
Global Conict Resolution in Automated Service-Based

Protocol Synthesis

M. Kapus-Kolar

Jo�zef Stefan Institute, Ljubljana, Slovenia

monika.kapus-kolar@ijs.si

Abstract

A transformation is proposed which, given a speci�cation of the required external behaviour of a server consisting

of two synchronously communicating components and a partitioning of the speci�ed service actions among the

server components, derives behaviour of individual components, i.e. a protocol implementing the service. The

adopted speci�cation language is an abstraction of E-LOTOS. The transformation accepts service speci�cations

written in its Basic-LOTOS-like sublanguage. The stress is on demonstrating that distributed decision-making can

be implemented without preventing the derived protocol speci�cations from reecting the structure of the service

speci�cations.

Keywords: Distributed service implementation, Automated protocol synthesis, LOTOS, E-LOTOS

Computing Review Categories: C.2.2, C.2.4

1 Introduction

The present work is an enhancement of [2], where

Brinksma and Langerak propose a compositional

correctness preserving transformation for conducting

functionality decomposition based on speci�cations

written in LOTOS [1], a standard algebraic language

primarily intended for speci�cation of concurrent and

reactive systems. The problem they address is usu-

ally referred to as protocol derivation (service-based

protocol synthesis) and de�ned as follows:

A distributed server (that might be a material or a

logical, a technical or a social system) is characterised

by its external behaviour, i.e. the service, and by the

external behaviours of its co-operating components,

i.e. the protocol implementing the service. Given a

speci�cation of the expected service and a partition-

ing of the speci�ed service actions among the server

components, the task is to derive a suitable protocol.

Transformations for protocol derivation are becom-

ing increasingly important, as they facilitate rapid

prototyping of new distributed services for speci�c

user needs, that is an imperative particularly in

modern intelligent telecommunications networks and

global computer networks. If a transformation is im-

plemented in a tool, it can even be employed by non-

specialists.

When trying to automate protocol derivation, it is

desirable to simultaneously pursue four often conict-

ing goals:

1) to stay within the limits of the adopted formal

description technique (FDT),

2) to minimise the restrictions on the distributed

server architecture, on the service speci�cation struc-

ture and on the partitioning of service actions among

the server components,

3) to reect the structure of service speci�cations in

the derived protocol speci�cations, and

4) to minimise the inter-component communication.

Since the middle eighties, protocol synthesis has

been subject to intensive research. Numerous meth-

ods are discussed in [2], and an even more exhaustive

survey can be found in [13], thus in the present pa-

per we provide no systematic overview of the exist-

ing methods and refer to them only where necessary

for evaluation of the proposed solutions. Many of the

methods are based on LOTOS-like languages.

Like [2], we assume that a server consists of two

components exchanging the necessary protocol mes-

sages synchronously through a special gate. Syn-

chronous communication means that an interaction is

always an atomic common action executed when both

partners are ready for it. Communication between

the server and its users is also supposed to be syn-

chronous, consisting of service primitives (SPs), i.e.

atomic interactions between a server component and

a service user it supports. The motivation for limiting

the discussion to two-party servers with synchronous

communication has been to present a solution to a dif-

�cult service-implementation problem in the simplest

possible setting.

The adopted FDT is a syntactically simpli�ed sub-

language of E-LOTOS [3], an enhanced version of

LOTOS currently approaching its standardisation,

though we study distributed implementation only for

those behaviour types that E-LOTOS has inherited

(with slight semantic changes) from Basic LOTOS,

i.e. from LOTOS with parametrisation and value-

1

passing ignored. Judging correctness of a distributed

service implementation, we require that the external

behaviour of the server is observation equivalent (i.e.

�) [11] to the speci�ed service.

Our enhancement over [2] is handling of global con-

icts. Two SPs are conicting if one of them is disrup-

tive for the other (i.e. its execution makes subsequent

occurrence of the other SP illegal). If the conict is

local to a server component, it can be resolved by the

component itself [2]. If the SPs belong to di�erent

server components, the conict is global and requires

distributed decision-making .

Example 1 Suppose that there are server compo-

nents 1 and 2 respectively controlling execution of SPs

a

1

and d

2

, and expected to o�er them for execution

as alternatives. In the absence of a proper decision-

making procedure, it might happen that d

2

is executed

before component 1 manages to report to component

2 that a

1

has been executed, implying that d

2

must be

immediately disabled.

The paper is organised as follows: In Section 2 we

introduce the adopted speci�cation language. Sec-

tion 3 explains how to identify the global conicts

that arise when a given service is executed in a dis-

tributed manner. Section 4 shows how the compo-

nents of a distributed server can resolve global con-

icts by synchronising on a virtual token. Section 5

proposes a transformation for deriving protocol spec-

i�cations from service speci�cations, but doesn't tell

how to specify token management. The missing issue

is handled in Section 6. Section 7 brings a discussion

and conclusions.

2 Speci�cation Language and

Formal Problem De�nition

The employed language, de�ned in Table 1 in a

Backus-Naur-like form, is an abstract representation

of some E-LOTOS constructs, in the exclusive setting

of the protocol derivation problem. Not shown in the

table is that parentheses may be used to control pars-

ing.

In the following, if c is one of the server components,

c

0

refers to the other one and C = fc; c

0

g. Likewise, if

n is an element of f1; 2g, n

0

is the other one.

A b denotes a behaviour, i.e. a process exhibiting it,

for instance the server as a whole, an individual server

component or some other partial server behaviour.

Init(b) lists its possible initial actions and exceptions.

The basic behaviour types are successful termina-

tion �, an individual action a (implicitly followed by

�), and an exception x. An action is basically denoted

by the interaction gate on which it occurs, but might

also carry a parameter. By an "any : V " we specify

for an action parameter that any value from the set V

is acceptable for it. For an "any :fvg", v is de�ned as

a shorthand.

Name of the construct Syntax de�nition

Speci�cation ::= d

+

Process de�nition d ::= p := b

Process name p ::=<identifier>

Behaviour b ::=

Ordinary action a

Successful termination j �

Exception raising j x

Sequential composition j b

1

; b

2

Iteration j loop b

1

Choice j b

1

[]b

2

where

� =2 (Init(b

1

) [Init(b

2

))

Suspend/resume j b

1

[x>b

2

where

((Init(b

2

) \ f�; xg) = ;)

Disabling j b

1

[>b

2

where � =2 Init(b

2

)

Parallel composition j b

1

j[g

�

]jb

2

Gate hiding j hide g

�

in b

1

Action renaming j ren r

�

in b

1

Process instantiation j p

Ordinary action a ::= gjh(: : :)

Interaction gate g ::= sjh

Service primitive s ::= u

c

Service-primitive type u ::=<identifier>

Server component c ::=<identifier>

Auxiliary gate h ::= syncjtokjitjctjistjstj

ittjttjlt

Exception x ::=<identifier>

Renaming an action r ::= a! a

0

Table 1: The adopted speci�cation language

We introduce actions of three basic types.

� An SP u

c

is an interaction of type u between com-

ponent c and a service user.

� Gate sync serves for inter-component communica-

tion. For speci�c purposes, the gate will sometimes

be called tok, it or ct.

� Gates st, tt and lt serve for synchronisation of pro-

cesses within an individual component. For speci�c

purposes, gates st and tt will sometimes be called

ist and itt, respectively.

For the behaviour composition operators informally

described below, a formal de�nition of semantics can

be found in [3].

"b

1

; b

2

", "b

1

[]b

2

" and "b

1

j[G]jb

2

" respectively specify

execution of b

1

and b

2

in sequence, as alternatives, or

in parallel and synchronised on (actions on) the gates

listed in G (and on �). For our purposes it is crucial

that (b; �) �

c

(�; b) �

c

b, where �

c

is the relation of

observation congruence [11]. Iteration "loop b

1

" de-

notes an in�nite sequence of behaviours b

1

. "b

1

jjjb

2

"

is a shorthand for independent parallelism "b

1

j[]jb

2

".

Operators "[]" and "jjj" may also be employed in the

pre�x form, combining an arbitrary number of be-

haviours.

"b

1

[x>b

2

" denotes a process with behaviour b

1

re-

peatedly interrupted by behaviour b

2

. b

1

is resumed

upon a x in b

2

, while b

2

is at that point restarted.

While the b

1

part is active, the process might in-

ternally decide to terminate by enabling a � in b

1

.

"b

1

[> b

2

" denotes the special case with no resump-

2

tion, i.e. a LOTOS-like disabling (except that in LO-

TOS, the process in principle makes the decision to

terminate by terminating b

1

in co-operation with its

environment).

"ren R in b

1

" denotes a process behaving as b

1

with

its external actions renamed as speci�ed in R.

"hide G in b

1

" hides the gates of b

1

listed in G, i.e.

makes actions on the gates internal to b

1

.

Explicit processes can be de�ned and instantiated

without parameters.

No. Syntax de�nition

(1) ::= p := b

(2) b::= s

(3) b::= b

1

; b

2

(4) b::= b

1

[]b

2

(5) b::= b

1

[>b

2

(6) b::= b

1

j[s

�

]jb

2

Table 2: The service speci�cation sublanguage

Many of the constructs are only allowed in the de-

rived protocol speci�cations. A service must be de-

�ned as an individual explicitly speci�ed process (Ta-

ble 2). The constructs legal within its behaviour spec-

i�cation are SPs, sequential composition, choice, pure

disabling and parallel composition. In addition, we

reasonably expect that a service is a non-blocking be-

haviour, i.e. that none of its parts b is ever blocked

by non-co-operation of another service part b

0

running

in parallel and synchronised with b on some common

gates. All rows in Table 2 are numbered, so that the

corresponding rows in Tables 3{8 and 10 can refer to

them.

