

Lemma 5. If given non-empty action pomset sets R1 and R2 satisfy Lc′(R1,R2), then Lc(R1,R2) ∧ Lu(R1 ∪ R2).730

Proof. Suppose that the C′ required in Definition 13 actually exists. For given i ∈ {1, 2} and component c, let731

Ri,c denote pf(Ri⇂c). For every component c, action sequence α ∈ (asq(R1,c) ∩ asq(R2,c)) with ∃r : (pf(R1,c, α) =732

pf(R2,c, α) = {r}), i ∈ {1, 2} and action a with αa ∈ asq(Ri,c), all the following is true:733

(1) ∀i ∈ {1, 2}, c ∈ C : (asqc(Ri) = asq(Ri,c))734

(2) By Lu(Ri), pf(Ri,c, αa) is an {r′} with (r, a, r′) ∈ tri(Ri,c).735

(3) If (αa ∈ asq(R3−i,c)) ∧ (r′ ∈ R3−i,c) then, by (r′ ∈ pf({r′}, αa)) ∧ Lu(R3−i), pf(R3−i,c, αa) = {r′}.736

(4) If (αa ∈ asq(R3−i,c)) ∧ (r′ < R3−i,c) then, by Lu(R3−i), there is an (r, a, r′′) ∈ tri(R3−i,c), contradicting Lc′(R1,R2).737

(5) If αa < asq(R3−i,c) then r′ < R3−i,c and, by Lc′(R1,R2), there is an action a′ with αa′ ∈ asq(R3−i,c) and (c ∈ C′)⇔738

(a ∈ L!).739

From the above, satisfaction of the constraints which Lc(R1,R2) and Lu(R1 ∪ R2) impose for individual components740

c follows by induction on increasingly longer α ∈ (asq(R1,c) ∩ asq(R2,c)).741

Proposition 10. If given choreographies G1 and G2 satisfy Wf (G1)∧Wf (G2)∧Lc′([[G1]], [[G2]]), then Wf (G1 +G2)∧742

Lu([[G1 +G2]]).743

Proof. Suppose that the premise is true.744

(1) By Lemma 5: Lc([[G1]], [[G2]]) ∧ Lu([[G1]] ∪ [[G2]])745

(2) By Wf (G1) ∧Wf (G2) ∧ Lc([[G1]], [[G2]]) and Proposition 9: Wf (G1 +G2)746

(3) By Lu([[G1]] ∪ [[G2]]) ∧ ([[G1 +G2]] = [[G1]] ∪ [[G2]]): Lu([[G1 +G2]])747

The papers [7, 8] suggest that the plan for the old choice constraint was to define it as an Lcold([[G1]], [[G2]]) with748

Lcold a certain specialization of the following specialization Lc′′ of the predicate Lc′:749

Definition 14 (Predicate Lc′′). For given non-empty action pomset sets R1 and R2, Lc′′(R1,R2) denotes that Lu(R1)∧750

Lu(R2) and that there exist such component set C′ with |C′| ≤ 1 and pomset array [qi,c,r]i∈{1,2},c∈C,r∈Ri⇂c
satisfying751

∀i ∈ {1, 2}, c ∈ C, r ∈ Ri⇂c : ((qi,c,r ∈ pf(r)) ∧ ∃r′ ∈ R3−i⇂c : (qi,c,r = q3−i,c,r′)) that for every component c, pomset752

r ∈ (pf(R1⇂c) ∩ pf(R2⇂c)), i ∈ {1, 2} and (r, a, r′) ∈ tri(Ri⇂c) with r′ < pf(R3−i⇂c), all the following is true:753

