
DerivingProtocols forServicesSupportingMobileUsers

M.Kapus-Kolar

1

Jo�zef Stefan Institute, POB 3000, SI-1001 Ljubljana, Slovenia

Abstract

A Prolog tool for automated derivation of protocol speci�cations from service speci�cations is described. The server for which the protocol

is derived may consist of any �nite number of protocol entities co-operating over reliable unbounded �rst-in-�rst-out channels. Its service is

expected to consist of service primitives that read or write unstructured global virtual variables, implicitly receive or compute their current

values or delete their local copies. In addition, service primitives may access distributed virtual queues, to which they append elements with

desired priority or consume their head elements. Service users are allowed to dynamically select the service-access point through which they

interact with the distributed server. The adopted speci�cation language has been inspired by LOTOS.

Key words: Services for mobile users; Distributed service implementation; Automated service-based protocol derivation; LOTOS

1 Introduction

Contemporary enterprises often require co-operation of a

set of partners according to some prede�ned plan. It is con-

venient if each of the partners can concentrate entirely on

its own work, while delegating the problems of communica-

tion and co-ordination with the others to a dedicated server.

Examples of such enterprises are applications of intelligent

telecommunications networks (IN), computer-supported co-

operative work and automated factories.

In an abstract view, a server is a black box interacting

with its users through a set of service-access points (SAPs).

Its behaviour at SAPs is the service it o�ers. The service

is designed to suit the particular plan of the enterprise. In

some enterprises, e.g. in automated factories, the plan often

changes, requiring implementation of a new service. Another

example is introduction of new IN services, to satisfy the ever

increasing users' demands.

If the users are physically distributed, so must be the

server. In a more detailed, but still an abstract view, such a

server consists of a set of protocol entities (PEs) supporting

individual SAPs and co-ordinating their work by communi-

cating over internal server channels. The overall activity of

the PEs is often referred to as the protocol implementing the

service.

Nowadays users expect that introduction of a new service

is a matter of a couple of weeks. In an automated factory, that

would rather be a couple of days or even hours. As an auto-

mated factory is a rather closed system, the exact nature of

the supporting protocol is usually irrelevant, as long as it is

1

Email: monika.kapus-kolar@ijs.si

correct, e�cient and developed in time. The three goals can

best be met by employing tools for automated derivation of

protocol speci�cations from service speci�cations, that en-

sure protocol quality by construction. Even for protocols that

are subsequently subjects to additional amendments or ne-

gotiations (e.g. for the purpose of standardisation), such a

tool can be helpful, providing solutions to start with.

For that reason, many e�orts have been put into auto-

mated derivation of protocol speci�cations from service spec-

i�cations. Those methods are applicable to design of a wide

range of systems, physical or logical, technical or social, wher-

ever it is necessary to decompose a server into a number of

interacting components.

A very exhaustive survey of protocol synthesis methods is

given in [25]. The methods listed in [25] di�er in the server

architecture and in the speci�cation language for which they

are intended. In the present paper we propose a protocol

synthesis method for servers with multiple components pair-

wise communicating over reliable unbounded �rst-in-�rst-

out (FIFO) channels, for a simple speci�cation language in-

spired by LOTOS [2].

LOTOS is a standard process-algebraic formal language,

primarily intended for speci�cation of the external behaviour

of processes or of their interaction. Most of protocol synthesis

methods for LOTOS or its derivatives [1,3,5,6,8{12,15,17{

21,23,24] descend from the attribute-grammars-based [1].We

take [8] as the starting point. For data handling, we follow

the ideas of [9], that integrates the concepts of [6] and [8].

[6,9] regard data items as unstructured, while our tool also

supports implementation of virtual queues with elements

overtaking each other according to their speci�ed priorities

[11]. The enhancement has been motivated by the fact that

Preprint submitted to Information and Software Technology 26 January 2000

networking applications often require streams of data
ow-

ing from one PE to another. A second example (where prior-

ities might be important) is a queue conveying requests from

a set of clients to a set of servers.

Another additional feature of our tool is support for user

mobility [12]. Service users are often mobile, i.e. they move

from one SAP to another and want the server to o�er them

the service at the SAP to which they are currently attached.

An example is a person walking around an picking up a phone

here and a phone there. From the point of the service, it is not

the physical moving of users or SAPs that matters; rather it

is the logical moving of users relative to SAPs.

A detailed speci�cation of the tool is given in [13] (though

we continue its development). The tool is written in Prolog,

for its algorithm heavily depends on manipulation of sym-

bols. Consequently, when conceived in 1996, the tool was so

slow that it could only pass as an interesting experiment.

That it probably was, for it seems that no other author of

protocol synthesis algorithms addresses the problems of sup-

porting user mobility and distributed virtual queues. As now

the available hardware is much faster, the tool seems quite

a useful prototyping aid, worth further consideration.

The paper is structured as follows: Section 2 presents

the adopted language for service and protocol speci�cation.