We want to implement services in a compositional

way. Formally, we want our protocol derivation algo-

rithm to establish for every service part b

Property 1 Let b

c

and b

c

0

be the implementations of

b at the server components c and c

0

, respectively. Then

hide sync in (b

c

j[sync]jb

c

0

) � b.

In the derived protocol speci�cations, we shall ex-

tensively use the constraint-oriented speci�cation style

[14]. This is the style in which two or more parallel

processes synchronise on the actions that they collec-

tively control, and each process imposes its own con-

straints on the execution of the actions, so that they

are enabled only when all the processes allow it. The

constraint-oriented style is characterised by intensive

inter-process communication, but as long as the con-

straining processes belong to the same server compo-

nent, that is not problematic, for internal communi-

cation is supposed to be cheap.

3 Identi�cation of Global

Conicts

In service speci�cations, the sources of conicts are op-

erators of choice ([]) and disabling ([>). In a (b

1

[]b

2

),

the starting SPs of b

1

are in conict with the starting

SPs of b

2

, and vice versa. In a (b

1

[>b

2

), the starting

SPs of b

2

are in conict with all the SPs of b

1

. To

identify the conicts that are global, we must identify

the executors of the conicting SPs.

By computing service attributes ES and EA (Ta-

ble 3), we identify the executors of individual SPs.

ES

c

(b) is true for a service part b if c is the executor

of some of the starting SPs of b. EA

c

(b) is true for a

service part b if c is the executor of some SP among

all the SPs of b.

No. ES

c

(b) EA

c

(b)

(2) 9u : (s = u

c

) 9u : (s = u

c

)

(3) ES

c

(b

1

) EA

c

(b

1

) _EA

c

(b

2

)

(4-6) ES

c

(b

1

) _ ES

c

(b

2

) EA

c

(b

1

) _EA

c

(b

2

)

Table 3: Executors of service primitives

By computing service attributes CS and CA (Ta-

ble 4), we identify for each individual SP the executors

of the SPs conicting with it. CS

c

(b) is true for a ser-

vice part b if c is the executor of an SP outside b that

is in conict only with the starting SPs of b. CA

c

(b)

is true for a service part b if c is the executor of an SP

outside b that is in conict with all the SPs of b.

No. CS

c

(1) CS

c

(b) = false

(3) CS

c

(b

1

) = CS

c

(b)

CS

c

(b

2

) = false

(4) CS

c

(b

1

) = (CS

c

(b) _ ES

c

(b

2

))

CS

c

(b

2

) = (CS

c

(b) _ ES

c

(b

1

))

(5) CS

c

(b

1

) = CS

c

(b)

CS

c

(b

2

) = (CS

c

(b) _ EA

c

(b

1

))

(6) CS

c

(b

1

) = CS

c

(b

2

) = CS

c

(b)

No. CA

c

(1) CA

c

(b) = false

(3-4,6) CA

c

(b

1

) = CA

c

(b

2

) = CA

c

(b)

(5) CA

c

(b

1

) = (CA

c

(b) _ES

c

(b

2

))

CA

c

(b

2

) = CA

c

(b)

Table 4: Identi�cation of conicts

By computing service attributes GA and GS (Ta-

ble 5), we identify the SPs that are globally conicting

at least in some service runs at least some part of

their life time, i.e. the GCSPs. Attribute GA(b) is

true if there are some GCSPs among all the SPs of

b. Attribute GS(b) is true if there are some GCSPs

among the starting SPs of b. For a b of a form (b

1

[]b

2

)

or (b

1

[> b

2

), implementation can be much simpler if

:GS(b).

No. GA(b) GS(b)

(2) 9c : (EA

c

(b) ^ (CS

c

0

(b) _ CA

c

0

(b)))

(3) GA(b

1

) _GA(b

2

) GS(b

1

)

(4-6) GA(b

1

) _GA(b

2

) GS(b

1

) _GS(b

2

)

Table 5: Identi�cation of global conicts

3

4 Resolving Global Conicts

with a Token

If two SPs are in global conict, the server must never

enable them concurrently, for that would allow service

users to invoke them both, in any order. The simplest

solution is to introduce an internal server action local-

ising the conict.

Example 2 For the conict in Example 1 (illustrated

in Figure 1(a)), an internal action i

1

, guarded by com-

ponent 1, could be inserted before d

2

, so that the con-

ict would be between a

1

and i

1

, i.e. local to compo-

nent 1 (Figure 1(b)).

�

�

��

a

1

A

A

AU

d

2

(a)

?

a

1

?

d

2

(b)

A

A

AU

i

1

?

a

1

?

d

2

�

�

�

-

i

1

�

i

2

(c)

Figure 1: Localising a conict

However, upon the dummy SP, one of the conict-

ing SPs is permanently disabled. In other words, the

choice is made within the server, and the users de-

prived of the right to choose. The components should

rather enable the SPs by turns [10]. That can be

achieved by introducing a loop of internal server ac-

tions, for it is known that relation � is insensitive to

internal loops that are fair with their exits [10].

Example 3 For the conict in Figure 1(a), the trans-

formation in Figure 1(c) allows the components 1 and

2 to repeatedly enable local choice between executing

an SP and passing control to the peer component in-

stead. If the components exchange the right to execute

an SP su�ciently often, it will seem to the users that

the SPs are continuously available for execution and

subject to users' choice.

In [10], it is explained how to use internal loops for

services speci�ed entirely in the action-pre�x form. In

that form, we describe a process as choice between a

set of alternatives that are guarded by their initial ac-

tions. If a service is speci�ed entirely in that form,

i.e. in the so called monolithic style [14], all conicts

between its SPs are explicitly represented as conicts

between starting SPs of alternatives. For each point

of choice in the service, there are some alternatives

guarded by SPs belonging to a component c and oth-

ers guarded by SPs belonging to c

0

. All we need is a

loop in which each individual component repeatedly

receives and passes the right to enable the alternatives

that it is guarding.

Example 4 A service behaviour b in the monolithic

style is ((a

1

; (d

2

[]g

2

))[](d

2

; a

1

)[](g

2

; a

1

)). In its initial

step, either component 1 executes a

1

or component 2

executes d

2

or g

2

.

It is always possible to transform a service speci�-

cation into the monolithic style [14], but information

on which were the service parts running in parallel

or composed by the disabling operator is lost. That

is unacceptable, because (like [2]), we don't want to

start protocol derivation by conuence analysis of a

service behaviour (as for example in [4]) and we rely

solely on the explicitly speci�ed parallelism.

Example 5 Suppose that the original form b

0

of the

service behaviour b presented in Example 4 has been

(a

1

jjj(d

2

[]g

2

)). From that form we see that there are

no two SPs either in global conict or ordered, i.e. no

interaction between components 1 and 2 is necessary.

Although b � b

0

, b suggests existence of a global con-

ict upon its �rst step (Example 4). By its sequential

composition operators, b also suggests that a

1

must

never be enabled concurrently to d

2

or g

2

.

Thus in the following, we generalise the ideas of [10]

to structured service speci�cations. In [10], the right

to enable GCSPs is some kind of a token repeatedly

passed between server components. A component may

enable a GCSP only when owning the token pertain-

ing to the SP. The following example indicates that

there should be a single token per server, not just to

minimise the protocol tra�c, but also to prevent dead-

locks.

Example 6 Consider a service

((a

1

[]d

2

)j[a

1

; d

2

]j(a

1

[]d

2

))

of the form (b

1

j[a

1

; d

2

]jb

2

). If we introduce a token

per each choice operator that gives rise to a global

conict, the distributed implementation of b

1

will by

turns enable a

1

and d

2

, and so will the distributed im-

plementation of b

2

. With badly chosen relative speeds

of the two implementations, it might happen that they

never enable a

1

or d

2

simultaneously. So the two parts

would never succeed to synchronise and execute an SP.

With a single token, a

1

or d

2

would always be enabled

in both parts simultaneously, i.e. token management

would not interfere with synchronisation of the ser-

vice parts. Although the example is rather strange, it

clearly shows that the solution with two (or more) in-

dependent tokens is not correct in a general case.

To implement token management in a composi-

tional way, we require that it is correct for every ser-

vice part b, namely:

Property 2 If GA(b), both components know the ini-

tial location of the token.

Property 3 Whenever there is no GCSP pending,

there is no token exchange (TE).

Property 4 Whenever there is a GCSP pending at a

component c, c repeatedly receives the token until the

SP is executed or disrupted.

Property 5 No GCSP is ever executed when its ex-

ecutor is not the current token owner.

Property 6 While a GCSP is pending at a compo-

nent c, there is only a �nite number of such token

receptions at c that don't enable the SP.

4

That is (in the presence of Property 4) the simplest

way to ensure for any two service parts synchronised

on a pending GCSP, that they repeatedly enable the

SP simultaneously. In the absence of the property, the

following situation would be possible:

Example 7 Consider again the service from Exam-

ple 6. Whenever component 1 receives the token, it

may enable a

1

both in the implementation of b

1

and

in the implementation of b

2

, but with a permission to

miss the opportunity in�nitely often for b

1

and b

2

in-

dividually, it could e.g. enable a

1

for b

1

only on odd

token receptions and for b

2

only on even receptions,

thereby preventing execution of a

1

for ever.

Property 7 After a component c executes a GCSP

disruptive for some SPs at c

0

, c

0

doesn't receive the to-

ken before detecting that the GCSP has been executed,

so that it can disrupt the SPs before the token would

facilitate their execution.