(0) ∃r0 ∈ Ri⇂c : (r ∈ pf(qi,c,r0
))754

(1) ∄(r, a, r1) ∈ tri(R3−i⇂c)755

(2) ∃(r, a′, r2) ∈ tri(R3−i⇂c)756

(3) (c ∈ C′)⇔ (a ∈ L!)757

(4) (a ∈ L?)⇒ (∄(r3, a, r4) ∈ tri(R3−i⇂c) : (r ∈ pf(r3)))758

The predicate Lc′′ specializes the predicate Lc′ by the additional constraints (0) and (4). In the more restrictive759

choice constraint Lc′′([[G1]], [[G2]]), the additional (0) serves no particular purpose, whereas the additional (4) removes760

the need for the reception-completeness of G1 and G2. With the new versions of the choreography semantics and well-761

formedness, however, the latter is irrelevant, because Wf (G1)∧Wf (G2) is sufficient for the reception-completeness of762

G1 and G2. There are cases where removing the redundant (4) can actually help:763

Example 19. Consider the choreography G = G1+G2 in Fig. 1(a). For each of the choreographies G1 and G2, the old764

semantics is the same as the new one, and the choreographies are well-formed both in the old and in the new sense.765

Hence, G1 and G2 are reception-complete, but Lc′′([[G1]], [[G2]]) is nevertheless not satisfied. On the other hand, if766

one removes the redundant (4) in Definition 14, Lc′′([[G1]], [[G2]]) can be satisfied, by setting C′ to {A} and every qi,c,r767

to the empty pomset.768
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Unfortunately, there is a detail in which the old choice constraint fails to be a specialization of Lc′′([[G1]], [[G2]]).769

In other words, the actual Lcold is not an implementation of Lc′′. Namely, instead of implementing the constraint (2)770

in Definition 14, Lcold virtually implements the less restrictive constraint ∃r5 ∈ R3−i⇂c, r6 ∈ pf(q3−i,c,r5
), (r6, a

′, r7) ∈771

tri(R3−i⇂c), which is a problem:772

Example 20. Consider the choreography G = G1 +G2 in Fig. 1(e). For each of the choreographies G1 = G1,1 +G1,2773

and G2 = G2,1 + G2,2, the old semantics is the same as the new one, and the choreographies are well-formed both in774

the old and in the new sense. G as a whole is unrealizable, for example because in smA(G), !a executed in both (the775

sub-machine isomorphic to) smA(G1,1) and (the sub-machine isomorphic to) smA(G2,1) is not necessarily followed by776

arrival of the expected c, for B possibly executes !y in smB(G2,1), an event cancelling smB(G1,1) and thereby !c.777

Because of the deadlock possibility in G, neither Lc(R1,R2) for (R1,R2) = ([[G1]], [[G2]]) nor its specialization778

Lc′′([[G1]], [[G2]]) is satisfied, because, respectively, the constraint (1) in Definition 8 or the corresponding constraint779

(2) in Definition 14 is not satisfied wherever required. On the other hand, Lcold([[G1]], [[G2]]) is satisfied, because the780

subsumed weaker version of the constraint (2) in Definition 14 is satisfied wherever required. Consequently, G is781

well-formed in the old sense, which is incompatible with its unrealizability.782

4.3. Well-formedness inference for parallel composition783

Our constraint for given well-formed choreographies G1 and G2 in the role of operands of the parallel composition784

operator is the same as that of [7], prescribing that G1 and G2 use different actions, i.e. that λ([[G1]]) ∩ λ([[G2]]) = ∅.785

This suffices for correct interpretation of received messages, but not for timely reception on shared channels. For the786

latter, we rely on the reception-completeness of G1 and G2, which in case of the old Ord is not secured:787

Example 21. Consider the choreography G = G1|G2 in Fig. 1(d). The choreographies G1 and G2 are well-formed788

both in the old and in the new sense, actually realizable for both the old and the new Ord, and use different actions.789

For every component c, smc([[G]]) is (isomorphic to) the parallel composition of (a state machine isomorphic to)790

smc([[G1]]) and (a state machine isomorphic to) smc([[G2]]). Thus, A can execute !x and !w in any order, and C can791

execute !y and !z in any order, whereas the behaviour of B depends on whether one assumes the old or the new792

choreography semantics. In case of the old one, smB([[G1]]) can execute ?z only after ?x, and smB([[G2]]) can execute793