In Section 3 we introduce the basic ideas of the protocol-

derivation process. Speci�cally, in its Subsection 3.1 we

show that user mobility can be supported in a very triv-

ial way. Sections 4 and 5 respectively describe handling

of unstructured service parameters and implementation of

distributed virtual queues. Section 6 presents calculation of

service attributes that guide the protocol-derivation pro-

cess. Section 7 describes how we cope with the complexity

of the process. In Section 8, we compare our approach with

similar algorithms and give some plans for further work.

2 Speci�cation language

Automated protocol derivation is based on syntactic ma-

nipulations of service speci�cations. To be able to focus on

the numerous semantic aspects of a service and its protocol,

we resort to the common practice and work with a very ab-

stract language. Particularly we omit all details of the ser-

vice that don't in
uence the protocol, for example the exact

nature of service actions and the contents of the data they

handle, referring to them only by their names and location.

2.1 Service Speci�cation

A service speci�cation is expected to be structured accord-

ing to the production rules in Table 1. It de�nes (1) the re-

quired service behaviour e. The input conditions of the ser-

vice are speci�ed in IL, IP and IQ, and its required output

conditions in OP .

The basic constituents of a service behaviour are service

primitives. A �xed-location service primitive (2) is identi�ed

by its Name and the P lace (i.e. the SAP) of its execution.

It is an atomic action of the PE supporting the place, poten-

tially executed in co-operation with some service user. Alter-

natively, a service primitive may be assigned to a particular

service User and be executed as a service interaction at the

place where the user is currently located (3).

During execution of a service primitive of any of the above

types, the involved PEmay access some unstructured service

parameters, acting as virtual global variables of the server.

An unstructured parameter listed in Ipar is an input to the

primitive, i.e. must be known to the PE before the primitive

is executed. Within the primitive, such a parameter often

serves as an output to a service user. An unstructured pa-

rameter listed in Opar is an output of the primitive, i.e. the

primitive sets it to a new value, that is subsequently avail-

able at the PE. The originator of the new value might be

either the PE or the service user executing the primitive, or

both in co-operation. If an unstructured parameter is listed

in Rpar, its value doesn't change, but the primitive makes it

available to the PE (e.g. through implicit reception or com-

putation). If an unstructured parameter is listed in Dpar,

the primitive makes the PE delete its local copy, while its

global value remains unchanged.

Besides the unstructured parameters, a primitive may ac-

cess some distributed virtual queues. A speci�ed number of

data elements may be removed (as an input to the primitive,

speci�ed in Ique) from the head, or appended (as an output

of the primitive, speci�ed in Oque) to the tail of a queue.

When elements are appended to a queue, they overtake each

other according to their speci�ed priorities.

By a special service primitive (4) a User indicates to the

PE to which it is currently attached its moving to a particular

P lace. Such a move must never be concurrent to another

service primitive explicitly involving the user. The initial

location of individual service users is speci�ed in IL.

Parts of a service may be speci�ed for sequential (5), inde-

pendent parallel (6), or alternative (7) execution. IfGuard in

(7) is non-empty, selection between the alternatives is based

on the current values of the unstructured service parameters

listed in Guard. An empty Guard implies that the decision

is made upon the initial service primitive of e. In that case

we require that all the potential initial primitives belong to

the same place, to avoid distributed decision-making [1].

With respect to the service data, a state of the service

provider is de�ned by the current distribution of the knowl-

edge of the unstructured service parameters, and by the con-

tents and its distribution of the virtual queues. IP and IQ

respectively describe the initial state of the unstructured pa-

rameters and queues, while OP the required minimum �nal

knowledge of the unstructured parameters.

Ipar, Opar, Rpar,Dpar and Guard are lists of parameter

names.

IL is a list of elements of the form User:P lace:Cond, stat-

ing that under the condition Cond, User is initially located

at P lace.

2

Table 1

Service speci�cation language

No. Name De�nition

1 Service speci�cation ServSpec !SERVICE (ILjIP jOP jIQ) = e END

2 Fixed-location service primitive e ! Name@Place(IparjOparjRparjDparjIquejOque)

3 Service primitive for a particular user e ! Name�User(IparjOparjRparjDparjIquejOque)

4 User move e ! User>Place

5 Sequential composition e ! e

1

;e

2

6 Parallel composition e ! e

1

jjje

2

7 Alternative composition e ! e

1

[Guard]e

2

Table 2

An illustrative service speci�cation (Example 1)

SERVICE(u1:1,u2:2,u3:3,u4:4|x:2,y:1,y:2|x:1:u|

q:[4:4|2:1]:v,q:[|]::v) =

((a*u1(|x||||q:2:2);u2>4)[y]

(b@1(|||||q:2:2)|||c*u2));

((d@1;e*u2(x|||||q:3:4);u4>3)[]

(f@1;(g*u2(x|||||q:1:2)|||h*u3(||x|||q:1:1))));

(i*u1(|||x||q:3:2)|||j@4(||||q:1));

(((k@4(x);l*u4(y||||q:5))[]m@4(|x))|||

((n*u4;o@4(y))[]p*u4(y)))

END

IP andOP are lists of elements of the formPar:P lace:Cond,

stating that under the condition Cond, the parameter Par

is, respectively, initially known or required to be �nally

known to the PE at P lace.