Let tk be the protocol message serving for token

passing, i.e. the token always passed upon an interac-

tion sync(tk).

5 Specifying a Protocol with

Implicit Token Management

In this section, we start describing our protocol deriva-

tion algorithm by proposing how a c should behave

with respect to SPs and the sync actions reporting

their execution, for these are the types of actions

known from earlier protocol derivation algorithms.

For a service part b, the behaviour of a component c

is speci�ed by the mapping H

c

(b) de�ned in Table 6.

The mapping is based on the assumption that there

is an implicit token management properly resolving

global conicts, i.e. for every service part b:

Assumption 1 If in b, an SP s at a c is disruptive

for an SP s

0

at c

0

, then in the distributed implemen-

tation of b, c

0

never enables s

0

after c has executed

s.

In several places, mapping H uses service attribute

i(b), the identi�er of a service part b. By a sync(i(b)),

the components synchronise upon completion of b,

thus i(b) must be di�erent from tk, that is also in-

tended to be carried in sync actions. As communi-

cation on gate sync is non-bu�ered, exchange of tk

messages never interferes with exchange of i(b) mes-

sages.

If reporting of completion of a service part b is not

speci�ed, it is not necessary to de�ne an i(b). Other-

wise the exact nature of i(b) is irrelevant, except that

it must be dynamically unique, i.e. when the com-

ponents synchronise upon completion of b, they must

both know that the particular protocol message i(b)

refers to the particular b. In Table 7, simple su�cient

conditions for satisfying the requirement are expressed

with the help of service attribute I(b), that lists the

identi�ers of a b and of its sub-behaviours.

No. b H

0

c

(b)

(2) s (if EA

c

(b) then s; endif sync(i(b)))

(3) b

1

; b

2

Seq

c

(H; b

1

; b

2

)

(4) b

1

[]b

2

Cho

c

(H; b

1

; b

2

)

(5) b

1

[>b

2

Dis

c

(H; b; b

1

; b

2

)

(6) b

1

j[S]jb

2

Par

c

(H; b

1

; b

2

; S)

H

c

(b) = if (PC

c

(b) ^ PC

c

0

(b)) then H

0

c

(b)

else if EA

c

(b) then b else � endif endif

Seq

c

(M; b

1

; b

2

) = (M

c

(b

1

);

if 9c

00

: (SC

c

00

(b

2

) ^ :DT

c

00

(b

1

))

then sync(i(b

1

)); endif

M

c

(b

2

))

Cho

c

(M; b

1

; b

2

) = (Alt

c

(M; b

1

)[]Alt

c

(M; b

2

))

Alt

c

(M; b) = (M

c

(b) if (:PC

c

(b) _ :PC

c

0

(b))

then ; sync(i(b)) endif)

Dis

c

(M; b; b

1

; b

2

) =(hide lt in

(Dsb

c

(M; b; b

1

; b

2

)

j[fu

c

j(u

c

2 SS(b

2

))g [fsync; ltg)]j

Disr

c

(b; b

1

; b

2

))

Dsb

c

(M; b; b

1

; b

2

) = ((M

c

(b

1

); sync(i(b)))

[>(M

c

(b

2

); lt))

Disr

c

(b; b

1

; b

2

) = (Any((fu

c

j(u

c

2 SS(b

2

))g[

fsync(any : (I(b

1

) [I(b

2

)))g))

[>(sync(i(b))[]lt))

Any(A) = (jjj(f(loop a)ja 2 Ag))

Par

c

(M; b

1

; b

2

; S) = (M

c

(b

1

)j[fu

c

j(u

c

2 S)g]jM

c

(b

2

))

Table 6: Mapping H

No. I(b)

(2) fi(b)g

(3-6) I(b

1

) [I(b

2

) [fi(b)g

(5) i(b) =2 (I(b

1

) [I(b

2

))

(4-6) (I(b

1

) \ I(b

2

)) = ;

Table 7: Identi�ers of service parts

If a c must participate in implementation of a ser-

vice part b with actions other than the �nal �, we say

that c is a participating component of b. PC

c

(b) is

true i� c executes some SPs in b or b requires TE.

Formally,

PC

c

(b) = (EA

c

(b) _GA(b))

5.1 Implementation of Local Service

Behaviours

If :PC

c

(b), then c

0

implements b as it is, and c im-

plements only a �. c

0

locally executes b up to �, and

�nally both components execute � as their common

action.

For a b with two participants, mapping H reduces to

mapping H

0

(Table 6), discussed in the rest of the

section.

5.2 Implementation of Individual

Service Primitives

Mapping H

0

is applied to an SP s (2) i� it is a GCSP.

In that case, execution of s by its pre-assigned execu-

tor is reported to the peer component by a sync(i(b)),

5

and �nally the components synchronise on �. The re-

porting of s is necessary to stop TE for the needs of

b, to support Property 3. If s is a disruptive SP, its

reporting is also necessary to support Property 7.

Implementing a compound service behaviour, we as-

sume that under Assumption 1, its individual con-

stituent parts are properly implemented. It is impor-

tant that we have for every service part b Property 8,

so that implementations of partially or totally concur-

rent service parts use di�erent protocol-message sets

(see Table 7).

Property 8 If a sync(m) is an action in H

c

(b), then

(m 2 I(b)).

5.3 Implementation of Sequential

Composition

For mapping of sequential composition (3), Table 8

introduces a new attribute DT

c

(b). It is true only if

H

c

(b) is known to always enable c to detect, before the

components synchronise on the �nal �, that execution

of SPs in b has terminated. c receives the information

by executing either the �nal SP in b or a synchroni-

sation with c

0

known to occur after the �nal SP. All

such cases have been deduced from Table 6.

No. DT

c

(b)

(2) PC

c

(b)

(3,5) DT

c

(b

2

)

(4) (DT

c

(b

1

) _ (PC

c

(b) ^ :PC

c

(b

1

)))^

(DT

c

(b

2

) _ (PC

c

(b) ^ :PC

c

(b

2

)))

(6) DT

c

(b

1

) ^DT

c

(b

2

)

Table 8: Components detecting termination

Executing a (b

1

; b

2

), both components �rst execute

their b

1

parts, i.e. b

1

. If necessary, they subse-

quently synchronise upon the termination of b

1

by a

sync(i(b

1

)). Finally they execute their b

2

parts, i.e.

b

2

.

According to Table 7, we don't require that the b

1

part and the b

2

part of the distributed implementa-

tion use di�erent protocol messages. That is possible

thanks to the following property of every service part

b:

Property 9 When a c executing H

c

(b) enables �, c

0

executing H

c

0

(b) has no sync action enabled.

The property prevents a component c executing a

(b

1

; b

2

) from synchronising the sync actions in its b

1

part with the sync(i(b

1

)) (if) o�ered by c

0

and also

with the sync actions in the b

2

part of c

0

.

The sync(i(b

1

)) is necessary if there is a component

c that must detect termination of b

1

for proper start of

b

2

, but :DT

c

(b

1

). A c is responsible for proper start

of a service part b if there is a starting SP of b for

which c is the executor or must participate in the TE

for its needs. In that case we say that c is a starting

component of b, formally SC

c

(b), where

SC

c

(b) = (ES

c

(b) _GS(b))

Example 8 Let a service be

((a

1

; ((d

1

; g

2

)[>e

1

))jjj(a

2

; ((d

2

; g

1

)[>e

2

)))

Its GCSPs are g

2

, e

1

, g

1

and e

2

, all because of the

disabling operators.

Suppose that we take the policy of [5] that for a

(b

1

; b

2

), protocol synchronisation upon the sequential

composition operator is necessary only if b

1

has an

ending SP at a c and b

2

a starting SP at c

0

. Hence

there would be such a synchronisation only in front of

g

2

and g

1

, but none after a

1

and a

2

. Consequently,

component 2 would be able to immediately start TE

for the needs of e

1

, as would component 1 for e

2

.

With both components ready to start TE immediately,

it could erroneously start before a GCSP became pend-

ing, thereby violating Property 3.

5.4 Implementation of Choice

Implementing a (b

1

[]b

2

) (4), both components execute

their b

1

and b

2

parts as local alternatives. Mapping

H is such that we have for every service part b

Property 10 Every starting action of a H

c

(b) is ei-

ther a starting SP of b for which c is the executor, or a

sync action guarded by a starting SP of b for which c

0

is the executor. It can also be a �, but only if :PC

c

(b).

Hence with b

1

and b

2

properly implemented, the

starting actions of the implementation of a b speci-

�ed as (b

1

[]b

2

) are exactly the starting actions of b.

Suppose that execution of b starts by a c executing

a starting SP s of an alternative b

n

, i.e. of H

c

(b

n

).

Upon the action, c abandons its b

n

0

part. Assump-

tion 1 prevents c

0

from starting H

c

0

(b

n

0

) by an SP.

Neither can c

0

start it b

n

0

part by a sync action, be-

cause that would only be possible with co-operation of

the b

n

part of c, but such co-operation doesn't exist,

for the two parts use di�erent protocol messages. So

c

0

remains ready to enter its b

n

part.

It remains to ensure that c

0

detects that b

n

has been

selected for execution [5]. If PC

c

0

(b

n

), that is not a

problem, as Property 10 implies that there will be

an SP or a sync action executed within H

c

0

(b

n

). If

:PC

c

0

(b

n

), c must conclude execution of its b

n

part

by reporting to c

0

. In that way, the b

n

part of c

0

, that

is originally equivalent to �, becomes sync(i(b

n

)), i.e.

provides c

0

with the information necessary for proper

termination of b.