?w only after ?y, so that in case that the CSM system of G, presented in Fig.1(d′), executes the transmission sequence794

!z!w!x!y, the resulting system state is one in which the message w is in the channel AB in front of x, and the message795

z is in the channel CB in front of y, but the only action currently enabled by smB([[G1]]) is ?x, and the only action796

currently enabled by smB([[G2]]) is ?y, meaning that the messages waiting for reception will never be received. In case797

of the new choreography semantics, smB([[G1]]) can receive x and z in any order, and smB([[G2]]) can receive y and w798

in any order, meaning that smB([[G]]) can receive x, y, z and w in any order.799

Lemma 6. If given choreographies G1, G2 and G3 satisfy Lc([[G1]], [[G2]]) ∧ ∀i ∈ {1, 2} : (λ([[Gi]]) ∩ λ([[G3]]) = ∅),800

then Lc([[G1|G3]], [[G2|G3]]).801

Proof. Suppose that the premise is true. For given i ∈ {1, 2} and component c, let Ai,c and A′
i,c

denote asqc([[Gi]]) and802

asqc([[Gi|G3]]), respectively. By Lc([[G1]], [[G2]]), there is a component set C′ for which all the following is true:803

(1) |C′| ≤ 1804

(2) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ∃a′ ∈ L : (αa′ ∈ A3−i,c))805

(3) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ((c ∈ C′)⇔ (a ∈ L!)))806

Hence, all the following is true:807

(4) For every i ∈ {1, 2} and component c, by λ([[Gi]]) ∩ λ([[G3]]) = ∅:808

A′
i,c
= {α|(α ∈ (Lc)∗) ∧ ∃α′ ∈ Ai,c, α

′′ ∈ A3,c : ((α⇂λ([[Gi ]])
= α′) ∧ (α⇂λ([[G3 ]]) = α

′′) ∧ (|α′| + |α′′| = |α|))}809

(5) By (2) and (4): ∀c ∈ C, α ∈ (A′
1,c
∩ A′

2,c
), i ∈ {1, 2}, a ∈ L : ((αa ∈ (A′

i,c
\ A′

3−i,c
))⇒ ∃a′ ∈ L : (αa′ ∈ A′

3−i,c
))810

(6) By (3) and (4): ∀c ∈ C, α ∈ (A′
1,c
∩ A′

2,c
), i ∈ {1, 2}, a ∈ L : ((αa ∈ (A′

i,c
\ A′

3−i,c
))⇒ ((c ∈ C′)⇔ (a ∈ L!)))811

Proposition 11. If given choreographies G1 and G2 satisfy Wf (G1) ∧ Wf (G2) ∧ (λ([[G1]]) ∩ λ([[G2]]) = ∅), then812

Wf (G1|G2).813
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Proof. The proof is by induction, assuming that for any choreographies G′
1

and G′
2

with (|〈〈G′
1
〉〉| < |〈〈G1〉〉|)∨ (|〈〈G′

2
〉〉| <814

|〈〈G2〉〉|), Wf (G′
1
)∧Wf (G′

2
)∧ (λ([[G′

1
]])∩ λ([[G′

2
]]) = ∅) is sufficient for W f (G′

1
|G′

2
). For a given i ∈ {1, 2}, let Ri denote815

〈〈Gi〉〉. Suppose that the premise is true. Hence, Wf (R1)∧Wf (R2)∧ (λ([[R1]])∩λ([[R2]]) = ∅). By [[R1|R2]] = [[G1|G2]],816

it suffices to prove Wf (R1|R2).817

If there is an i ∈ {1, 2} with |Ri| > 1, all the following is true:818

(1) By Wf (Ri), there exist non-empty pomsets Ri,1 ⊂ Ri and Ri,2 ⊂ Ri satisfying (Ri,1 ∪ Ri,2 = Ri) ∧ Wf (Ri,1) ∧819

Wf (Ri,2) ∧ Lc([[Ri,1]], [[Ri,2]]).820

(2) By λ([[R1]]) ∩ λ([[R2]]) = ∅: (λ([[Ri,1]]) ∩ λ([[R3−i]]) = ∅) ∧ (λ([[Ri,2]]) ∩ λ([[R3−i]]) = ∅)821

(3) For every j ∈ {1, 2}, by (|〈〈Ri, j〉〉| < |Ri|) ∧Wf (Ri, j) ∧Wf (R3−i) ∧ (λ([[Ri, j]]) ∩ λ([[R3−i]]) = ∅): Wf (Ri, j|R3−i)822

(4) By Lc([[Ri,1]], [[Ri,2]]) ∧ ∀ j ∈ {1, 2} : (λ([[Ri, j]]) ∩ λ([[R3−i]]) = ∅) and Lemma 6: Lc([[Ri,1|R3−i]], [[Ri,2|R3−i]])823

(5) By (3), (4) and Proposition 9: Wf ((Ri,1|R3−i) + (Ri,2|R3−i))824

(6) By (5) and [[R1|R2]] = [[(Ri,1|R3−i) + (Ri,2|R3−i)]]: Wf (R1|R2)825

If |R1| = |R2| = 1, all the following is true:826

(1) By Wf (R1) ∧Wf (R2): ¬Ac([[R1]]) ∧ ¬Ac([[R2]])827

(2) By (1) and λ([[R1]]) ∩ λ([[R2]]) = ∅: ¬Ac([[R1|R2]])828

(3) By |[[R1|R2]]| = 1: Wb([[R1|R2]])829

4.4. Well-formedness inference for sequential composition830

Our constraint for given well-formed choreographies G1 and G2 in the role of operands of the sequential compo-831

sition operator is Ls(G1,G2) with Ls the following predicate:832

Definition 15 (Predicate Ls). For given choreographies G1 and G2, Ls(G1,G2) denotes that they are locally strictly833

sequenced, i.e. that for every interaction instance poset pair ((G1,≤1), (G2,≤2)) ∈ pos1(〈〈G1〉〉)×pos2(〈〈G2〉〉), the action834

instance poset [[(G1 ∪ G2, (≤1 ∪ ≤2 ∪(G1 × G2))⋆)]] is an (E,≤) with ≤⊇
⋃

c∈C((
⋃

g∈G1
{e!

g, e
?
g}⇂c

) × (
⋃

g∈G2
{e!

g, e
?
g}⇂c

)).835

We see that the constraint Ls(G1,G2) is virtually defined in terms of constraints on individual action instance posets836

in pos([[G1; G2]]). For each of them it requires that every event e belonging to G2 is delayed until its executor c has837

executed all its events belonging to G1, where in case that e is an instance of a reception, the assumed choreography838

semantics must allow that ‘delayed’ is interpreted as ‘not enabled by the channel’, for otherwise the constraint is839

in general not sufficient for the realizability of G1; G2. Such interpretation is allowed provided that the semantics840

specifies reception-completeness of choreographies, which is in general true only for the new semantics. In [7],841

‘delayed’ virtually means ‘delayed by c’ (and is specified already in the semantics of G1; G2). In this sense, [7] is less842

restrictive, which is a problem, in spite of the fact that the old constraint for operands of the sequential composition843

operator additionally requires that reception instances in G2 are delayed with respect to every transmission instance844

in the selected alternative of G1.845

Example 22. Consider the choreography G = G1; G2 in Fig. 1(f). For each of the choreographies G1 = G1,1 + G1,2846

and G2, the old semantics is the same as the new one, and the choreographies are well-formed both in the old and in847

the new sense.848

In case of the old semantics, the CSM system of G, presented in Fig.1(f′), possibly executes the action sequence849

!z?z!b!x?x, in which the components A and C choose G1,2, but the message x of G2 is transmitted so early that the850

component B executes its reception as its first event. Consequently, B erroneously interprets the reception as an event851

in G1,1, concludes that G1,1 is the selected alternative, and becomes permanently unready for the message b of G1,2.852