Example 9 Table 9 gives an example of choice that

is local, i.e. no TE is necessary, so that the derived

protocol is already complete. Observe that there is an

alternative in which originally only one of the compo-

nents participates. The derived behaviours are already

simpli�ed modulo �, like in the rest of examples.

5.5 Implementation of Disabling

Executing a b speci�ed as (b

1

[>b

2

) (5), each compo-

nent c basically executes Dsb

c

(H; b; b

1

; b

2

) consisting

6

b = (a

1

[](d

1

; g

2

))

H

1

(b) � ((a

1

; sync(1))[](d

1

; sync(2)))

H

2

(b) � (sync(1)[](sync(2); g

2

))

Table 9: Speci�cations for Example 9

of its b

1

and b

2

parts locally composed by [>. It is

important to note that PC

c

(b) implies PC

c

(b

2

).

The components usually start by executing their b

1

parts. As the SPs of b

1

are not disruptive for the

SPs of b

2

, no special measures are necessary for their

execution. However, the � of b

1

is disruptive for b

2

.

Therefore the components conclude execution of their

b

1

parts by synchronising on sync(i(b)), that indicates

termination of b without activation of b

2

.

At an individual c, sync(i(b)) must prevent execu-

tion of all further non-� actions in the Dsb. With

PC

c

(b

2

) and Property 10 for b

2

, it su�ces to prevent

the starting SPs of b

2

for which c is the executor (the

starting SPs of a b are listed in service attribute SS(b)

(Table 10)). For that purpose, we add in parallel to

Dsb an additional constraintDisr

c

(b; b

1

; b

2

). The two

constraints are synchronised on a set of gates G con-

sisting of the SPs that sync(i(b)) should prevent and

the gate sync. Why an auxiliary internal action lt is

also in G, is explained below.

No. SS(b)

(2) fsg

(3) SS(b

1

)

(4-6) SS(b

1

) [SS(b

2

)

Table 10: Starting SPs of service parts

The Disr starts by permitting free execution of all

SPs and sync actions within H

c

(b

1

) and H

c

(b

2

), in-

cluding disruption of b

1

(hence the name). Upon a

sync(i(b)) or lt issued by Dsb, Disr cancels the per-

mission for actions on the gates in G, and is ready to

terminate.

Hence Disr allows c to execute its b

1

part up to

sync(i(b)). After the action, Disr doesn't allow Dsb

to start its b

2

part, so that the only option for Dsb is

a � in co-operation with Disr. The same holds for c

0

after the sync(i(b)).

Alternatively, a starting SP s of b

2

might be ex-

ecuted, possibly after some SPs of b

1

. Let c be its

executor. s makes c immediately abandon its b

1

part.

As for c

0

, we know that it can execute no further ac-

tions in its b

1

part, for the SPs in the part are disabled

according to Assumption 1, while for the sync actions,

the necessary co-operation of the b

1

part of c no longer

exists and the b

2

part of c uses di�erent protocol mes-

sages. Hence the only option for c

0

is to proceed with

its b

2

part.

With PC

c

0

(b

2

) and Property 10 for b

2

we know that

c

0

will actually execute a non-� action in its b

2

part.

Hence the two components enter their b

2

parts in a

co-ordinated manner and are thus able to complete

execution of b

2

. The only task remaining for a c before

synchronising with c

0

on the � of b upon completion of

b

2

is to terminate Disr. That is achieved by an action

lt indicating local termination of b at c. By hiding,

the action is made internal toH

c

(b). The scheme is an

optimisation over [2], where execution of b concludes

by a sync(i(b)) even if b terminates by terminating

b

2

.

Example 10 Table 11 gives an example of disabling

that is local, i.e. no TE is necessary. For comparison,

a protocol for it is derived �rst by our mapping H, and

then another one in the manner of [2].

b = (a

1

[>(d

1

; a

1

; g

2

))

H

1

(b) � (hide lt in

(((a

1

; sync(1))[>(d

1

; a

1

; sync(2); lt))

j[d

1

; sync; lt]j

(Any(fd

1

; sync(2)g)[>(sync(1)[]lt))))

H

2

(b) � (sync(1)[](sync(2); g

2

))

H

1

(b) � ((a

1

[>(d

1

; a

1

; sync(2))); sync(1))

H

2

(b) � (sync(1)[](sync(2); g

2

; sync(1)))

Table 11: Speci�cations for Example 10

5.6 Implementation of Parallel

Composition

Implementing a (b

1

j[S]jb

2

) (6), it su�ces that each

component c executes H

c

(b

1

) and H

c

(b

2

) in parallel

and synchronised on the SPs in S for which c is the

executor [2]. That is because the protocol channel is

synchronous and because the implementations of b

1

and b

2

use di�erent protocol messages. Consequently,

one may pretend that the two implementations use

two di�erent protocol channels, and are hence inde-

pendent. As for their synchronisation on the SPs in

S, it is a local matter.

6 Implementation of Token

Management

In this section, we integrate mapping H with actions

serving for token management, to obtain a complete

protocol derivation mapping T. If a service part b re-

quires no TE, its mapping T reduces to mapping H

(i.e. execution of b doesn't depend on the token owner-

ship), otherwise we shall call it mapping T

0

. Formally,

T

c

(b) = if GA(b) then T

0

c

(b) else H

c

(b) endif

6.1 The Virtual Token Manager

The behaviour of a server component c virtually con-

sists of two concurrent processes. The �rst one is the

virtual service executor (VSE), that executes the ac-

tions speci�ed by mapping H. The other one is the

virtual token manager (VTM), that manages the to-

ken for the needs of VSE. Implementing a service in

7

a compositional way, VTM consists of a set of co-

ordinated processes managing the token for individual

VSE parts { the VTMs belonging to the parts.

As VTM should perform TE only when there is a

VSE part needing it (Property 3), we introduce aux-

iliary actions st and tt. By a st, a VSE part requires

starting of TE for its needs. By a tt, a VSE part

requires termination of TE for its needs. Between is-

suing a st and a subsequent tt, a VSE part is said

to be connected to the token. It is quite possible that

a VSE part connects to the token only occasionally.

After a VSE part has disconnected from the token, it

may issue another tt with no harm.

In Section 4 it has been decided that the action type

serving for TE is sync(tk). Any sync(tk) should be

executed as a common action of the VTMs of all the

VSE parts currently connected to the token, because

all VSE parts use the same token (see Example 6).

That scheme also supports implementation of Prop-

erty 7. For suppose that a GCSP has been executed

within a VSE part, but not yet reported to c

0

. By

remaining connected to the token and not allowing

its VTM to enable another sync(tk) until the com-

ponents have synchronised on a report on the GCSP,

the VSE part can prevent the VTMs of the other VSE

parts from premature passing of the token.

To synchronise on a sync(tk), concurrent parts of c

have to synchronise on gate sync. That might be in-

convenient, because their other actions on the gate

(those introduced by mapping H) are typically in-

tended for independent execution. For that reason we

internally to c pretend that sync(tk) actions belong

to a special gate tok. The token is passed from a c to

c

0

upon a tok(c

0

).

The basic task of VTM is to keep record of the token

ownership. For that purpose, we introduce into the be-

haviour of a c that might require TE a constraint Tok

securing that c executes actions tok(c) and tok(c

0

) by

turns (the token-ownership constraint). Integration of

the constraint into the speci�cation of c is speci�ed in

Table 12. In the following, the implementation of a

service part b at a c denotes the behaviour of T

c

(b)

under the additional constraint.

T

c

(p := b) =

if GA(b) then

p

c

:= ren 8c 2 C : (tok(c)! sync(tk)) in

hide st, tt, lt in

((T

c

(b); lt)

j[tok; lt]j

(Tok(if SO

c

then c

0

else c endif)[> lt))

TokC:=. . . see Table 17

else p

c

:= T

c

(b) endif

Tok(c) = (loop (tok(c); tok(c

0

)))

Table 12: Mapping T for a service speci�cation

A service is speci�ed as a process p with a behaviour

b. If b doesn't require TE, speci�cation of a compo-

nent c reduces to speci�cation of a process p

c

with be-

haviour T

c

(b). If GA(b), the behaviour of p

c

is more

complicated, and it might be necessary to also specify

an auxiliary process TokC (described in Section 6.4).

If GA(b), T

c

(b) executes tok actions and must thus

run in parallel to the token-ownership constraint. If

c is the token owner upon the start, i.e. SO

c

, the

Tok is a Tok(c

0

), i.e. starts by passing the token to

c

0

, and a Tok(c) otherwise. After T

c

(b) terminates, a

lt indicating local termination of b is executed to dis-

able Tok and allow p

c

to terminate. Hiding indicates

that lt is an internal action of p

c

. The st and tt ac-

tions delimiting the intervals of TE for the needs of b

must also be hidden. For proper synchronisation with

c

0

, tok actions are externally renamed into sync(tk)

actions.

In the rest of the section, we discuss token manage-

ment for service parts that require TE, i.e. mapping

T

0

.

6.2 Token Management for

Individual Service Primitives

Mapping T

0

for a b speci�ed as a GCSP s (2) is given

in Table 13. Each c starts T

0

c

(b) by connecting to

the token by a st and terminates it by disconnecting

from the token by a tt. In between, server components

execute TE for the needs of s. The executor of s is

also responsible for its execution and reporting.

T

0

c

(b) where (b = s) =

(st;

if EA

c

(b) then

(tok(c)[](tok(c

0

); tok(c)));

((s[x>(tok(c

0

); tok(c);x))

j[s; tok]j

((loop tok(any : C))[>(s; sync(i(b)))))

else ((Tok(c)[]Tok(c

0

))[>sync(i(b))) endif

;tt)

Table 13: Mapping T

0

for a service primitive

The token location upon the point when a T

0

c

(s)

connects to the token can never be determined in ad-

vance. For the fact that s is a GCSP implies that it

is potentially concurrent to a GCSP s

0

, i.e. T

0

c

(s

0

)

connects to the token concurrently to T

0

c

(s). So it

might happen that T

0

c

(s

0

) connects to the token and

executes an unpredictable number of tok actions be-

fore T

0

c

(s) manages to connect. Hence a T

0

c

(s) must

be ready to start TE both by a tok(c) or a tok(c

0

).

The decision is made in co-operation with the token-

ownership constraint.

If c is the executor of s, the central part of T

0

c

(b)

is (s[x> (tok(c

0

); tok(c);x)), i.e. s is disabled upon

every token transmission tok(c

0

) and re-enabled upon

every token reception tok(c). The exact name of the

resumption exception x is irrelevant.

8

Upon execution of s, c immediately stops TE and

issues a report sync(i(b)), to terminate T

0

c

0

(b) and,

if s is disruptive, to implement Property 7. That is

speci�ed by constraint

((loop tok(any : C))[>(s; sync(i(b))))

running in parallel to the central part of T

0

c

(b). After

the components synchronise on sync(i(b)) and exe-

cute tt, TE can be resumed for the needs of other

GCPSs.

Before T

0

c

(b) �rst enables s, i.e. its central part,

it must check the current token location, by trying

both a tok(c) and a tok(c

0

). If T

0

c

(b) is successful

on tok(c

0

), it must before its central part execute a

tok(c), to regain the token.

If a c is not the executor of s, it simply co-operates

in all tok actions initiated by c

0

. The loop is disrupted

upon the sync(i(b)) by which c

0

reports execution of

s.

Example 11 Let a service behaviour b be speci�ed as

a

1

, where GA(b), (C = f1; 2g) and (i(b) = 3). Map-

pings H and T for b are given in Table 14. Observe

how the token is passed between the components, how

it repeatedly enables execution of the SP, and how TE

is suspended upon the SP. Remember that every tok(c)

is actually a sync(tk).

b = a

1

H

1

(b) = (a

1

; sync(3))

H

2

(b) = sync(3)

T

1

(b) = (st; (tok(1)[](tok(2); tok(1)));

((a

1

[x>(tok(2); tok(1); x))j[a

1

; tok]j

((loop tok(any : f1; 2g))[>(a

1

; sync(3))))

; tt)

T

2

(b) = (st;

(((loop (tok(1); tok(2)))[]

(loop (tok(2); tok(1))))

[>sync(3))

; tt)

Table 14: Speci�cations for Example 11

Before proposing in the rest of the section how to im-

plement TE for compound behaviours, we make an im-

portant observation that the implementation of each

individual SP implements TE for its own needs. Hence

implementing token management for a compound ser-

vice behaviour b, it su�ces to locally synchronise the

tok actions belonging to the implementations of the

SPs currently connected to the token. The restructur-

ing of H

c

(b) into T

0

c

(b) is then correct if

1) the behaviour of c with respect to SPs and sync

actions is preserved, and

2) the disruptive e�ects of the remote GCSPs on

the SPs at c are properly implemented (for mapping

H properly implements b only under Assumption 1).

Again we will proceed in a compositional way, as-

suming correct implementation of service parts and

specifying implementation of composition operators.

6.3 Token Management for

Sequential Composition

Implementing a b speci�ed as (b

1

; b

2

) (3), a component

c combines its b

1

part and its b

2

part in the same man-

ner (function Seq in Table 15) as in the mapping H

(Table 6(3)), hence the behaviour of c with respect to

SPs and sync actions remains that of H

c

(b). There

is no concurrency between b

1

and b

2

, hence no syn-

chronisation of T

c

(b

1

) and T

c

(b

2

) on tok actions is

necessary. The sequential composition operator intro-

duces no additional SP disruptions to implement.

T

0

c

(b) where (b = (b

1

; b

2

)) = Seq

c

(T; b

1

; b

2

)

Table 15: Mapping T

0

for sequential composition

6.4 Token Management for

Parallel Composition

Implementing a b speci�ed as (b

1

j[S]jb

2

) (6), a com-

ponent c basically combines its b

1

and its b

2

part in

the same manner (function Par in Table 16) as in

the mapping H (Table 6(6)), hence the behaviour of c

with respect to SPs and sync actions remains that of

H

c

(b). The parallel composition operator introduces

no additional SP disruptions to implement. However,

b

1

and b

2

are concurrent. Hence if T

c

(b

1

) and T

c

(b

2

)

both execute TE, formally (GA(b

1

) ^ GA(b

2

)), syn-

chronisation of their tok actions is necessary.

T

0

c

(b) where (b = (b

1

j[S]jb

2

)) =

if (GA(b

1

) ^GA(b

2

)) then

ExtTok((T Par

c

(b

1

; b

2

; S)j[it; ct; ist; itt; lt]jTokC))

else Par

c

(T; b

1

; b

2

; S) endif

T Par

c

(b

1

; b

2

; S) = (IntTok((T

c

(b

1

); lt); 1)

j[(fu

c

j(u

c

2 S)g [fct; ltg)]j

IntTok((T

c

(b

2

); lt); 2))

IntTok(b; n) = (ren 8c 2 C : (tok(c)! it(c)),

8c 2 C : (tok(c) ! ct(c)),

st! ist(n), tt! itt(n)

in b)

ExtTok(b) = (ren 8c 2 C : (it(c) ! tok(c)),

8c 2 C : (ct(c) ! tok(c))

in hide ist,itt,lt in b)

Table 16: Mapping T

0

for parallel composition

With T

c

(b

1

) and T

c

(b

2

) pursuing TE concurrently,

a T

c

(b

n

) must be ready to execute a tok(c

00

) either

as an individual action, i.e. as an it(c

00

), or as an

action common with the concurrent part T

c

(b

n

0

), i.e.

as a ct(c

00

). The renaming of the token management

actions internally to T

c

(b) is speci�ed by function

IntTok (Table 16). Actions st and tt of each T

c

(b

n

)

are also given internal names ist(n) and itt(n), re-

spectively, by the function IntTok.

For proper execution of ct actions, we synchronise

the two concurrent parts on gate ct, as speci�ed by

9

function T Par in Table 16, a modi�ed version of

function Par. The function also speci�es that the two

parts terminate by synchronising on a lt indicating

local termination of b.

The lt issued by T Par

c

(b

1

; b

2

; S) serves for ter-

mination of the token exchange co-ordinator TokC

running in parallel as an additional constraint. The

auxiliary process is speci�ed in Table 17.

TokC := ((ist(1); st;TokC1)[](ist(2); st;TokC2)[]

(itt(1);TokC)[](itt(2);TokC)[]lt)

TokC1 := ((loop it(any : C))

[>((ist(2);TokC12)[]

(itt(1); tt;TokC)[](itt(2);TokC1)))

TokC2 := ((loop it(any : C))

[>((ist(1);TokC12)[]

(itt(1);TokC2)[](itt(2); tt;TokC)))

TokC12 := ((loop ct(any : C))

[>((itt(1);TokC2)[](itt(2);TokC1)))

Table 17: Token exchange co-ordinator

The co-ordinator switches between four di�erent

modes. Its basic mode TokC is active when nei-

ther the b

1

part nor the b

2

part is connected to the

token. If just a b

n

part is connected, the mode of

TokC is TokCn. If both parts are connected, the

mode is TokC12. The initial mode is TokC. When

a b

n

part indicates its connection to (or disconnection

from) the token by an ist(n) (itt(n), respectively), the

co-ordinator switches to the appropriate mode. In a

mode TokCn, the co-ordinator allows unlimited exe-

cution of it actions. In the mode TokC12, it allows

unlimited execution of ct actions.

When switching from the mode TokC to a mode

TokCn, the co-ordinator issues a st indicating that

T

c

(b) is connecting to the token. When switching

from a mode TokCn to TokC, it issues a tt indicat-

ing that T

c

(b) is disconnecting from the token. The

co-ordinator can terminate only in its basic mode, for

T

c

(b) is not allowed to terminate while connected to

the token.

As ist, itt and lt actions serve only for synchronisa-

tion within T

c

(b), they must be hidden. On the other

hand, it and ct actions must be externally renamed

back into tok actions. The proper external appear-

ance of the token management actions is established

by function ExtTok (Table 16).

Example 12 In Table 18, mappings H and T are

given for a service part b that consists of concurrent

parts b

1

and b

2

synchronised on SP d

2

. The GCSPs

are the SPs executed by component 2, e.g. because

there is a service part b

0

disabling for b and with com-

ponent 1 executing all its starting SPs.

For each component, only its b

1

part initially con-

nects to the token. After execution and reporting of

g

1

, the b

1

and the b

2

part are both connected. After

execution and reporting of d

2

, there is no TE at all.