Nevertheless, G1 and G2 satisfy the constraint of [7] for operands of the sequential composition operator, because in853

both alternatives G1,1; G2 and G1,2; G2 of G1; G2, the only reception instance in G2 is delayed with respect to every854

transmission instance in G1,1 or G1,2, respectively. Consequently, G is well-formed in the old sense, in spite of the fact855

that for the old semantics, it is unrealizable.856

G is well-formed also in the new sense, but this is fine, because for the new semantics, G is actually realizable.857

The reason is that the semantics corrects its CSM system to the one presented in Fig 1(f′′). To prove Wf (G) compo-858

sitionally is, however, impossible with our inference rules only, because Ls(G1,G2) is not satisfied. The reason is that859

Ls(G1,1; G2) and Ls(G1,2; G2) are not satisfied. Namely, in the new semantics of G1,1; G2 and G1,2; G2, the instance of860

AB?x in G2 is not delayed until B has executed CB?a or CB?b, respectively.861
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It seems that the requirement of [7] that every reception instance in G2 must be delayed with respect to every862

transmission instance in the selected alternative of G1 has been introduced to secure that messages belonging to G1863

are not received until the recipient knows how many instances of the particular message G1 will transmit on the864

particular channel. After the last transmission in a realizable G1, the number is indeed known, but this does not mean865

that the recipient knows it. On the other hand, the recipient sometimes knows the number already before the last866

transmission in G1, for example if it is the same in every alternative of G1:867

Example 23. The choreography A
x
−→B; C

y
−→D is realizable for both the old and the new Ord (in both cases, it has the868

same semantics, namely the same as the choreography A
x
−→B|C

y
−→D), but only the new constraint for operands of the869

sequential composition operator is satisfied in it.870

Lemma 7. If given choreographies G1, G2 and G3 satisfy Ls(G1,G3)∧Ls(G2,G3)∧Lc([[G1]], [[G2]]), then Lc([[G1; G3]],871

[[G2; G3]]).872

Proof. Suppose that the premise is true. For given i ∈ {1, 2} and component c, let Ai,c and A′
i,c

denote asqc([[Gi]]) and873

asqc([[Gi; G3]]), respectively. By Lc([[G1]], [[G2]]), there is a component set C′ for which all the following is true:874

(1) |C′| ≤ 1875

(2) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ∃a′ ∈ L : (αa′ ∈ A3−i,c))876

(3) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ((c ∈ C′)⇔ (a ∈ L!)))877

Hence, all the following is true:878

(4) By (2) and Ls(G1,G3) ∧ Ls(G2,G3):879

∀c ∈ C, α ∈ (A′
1,c
∩ A′

2,c
), i ∈ {1, 2}, a ∈ L :880

((αa ∈ (A′
i,c
\ A′

3−i,c
))⇒ ((α ∈ (A1,c ∩ A2,c)) ∧ (αa ∈ (Ai,c \ A3−i,c)) ∧ ∃a′ ∈ L : (αa′ ∈ A′

3−i,c
)))881

(5) By (3) and (4): ∀c ∈ C, α ∈ (A′
1,c
∩ A′

2,c
), i ∈ {1, 2}, a ∈ L : ((αa ∈ (A′

i,c
\ A′

3−i,c
))⇒ ((c ∈ C′)⇔ (a ∈ L!)))882

Lemma 8. If given choreographies G1, G2 and G3 satisfy (|〈〈G3〉〉| = 1) ∧ Ls(G3,G1) ∧ Ls(G3,G2) ∧ Lc([[G1]], [[G2]]),883

then Lc([[G3; G1]], [[G3; G2]]).884

Proof. Suppose that the premise is true. For given i ∈ {1, 2} and component c, let Ai,c and A′
i,c

denote asqc([[Gi]]) and885

asqc([[G3; Gi]]), respectively. By Lc([[G1]], [[G2]]), there is a component set C′ for which all the following is true:886

(1) |C′| ≤ 1887

(2) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ∃a′ ∈ L : (αa′ ∈ A3−i,c))888

(3) ∀c ∈ C, α ∈ (A1,c ∩ A2,c), i ∈ {1, 2}, a ∈ L : ((αa ∈ (Ai,c \ A3−i,c))⇒ ((c ∈ C′)⇔ (a ∈ L!)))889

Hence, all the following is true:890

(4) For every i ∈ {1, 2} and component c, by Ls(G3,Gi):891

A′
i,c
= asqc([[G3]]) ∪ {αα′|(α ∈ asqc([[G3]])) ∧ (α′ ∈ Ai,c) ∧ ∄α′′ ∈ asqc([[G3]]) : (|α′′| > |α|)}892

(5) By (2) and (4): ∀c ∈ C, α ∈ (A′
1,c
∩ A′

2,c
), i ∈ {1, 2}, a ∈ L : ((αa ∈ (A′

i,c
\ A′

3−i,c
))⇒ ∃a′ ∈ L : (αa′ ∈ A′

3−i,c
))893

(6) By (3) and (4): ∀c ∈ C, α ∈ (A′
1,c
∩ A′

2,c
), i ∈ {1, 2}, a ∈ L : ((αa ∈ (A′

i,c
\ A′

3−i,c
))⇒ ((c ∈ C′)⇔ (a ∈ L!)))894

Proposition 12. If given choreographies G1 and G2 satisfy Wf (G1) ∧Wf (G2) ∧ Ls(G1,G2), then Wf (G1; G2).895

Proof. The proof is by induction, assuming that for any choreographies G′
1

and G′
2

with (|〈〈G′
1
〉〉| < |〈〈G1〉〉|)∨ (|〈〈G′

2
〉〉| <896

|〈〈G2〉〉|), Wf (G′
1
) ∧ Wf (G′

2
) ∧ Ls(G′

1
,G′

2
) is sufficient for W f (G′

1
; G′

2
). For a given i ∈ {1, 2}, let Ri denote 〈〈Gi〉〉.897

Suppose that the premise is true. Hence, Wf (R1)∧Wf (R2)∧ Ls(R1,R2). By [[R1;R2]] = [[G1; G2]], it suffices to prove898

Wf (R1;R2).899

If |R1| > 1, all the following is true:900

(1) By Wf (R1), there exist non-empty pomsets R1,1 ⊂ R1 and R1,2 ⊂ R1 satisfying (R1,1 ∪ R1,2 = R1) ∧Wf (R1,1) ∧901

Wf (R1,2) ∧ Lc([[R1,1]], [[R1,2]]).902
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(2) By Ls(R1,R2): Ls(R1,1,R2) ∧ Ls(R1,2,R2)903

(3) For every i ∈ {1, 2}, by (|〈〈R1,i〉〉| < |R1|) ∧Wf (R1,i) ∧Wf (R2) ∧ Ls(R1,i,R2): Wf (R1,i;R2)904

(4) By Ls(R1,1,R2) ∧ Ls(R1,2,R2) ∧ Lc([[R1,1]], [[R1,2]]) and Lemma 7: Lc([[R1,1;R2]], [[R1,2;R2]])905

(5) By (3), (4) and Proposition 9: Wf ((R1,1;R2) + (R1,2;R2))906

(6) By (5) and [[R1;R2]] = [[(R1,1;R2) + (R1,2;R2)]]: Wf (R1;R2)907

If |R1| = |R2| = 1, all the following is true:908

(1) By Wf (R1) ∧Wf (R2): ¬Ac([[R1]]) ∧ ¬Ac([[R2]])909

(2) By (1) and Ls(R1,R2): ¬Ac([[R1;R2]])910

(3) By |[[R1;R2]]| = 1: Wb([[R1;R2]])911

If (|R1| = 1) ∧ (|R2| > 1), all the following is true:912

(1) By Wf (R2), there exist non-empty pomsets R2,1 ⊂ R2 and R2,2 ⊂ R2 satisfying (R2,1 ∪ R2,2 = R2) ∧Wf (R2,1) ∧913