Observe how TokC (speci�ed in Table 17) switches

between individual and common execution of tok ac-

tions. Observe also how protocol message types 1 and

2 are re-used within the b

1

and the b

2

part, respectively.

b = ((a

2

; d

2

)j[d

2

]j(g

1

; d

2

; e

1

))

H

1

(b) � ((sync(1); sync(1))jjj

(g

1

; sync(2); sync(2); e

1

))

H

2

(b) � ((a

2

; sync(1); d

2

; sync(1))j[d

2

]j

(sync(2); d

2

; sync(2)))

T

1

(b) �

(ren it(1) ! tok(1); it(2) ! tok(2);

ct(1)! tok(1); ct(2) ! tok(2) in

hide ist; itt; lt in

(((ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

(ist(1);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(1));

itt(1); ist(1);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(1));

itt(1)))

j[ct; lt]j

(ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

(g

1

; sync(2); ist(2);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(2));

itt(2); e

1

)))

j[it; ct; ist; itt; lt]jTokC))

T

2

(b) �

(ren it(1) ! tok(1); it(2) ! tok(2);

ct(1)! tok(1); ct(2) ! tok(2) in

hide ist; itt; lt in

(((ren tok(1)! it(1); tok(2)! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

(ist(1); (tok(2)[](tok(1); tok(2)));

((a

2

[x>(tok(1); tok(2);x))j[a

2

; tok]j

((loop tok(any : f1; 2g))[>(a

2

; sync(1))));

itt(1); ist(1); (tok(2)[](tok(1); tok(2)));

((d

2

[x>(tok(1); tok(2);x))j[d

2

; tok]j

((loop tok(any : f1; 2g))[>(d

2

; sync(1))));

itt(1)))

j[d

2

; ct; lt]j

(ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

(sync(2);

ist(2); (tok(2)[](tok(1); tok(2)));

((d

2

[x>(tok(1); tok(2);x))j[d

2

; tok]j

((loop tok(any : f1; 2g))[>(d

2

; sync(2))));

itt(2))))

j[it; ct; ist; itt; lt]jTokC))

Table 18: Speci�cations for Example 12

6.5 Token Management for Choice

In a b speci�ed as (b

1

[]b

2

) (4), the choice operator in-

troduces concurrency and conicts between the start-

ing SPs of b

1

and those of b

2

.

If :GS(b), all the starting SPs have the same execu-

tor and don't pursue TE. Hence for every alternative

10

b

n

and component c, Property 10, originally address-

ing mapping H, also applies to T

c

(b

n

). Consequently,

function Cho used in the mapping H (Table 6(4))

is also suitable for combining T

c

(b

1

) and T

c

(b

2

) (Ta-

ble 19).

T

0

c

(b) where (b = (b

1

[]b

2

)) =

if GS(b) then

ExtTok((T Cho

c

(b

1

; b

2

)j[it; ct; ist; itt; lt]jTokC))

else Cho

c

(T; b

1

; b

2

) endif

T Cho

c

(b

1

; b

2

) =

ExtSP

c

((IntTok(T Alt

c

(b

1

; b

2

; 1; 2); 1)

j[(fu1

c

j(u

c

2 SS(b

1

))g [fu2

c

j(u

c

2 SS(b

2

))g[

fsync; ct; ltg)]j

IntTok(T Alt

c

(b

2

; b

1

; 2; 1); 2));

b

1

; b

2

)

IntSP

c

(b; b

n

; n) = (ren 8u

c

2 SA(b

n

) : (u

c

! un

c

) in b)

ExtSP

c

(b; b

1

; b

2

) = (ren 8u

c

2 SA(b

1

) : (u1

c

! u

c

),

8u

c

2 SA(b

2

) : (u2

c

! u

c

)

in b)

T Alt

c

(b; b

0

; n; n

0

) = ((IntSP

c

(T

c

(b); b; n); lt)

[>Det

c

(b

0

; n

0

))

Det

c

(b; n) = (([](Act

c

(b; n))); tt;

(Any(Act

c

(b; n))[> lt))

Act

c

(b; n) = (fun

c

j(u

c

2 SS(b))g [fsync(any : I(b))g)

Table 19: Mapping T

0

for choice

If GS(b), it is convenient that both components

originally participate in the implementations of both

alternatives, but we have problems with the TE ac-

tions belonging to the starting SPs of b.

First, an implementation T

c

(s) of a starting GCSP

s in an alternative b

n

has a token management action

as its initial action. Hence the action is also among

the initial actions of T

c

(b

n

), and would be able to re-

solve the choice, if T

c

(b

1

) and T

c

(b

2

) were combined

as speci�ed by function Cho, while mapping H indi-

cates that resolution of the choice is only allowed upon

an SP or a sync action.

Second, GS(b) implies that there are starting GC-

SPs in both b

1

and b

2

. The GCSPs pursue TE con-

currently, so we must synchronise the tok actions of

T

c

(b

1

) with those of T

c

(b

2

). To implement the syn-

chronisation in the manner proposed in the previous

section, we specify T

c

(b

1

) and T

c

(b

2

) in parallel com-

position (function T Cho in Table 19) and concurrent

to a TE co-ordinator TokC.

T Cho

c

(b

1

; b

2

) in Table 19 is an analogue of

T Par

c

(b

1

; b

2

; S) in Table 16. As suggested in Sec-

tion 6.4, it executes TE actions with the names that

are valid internally to the implementation of b. The

names are obtained by applying function IntTok to

the parallel constituents of the T Cho. The proper

external appearance of the TE actions is established

by function ExtTok.

In T Cho, the part analogous to a (T

c

(b

n

); lt) in

the T Par is T Alt

c

(b

n

; b

n

0

; n; n

0

), responsible for the

alternative b

n

. As in T Par, the b

1

part and the

b

2

part are synchronised on actions ct (their com-

mon tok actions) and lt (the local termination). Be-

sides, the two parts must be synchronised on their

starting SPs and on their starting sync actions (i.e.

on gate sync), to help make T Cho an analogue of

Cho

c

(T; b

1

; b

2

), like synchronisation of its two parts

on the local SPs in S makes T Par an analogue of

Par(b

1

; b

2

; S). For don't forget that the two parts of

T Cho are originally intended for execution as alter-

natives as far as SPs and sync actions are concerned.

Thus upon the start of a H

c

(b

n

) in the incorporated

H

c

(b), the b

n

0

part must be able to detect the �rst of

such actions, to properly abort itself as the abandoned

alternative.

Obviously we must distinguish between the starting

SPs of b

1

and those of b

2

, even if they have identi-

cal names. That is achieved by function IntSP, that

internally to T Cho extends the name of each local

SP in a b

n

with n. The proper external appearance of

the SPs is established by function ExtSP.

In a T Alt

c

(b

n

; b

n

0

; n; n

0

), the central part is

(T

c

(b

n

); lt), that is the same as the b

n

part in

T Par. In addition, there is a Det

c

(b

n

0

; n

0

), a pro-

cess detecting the start of SPs and sync actions

in (T

c

(b

n

0

); lt), the central part of the b

n

0

part.

The actions disruptive for T

c

(b

n

) are speci�ed in

Act

c

(b

n

0

; n

0

).

The Det is activated upon the �rst such action.

It immediately disables T

c

(b

n

) and by a tt informs

TokC that the b

n

part no longer needs TE, for T

c

(b

n

)

might have been disabled while connected to the to-

ken. Afterwards, the Det supports free execution of

the actions listed in Act

c

(b

n

0

; n

0

), until local termi-

nation of T

c

(b) is indicated by a lt issued by the b

n

0

part. For note that the b

1

and the b

2

part of T Cho

are synchronised on the actions in Act

c

(b

n

0

; n

0

). So

if the activated T

c

(b

n

0

) decides to enable further such

actions, that can not be without co-operation of the

b

n

part, i.e. of its Det.

If the Det is not activated, T

c

(b

n

) and Det

c

(b

n

; n)

in the b

n

0

part are executed and their termination fol-

lowed by a common lt.

The T Cho is with respect to SPs and sync actions

equivalent to H

0

c

(b), and so is T

c

(b). It remains to

prove that T

c

(b) properly implements the disruptive

e�ects of the starting SPs of b at c

0

.

A starting SP s

0

of a b

n

0

at c

0

disruptive for a start-

ing SP s of b

n

at c is, like s, a GCSP. It can only be

executed when c

0

is the token owner. c can not exe-

cute s after s

0

until it regains the token. But c never

receives the token before c

0

has reported s

0

by a sync

action (Property 7). The sync action will occur in

T

c

(b

n

0

) before s, and disrupt T

c

(b

n

), i.e. s, with the

help of Det

c

(b

n

0

; n

0

).

Example 13 In Table 20, mappings H and T are

given for a service part b speci�ed as choice between a

b

1

and a b

2

. Its GCSPs are a

1

and the d

2

in b

2

, hence

in each T

c

(b), the b

1

and the b

2

part both connect to

the token upon the start. After the choice is made (e.g.

11

when b

1

proceeds to the execution of d

2

), the token is

no longer used.

Observe that in the results of mapping T, there are

many possibilities for further simpli�cation modulo �.