Wf (R2,2) ∧ Lc([[R2,1]], [[R2,2]]).914

(2) By Ls(R1,R2): Ls(R1,R2,1) ∧ Ls(R1,R2,2)915

(3) For every i ∈ {1, 2}, by (|〈〈R2,i〉〉| < |R2|) ∧Wf (R1) ∧Wf (R2,i) ∧ Ls(R1,R2,i): Wf (R1;R2,i)916

(4) By (|〈〈R1〉〉| = 1) ∧ Ls(R1,R2,1) ∧ Ls(R1,R2,2) ∧ Lc([[R2,1]], [[R2,2]]) and Lemma 8: Lc([[R1;R2,1]], [[R1;R2,2]])917

(5) By (3), (4) and Proposition 9: Wf ((R1;R2,1) + (R1;R2,2))918

(6) By (5) and [[R1;R2]] = [[(R1;R2,1) + (R1;R2,2)]]: Wf (R1;R2)919

5. Concluding remarks920

We re-engineered the pomset-based abstract semantics and semantic constraints which Tuosto and Guanciale921

[7, 8] recently proposed for compositionally specified choreographies for distributed systems with FIFO channels.922

Our primary aim has been to remove the flaws which originally prevented well-formed choreographies from being923

realizable in the general case. We achieved this mainly by securing that the default implementation of well-formed924

choreographies is reception-complete, taking care also that the CSMs obtained by choreography projection have no925

inexecutable transitions. Thanks to the latter, each of the CSMs comprises more precise information of what the926

component is to expect from the rest of the system, which brings an additional degree of freedom in the construction927

of safe reduced versions of the CSMs and in the conception of constraints for choreographies in the role of operands928

of the choice operator. By less restrictive constraints for operands of the operator, we newly allowed branching points929

in which only some continuations are decisive, and choreographies exploiting accidental event orderings.930

Devising a set of rules for inferring well-formedness of choreographies compositionally, we corrected and in931

certain ways relaxed also constraints for operands of the sequential composition operator. An item for future work is to932

conceive even less restrictive reasonably simple sufficient constraints for the operands, in particular such allowing that933

in the default implementation of the first operand, some system components are termination-unaware. The possibility934

of (context-compensated) termination-unawareness has already been foreseen in [16], the paper in which Tuosto935

and Guanciale took their abstract handling of choreographies even further than in [7], considering the realizability936

of general action pomset sets, though assuming that communication buffers are used not as queues, but as bags of937

messages, and without considering compositionality aspects, which in [7] and in our paper are the primary concern.938

Besides rules for using as building blocks also choreographies which are not well-formed, our framework for939

compositional conception of well-formed choreographies lacks also operators and inference rules for compositional940

conception of infinite well-formed choreographies. The latter, however, have virtually already been foreseen in the941

paper, because for choreographies specified as an interaction pomset set, we do not prescribe that the set or its elements942

must be finite.943

The new version of choreography well-formedness still does not cover all realizable choreographies. In particular,944

it fails to cover realizable choreographies with auto-concurrency, for example the choreography A
x
−→B|A

x
−→B. For the945

considered kind of channels, however, choreographies comprising intra-channel concurrency are less interesting, be-946

cause they fail to capture channels’ FIFO policy and as such typically fail to have on the channels a causal-consistent947

reversible default implementation. We say this because, unlike [10], we refrain from assuming that intra-channel948
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concurrency, if specified, is an irrelevant degree of freedom in the choreography semantics. On the other hand, recall949

our assumption that when undoing past events, the implementation must respect all specified candidate causal inter-950

pretations of the past. We chose this restrictive approach because with it, one can have causal-consistent reversibility951

in the strict sense defined in [15] without sacrificing the specified exploitation of accidental event orderings. In the952

future, we plan to study also choreography projections implementing more liberal event undoing, which the commu-953

nity of system components could use, for example, to achieve that the resulting global action sequence is one of those954

specified by the choreography which are not executable on FIFO channels.955

Our study has shown that in the conception of choreographies, it indeed pays to go abstract, but not as abstract as956

to ignore useful or problematic constraints which channels put on the communication actions and their undoings.957
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