For example, since there are d

2

both in b

1

and b

2

,

they have been internally to T

2

(b) renamed into d1

2

and d2

2

, respectively. That is superuous. Second,

it would be legal to simplify all the Det parts, e.g.

to replace Det

1

(b

1

; 1) speci�ed in lines 22{23 of the

table with (a

1

; itt(2); sync(1); lt). For we know that

in H

1

(b

1

) that the Det observes, the �rst action can

only be a

1

, while the rest of the H is always sync(1).

b = ((a

1

; d

2

)[]d

2

)

H

1

(b) � ((a

1

; sync(1))[]sync(2))

H

2

(b) � ((sync(1); d

2

)[](d

2

; sync(2)))

T

1

(b) �

(ren it(1) ! tok(1); it(2) ! tok(2);

ct(1)! tok(1); ct(2)! tok(2) in

hide ist; itt; lt in

(((ren tok(1)! it(1); tok(2)! it(2);

tok(1) ! ct(1); tok(2) ! ct(2) in

((ist(1); (tok(1)[](tok(2); tok(1)));

((a

1

[x> (tok(2); tok(1);x))j[a

1

; tok]j

((loop tok(any : f1; 2g))[>(a

1

; sync(1))));

itt(1); lt)

[>(sync(2); itt(1); ((loop sync(2))[> lt))))

j[a

1

; sync; ct; lt]j

(ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2) ! ct(2) in

((ist(2);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(2));

itt(2); lt)

[>((a

1

[]sync(1)); itt(2);

(((loop a

1

)jjj(loop sync(1)))[> lt)))))

j[it; ct; ist; itt; lt]jTokC))

T

2

(b) �

(ren it(1) ! tok(1); it(2) ! tok(2);

ct(1)! tok(1); ct(2)! tok(2);

d1

2

! d

2

; d2

2

! d

2

in

hide ist; itt; lt in

(((ren tok(1)! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2) ! ct(2) in

((ist(1);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(1));

itt(1); d1

2

; lt)

[>((d2

2

[]sync(2)); itt(1);

(((loop d2

2

)jjj(loop sync(2)))[> lt))))

j[d2

2

; sync; ct; lt]j

(ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2) ! ct(2) in

((ist(2); (tok(2)[](tok(1); tok(2)));

((d2

2

[x> (tok(1); tok(2); x))j[d2

2

; tok]j

((loop tok(any : f1; 2g))[>(d2

2

; sync(2))));

itt(2); lt)

[>(sync(1); itt(2); ((loop sync(1))[> lt)))))

j[it; ct; ist; itt; lt]jTokC))

Table 20: Speci�cations for Example 13

6.6 Token Management for Disabling

In a b speci�ed as (b

1

[>b

2

) (5), the disabling operator

introduces concurrency and conicts between the

SPs and the termination of b

1

on one side, and

the starting SPs of b

2

on the other. Hence we can

implement b in a similar manner as a (b

1

[]b

2

), except

that T

c

(b

1

) and T

c

(b

2

) now disrupt each other on

a di�erent set of actions. The corresponding ana-

logues from Tables 19 and 21 are Cho(T; b

1

; b

2

) and

Dis(T; b; b

1

; b

2

), T Cho

c

(b

1

; b

2

) and T Dis

c

(b; b

1

; b

2

),

T Alt

c

(b

1

; b

2

; 1; 2) and Norm

c

(b; b

1

; b

2

), and

T Alt

c

(b

2

; b

1

; 2; 1) and Intr

c

(b; b

1

; b

2

), respectively.

The function name Norm indicates that b

1

is the

normally executed part of (b

1

[> b

2

), while function

name Intr indicates that b

2

in the b interrupts b

1

. In

the T Dis, the b

1

part and the b

2

part are no longer

synchronised on the starting SPs of b

1

, as they are in

the T Cho, because the SPs are no longer disruptive

for the starting SPs of b

2

.

T

0

c

(b) where (b = (b

1

[>b

2

)) =

if GS(b) then

ExtTok((T Dis

c

(b; b

1

; b

2

)j[it; ct; ist; itt; lt]jTokC))

else Dis

c

(T; b; b

1

; b

2

) endif

T Dis

c

(b; b

1

; b

2

) =

ExtSP

c

((IntTok(Norm

c

(b; b

1

; b

2

); 1)

j[(fu2

c

j(u

c

2 SS(b

2

))g [fsync; ct; ltg)]j

IntTok(Intr

c

(b; b

1

; b

2

); 2));

b

1

; b

2

)

Norm

c

(b; b

1

; b

2

) = ((IntSP

c

(T

c

(b

1

); b

1

; 1); sync(i(b)); lt)

[>Det

c

(b

2

; 2))

Intr

c

(b; b

1

; b

2

) = (((IntSP

c

(T

c

(b

2

); b

2

; 2); lt)

j[lt]j((loop sync(any : I(b

1

)))[> lt))

[>(sync(i(b)); tt; lt))

Table 21: Mapping T

0

for disabling

Like T Alt

c

(b

1

; b

2

; 1; 2), the Norm implements b

1

disrupted upon the start of b

2

. The only di�erence is

that inNorm,T

c

(b

1

) is followed by a sync(i(b)) upon

which the components corporately decide to terminate

b by terminating b

1

.

In the Intr, T

c

(b

2

) for which it is basically respon-

sible is not disrupted upon the start of b

1

, like in

T Alt

c

(b

2

; b

1

; 2; 1), but upon the sync(i(b)). After-

wards (sync(i(b)); tt; lt), the analogue of Det

c

(b

1

; 1),

informs TokC that the b

2

part is disconnecting from

the token, and terminates T

c

(b) by synchronising with

the b

1

part upon its lt following the sync(i(b)). While

b

1

is stile active, Intr must also support unlimited ex-

ecution of sync actions in T

c

(b

1

), because Norm and

Intr are synchronised on gate sync.

The T Dis is with respect to SPs and sync actions

equivalent to H

0

c

(b), and so is T

c

(b). It remains to

prove that the starting SPs of b

2

properly disrupt the

SPs of b

1

. With the disruptions implemented as in

the case of (b

1

[]b

2

), we know that the requirement is

satis�ed.

Example 14 In Table 22, mappings H and T are

12

given for a service part b speci�ed as a b

1

potentially

disabled by a b

2

. Observe that b is the same as in

Example 13, except that the composition operator is

changed. Consequently, implementations speci�ed in

Tables 22 and 20, respectively, are very similar, par-

ticularly in their b

1

parts, as expected from Tables 21

and 19, respectively. Again the GCSPs are a

1

and the

d

2

in b

2

. The reader is encouraged to observe the de-

velopments following the disabling of b

1

in its various

stages, and the termination of b upon termination of

b

1

.

7 Discussion and Conclusions

7.1 Correctness

A detailed correctness proof for the proposed mapping

T is given in [8]. There we de�ne a set of proper-

ties that the implementation of each individual ser-

vice part is expected to possess. Semantically, the

properties are similar to those proposed in the paper.

We prove them for the implementation of individual

SPs. Then we prove for every type of composition

operators, that the implementation of the composite

behaviour inherits the properties from the implemen-

tations of its constituents. So we have been able to

prove that, by induction on the service speci�cation

structure, hide sync in (p

c

j[sync]jp

c

0

) � p for any

service p and the derived server component behaviours

p

c

and p

c

0

.

7.2 Computation of Service Attributes

Since there are no cycles in the dependence between

attributes of various types, it is possible to compute

them one after another, in the order in which they

have been introduced in the paper. For an individual

attribute type, computation of the attribute for in-

dividual service parts proceeds either from composite

behaviours to their parts, or vice versa, depending on

the nature of the attribute.

The only attribute for which computation has not

been precisely speci�ed is i(b), but one can always

resort to the simple solution in which every service

part b is assigned a di�erent i(b). However, when the

protocol derivation method is generalised to in�nite

service behaviours and bu�ered protocol channels, a

solution supporting re-use of protocol messages, i.e.

minimising the number (and thereby the length) of

di�erent i(b), will be required.

7.3 Service Speci�cation Language

Currently, not all behaviour types that one would ex-

pect in a Basic-LOTOS-like sublanguage of E-LOTOS

are allowed in service speci�cations. In comparison

to [2], the missing types are inaction stop, successful

b = ((a

1

; d

2

)[>d

2

)

H

1

(b) � (hide lt in

(((a

1

; sync(1); sync(3))[>(sync(2); lt))

j[sync; lt]j

((loop sync(any : f1; 2g))[>(sync(3)[]lt))))

H

2

(b) � (hide lt in

(((sync(1); d

2

; sync(3))[>(d

2

; sync(2); lt))

j[d

2

; sync; lt]j

(((loop d

2

)jjj(loop sync(any : f1; 2g)))

[>(sync(3)[]lt))))

T

1

(b) �

(ren it(1) ! tok(1); it(2) ! tok(2);

ct(1)! tok(1); ct(2) ! tok(2) in

hide ist; itt; lt in

(((ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

((ist(1); (tok(1)[](tok(2); tok(1)));

((a

1

[x>(tok(2); tok(1); x))j[a

1

; tok]j

((loop tok(any : f1; 2g))[>(a

1

; sync(1))));

itt(1); sync(3); lt)

[>(sync(2); itt(1); ((loop sync(2))[> lt))))

j[sync; ct; lt]j

(ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

(((ist(2);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(2));

itt(2); lt)

j[lt]j((loop sync(1))[> lt))

[>(sync(3); itt(2); lt))))

j[it; ct; ist; itt; lt]jTokC))

T

2

(b) �

(ren it(1) ! tok(1); it(2) ! tok(2);

ct(1)! tok(1); ct(2) ! tok(2);

d1

2

! d

2

; d2

2

! d

2

in

hide ist; itt; lt in

(((ren tok(1)! it(1); tok(2)! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

((ist(1);

(((loop (tok(1); tok(2)))[](loop (tok(2); tok(1))))

[>sync(1));

itt(1); d1

2

; sync(3); lt)

[>((d2

2

[]sync(2)); itt(1);

(((loop d2

2

)jjj(loop sync(2)))[> lt))))

j[d2

2

; sync; ct; lt]j

(ren tok(1) ! it(1); tok(2) ! it(2);

tok(1) ! ct(1); tok(2)! ct(2) in

(((ist(2); (tok(2)[](tok(1); tok(2)));

((d2

2

[x>(tok(1); tok(2);x))j[d2

2

; tok]j

((loop tok(any : f1; 2g))[>(d2

2

; sync(2))));

itt(2); lt)

j[lt]j((loop sync(1))[> lt))

[>(sync(3); itt(2); lt))))

j[it; ct; ist; itt; lt]jTokC))

Table 22: Speci�cations for Example 14

termination �, anonymous internal action i, hiding,

renaming, and process instantiation.

For a realistic service, the only place where it might

be useful to specify a stop would be to indicate that

in a (b

1

[>b

2

), it might happen that b

1

doesn't termi-

nate, so that b

2

must be activated. Inaction can be

13

easily implemented, for both components as a stop

[2]. The only remaining task would then be to identify

the parts of the derived speci�cations that the stops

introduced in the protocol make non-executable or re-

dundant.

With every SP by de�nition followed by an implicit

�, explicit speci�cation of � would serve some purpose

only in a decision-making position. But there is no

such situation, since � is by de�nition never decision-

making in E-LOTOS.

If we introduce into a service speci�cation actions

that are inherently internal or explicitly hidden from

the service users, that can strongly simplify the de-

rived protocol. For remember (Section 4) that in-

ternal actions indicate cases where the server is al-

lowed to resolve a conict internally, without users'

co-operation. Full exploitation of such possibilities is

for further study.

According to [2], action renaming should be allowed

only without changing the location of the SPs. In that

case, its implementation would be simple, because re-

naming commutes with mappingT. For note that even

if we are implementing a b that combines a b

1

and a

b

2

by an operator that introduces additional conicts,

the only properties of the involved SPs that inuence

the protocol are their position within b

1

or b

2

and the

location of their execution. Hence if some renaming

of the SPs in b is required, we may as well specify it

on the component behaviours derived for b.

Process instantiation is easy to implement [2]. The

only real problem is that a service part b within a dy-

namically activated process instance must, in princi-

ple, be assigned its i(b) dynamically. If the number of

the active process instances grows with time, more and

more new identi�ers for their parts are introduced, i.e.

the protocol messages for reporting their completion

are longer and longer. Hence processes should only be

instantiated in positions where re-use of service part

identi�ers is possible. One also has to be careful with

service behaviours combining �nite and in�nite (i.e.

non-terminating) alternatives [7].

In a more distant future, it would of course be nice

to have a method for deriving protocols for services

speci�ed in full E-LOTOS and with no restrictions on

SPs partitioning.

7.4 Legibility of the Derived

Speci�cations

In Table 22, for example, we see that token manage-

ment makes the derived speci�cations very complex,

even for the simplest services. However, if a presenta-

tion tool is instructed to show speci�cations one hier-

archical level at a time, and if the presentation is in

an abstract form, like for example the one in Table 21,

speci�cations might become quite readable. The im-

portant property is that they always reect the struc-

ture of the service speci�cation.

7.5 Adapting the Method to

Asynchronous Protocol Channels

As demonstrated in [6], asynchronous channels bring

at least two problems, even if they are reliable, �rst-

in-�rst-out and with an unlimited bu�er capacity.

1) When implementing a (b

1

j[S]jb

2

) with (S 6= ;),

the implementations of the two parts might interfere

on the protocol channels they share.

2) When a T

c

(b) is disrupted, that prevents c from

properly receiving the incoming protocol messages

belonging to the implementation of b. That would

be particularly problematic in implementation of dis-

abling, as evident from Norm in Table 21.

Because our mapping T introduces TE as an ad-

ditional activity with its own protocol messages, the

above problems would be even more acute.

7.6 Adapting the Method to

Multi-Party Servers

On a multi-party server, the set of the server compo-

nents with SPs conicting with a particular SP at a c

might be strongly changing with time.

Example 15 As an illustration, consider the service

behaviour ((a

1

jjjd

1

)[]g

2

). Initially, all the three SPs

are GCSPs. Suppose that a

1

is executed and the g

2

alternative consequently disrupted. After that, the re-

maining SP d

1

is no longer a GCSP, but our current

protocol derivation method does nothing to stop the TE

for its needs.

So one would really like to be able to derive pro-

tocols that detect and handle conicts dynamically.

Our method is not very good at it. Its straightfor-

ward generalisation to multi-party servers would be a

token travelling between components in a pre-de�ned

order, i.e. pretending that for every GCSP, its ex-

ecutor is by de�nition in conict with all the other

components, which is seldom true. Even if conicts

are determined statically, TE should be more exible.

Ideally, there would be a separate token for each

pair of components. To prevent execution of a GCSP,

it would su�ce to deprive its executor of one of the

tokens required for the SP. Based on the minimal re-

quirement, an e�cient TE subprotocol should be de-

veloped.

7.7 Alternative Solutions

Virtual Global Variables

In [9], it is indeed assumed that a server for which a

service-implementation protocol is to be derived runs

a subprotocol for mutual exclusion of the conicting

SPs. Namely, SPs are allowed to concurrently access

virtual global variables, where the subprotocol takes

care that the only form of concurrency on a variable

is concurrent reading. The basic idea is elegant, but

14

[9] is just an initial study on how it could be used for

LOTOS-based protocol derivation.

1) In [9], the subprotocol is not integrated into the

derived protocol speci�cation. An SP is always rep-

resented in the speci�cation as an individual action,

even if it is known to be a complex transaction ne-

gotiating for access of the addressed variables. From

Section 6.5 we know that in a LOTOS-like language

(like the one adopted in [9]), replacing of an individual

action with a more complex behaviour typically re-

quires complicated restructuring of the speci�cation,

if the action is in a decision-making position. In [9],

nothing is said of the necessary restructurings.

2) If a service speci�cation consists of multiple hier-

archical levels combining choice and/or disabling oper-

ators with synchronised parallel composition, it might

be unavoidable that the enabling conditions of indi-

vidual SPs are complicated functions of many global

variables. In the presence of a multitude of such ac-

tions competing for the variables' access, it would be

di�cult to �nd conditions securing correctness of the

implementation, not to mention the fairness issues. In

[9], not much guidance is given for the task.

3) The method of [9] is based on [5], that is known

to sometimes generate erroneous protocols [6].

Time Multiplex

Global conicts can sometimes be e�ciently resolved

by additional real-time constraints [12]. E-LOTOS

nicely supports speci�cation of real-time properties.

One could for example divide the global time into in-

tervals allocated for GCSPs belonging to individual

server components. In that way, the token-passing ac-

tions would be simply the selected ticks of the global

clock, not contributing to the protocol tra�c. De-

veloping such a protocol derivation method, we have

observed that the only real problem for its application

is the requirement that the maximum transit delay of

the protocol channels is short with respect to the time

intervals, for otherwise Property 7 is violated.

7.8 Conclusions

Let us conclude by observing that prohibition of global

conicts is the most stubborn source of unrealistic re-

strictions on the services subjected to automated pro-

tocol derivation. In the present paper we have demon-

strated that it is feasible to derive protocols in a com-

positional way even if there are global conicts in the

considered service.

Acknowledgement

The presentation style of the paper has been very

much improved thanks to numerous kind suggestions

of the anonymous referees.

References

[1] T. Bolognesi and E. Brinksma. Introduction to

the ISO speci�cation language LOTOS. Com-

puter Networks and ISDN Systems, 14(1):25{59,

1987.

[2] E. Brinksma and R. Langerak. Functionality

decomposition by compositional correctness pre-

serving transformation. South African Computer

Journal, 13:2{13, April 1995.

[3] J. Quemada (ed.). Enhancements to LOTOS,

July 2000. ISO/IEC FCD 15437 (E-LOTOS).

[4] M. Hulstr�om. Structural decomposition. In Pro-

tocol Speci�cation, Testing and Veri�cation XIV,

pages 201{216. Chapman&Hall, 1995.

[5] C. Kant, T. Higashino, and G. von Bochmann.

Deriving protocol speci�cations from service

speci�cations written in LOTOS. Distributed

Computing, 10(1):29{47, 1996.

[6] M. Kapus-Kolar. Comments on deriving protocol

speci�cations from service speci�cations written

in LOTOS. Distributed Computing, 12(4):175{

177, 1999.

[7] M. Kapus-Kolar. More e�cient functionality de-

composition in LOTOS. Informatica, 23(2):259{

273, 1999.

[8] M. Kapus-Kolar. Global conict resolution in au-

tomated service-based protocol synthesis. Ljub-

ljana, 2000. Jo�zef Stefan Institute Technical re-

port 8221.

[9] A. Khoumsi and G. von Bochmann. Protocol syn-

thesis using basic LOTOS and global variables.

In Proc. Int. Conf. on Networks and Protocols,

pages 126{133, Tokyo, 1995.

[10] R. Langerak. Decomposition of functionality:

A correctness-preserving LOTOS transformation.

In Protocol Speci�cation, Testing and Veri�cation

X, pages 203{218. North-Holland, 1990.

[11] R. Milner. Communication and Concurrency.

Prentice Hall, 1989.

[12] A. Nakata, T. Higashino, and K. Taniguchi. Pro-

tocol synthesis from timed and structured spec-

i�cations. In Proc. Int. Conf. on Networks and

Protocols, pages 74{81, Tokyo, 1995.

[13] K. Saleh. Synthesis of communication protocols:

An annotated bibliography. Computer Commu-

nication Review, 26(5):40{59, October 1996.

[14] C. A. Vissers, G. Scollo, M. van Sinderen, and

E. Brinksma. On the use of speci�cation styles

in the design of distributed systems. Theoretical

Computer Science, 89(1):179{206, October 1991.

15