With an element Que:N in the list Ique, the PE at the

place takes the �rst N elements from Que.

Oque is a list of elements Que:N :Pri, stating that the PE

at the place appends to Que N elements with the priority

Pri.

IQ is a list of elementsQue:State:Cond, stating that under

the condition Cond, the initial state of Que is State. State

is of the form [FQjRQ]. FQ refers to the front elements

of the queue, residing already at the places of their future

consumption, while RQ to the rear elements of the queue,

still residing at the places which have generated them. Each

element of FQ or RQ is of the form P lace:Pri, stating that

the corresponding data item resides at P lace and its priority

is Pri.

All the Cond conditions are supposed to be functions of

special, globally known parameters externally supplied to,

but not handled by the server.

Example 1 The service speci�cation in Table 2 should illus-

trate a wide range of interesting situations. Its key parts are

(like in Tables 3 and 4) emphasised to improve legibility.

There are places 1 to 4, initially supporting users u1 to u4,

respectively. u2 might later move to 4, and u4 to 3. There

are unstructured parameters x and y, queue q, and auxiliary

parameters u and v.

x is initially known to 2, and must under condition u be

�nally known to 1. It is regenerated by 1 in a, and by 4 in m,

used by 2 or 4 in e and g, and by 4 in k, implicitly received by

3 in h, and forgotten by 1 in i.

y is initially known to 1 and 2, that use it for decision on

the �rst alternative. If u4 doesn't migrate to 3, l and o (or p)

at 4 use y concurrently.

Under condition v, q initially contains 1 element with pri-

ority 4 in its front part at place 4, and 1 element with priority

1 in its rear part at place 2. Under condition :v, q is initially

empty. It is written to by 1 in a or b (2 elements with priority

2), and in i (3 elements with priority 2), by 2 or 4 in e (3 el-

ements with priority 4) or g (1 element with priority 2), and

by 3 in h (1 element with priority 1). Place 4 removes from

it 1 element in j, and place 3 or place 4 5 elements in l. g

and h concurrently write to q, but with di�erent priorities. i

writes to q while j concurrently reads its stable front.

2.2 Protocol Speci�cation

The derived behaviour of individual places is speci�ed ba-

sically in the same language as the required service, with

some exceptions.

A behaviour speci�cation derived for a P lace has four pa-

rameters. The �rst two respectively specify the input and

the output knowledge of the unstructured parameters at

P lace. They are lists of elements Par:Cond, stating that

Par is under the condition Cond known to P lace. The third

and the fourth parameter respectively specify the input and

the output state of the local queues that at P lace corre-

spond to the global virtual queues. They are lists of elements

Que:FN:RN:Cond, stating that, under condition Cond,

FN elements of the front part and RN elements of the rear

part of the queue Que reside at P lace (see Section 5 for fur-

ther explanation).

Each alternative composition operator [Guard] is ex-

tended into [Guard|N], where N identi�es the particular

operator.

A Guard ! Spec is a speci�cation Spec guarded by

Guard. If Guard is true, the term evaluates to Spec. If

Guard is false, the term evaluates to an empty term ".

� A Guard ! Spec might stand in a position where a be-

haviour speci�cation would be expected, i.e. Spec might

represent a behaviour. If such a term degenerates into ",

it can be eliminated by the absorption rules given in [6].

An example is a Spec representing a service primitive not

intended for execution at the place to which the speci�ca-

tion belongs.

� If a Guard! Spec belongs to a set, its evaluation to " is

equivalent to deletion of Spec from the set. Examples of

such sets are the TO and RG sets introduced in the next

two paragraphs, respectively.

A trans(N|TO) speci�es a set TO of the transmission

3

obligations for a context N . trans(N|) is equivalent to ".

The elements of TO are of the form Guard ! Spec. Spec

may be of the form P lace, stating that a message contain-

ing (possibly among other elements) the context identi�er

N must be sent to P lace. Second, Spec may be of the form

<P lace,Par>, stating that a message containing the con-

text identi�er N and the value (properly identi�ed) of the

unstructured parameter Par must be sent to P lace. Third,

Spec may be of the form <P laces,Que>, stating that the

front elements of the queue Que must be sent to the places

listed in P laces, in that order, properly identi�ed and ac-

companied with the context identi�er N .

Transmission obligations within a single trans may be

mapped intomessages in anymanner suitable for a particular

system, while mixing of message elements from di�erent con-

texts must be avoided. Hence a trans(N|TO) is an abstract

(concise) representation of a set of guarded protocol message

transmissions. Before a PE can execute its behaviour speci�-

cation, all trans expressions in it must be suitably mapped.

A rec(N|RG) speci�es the reception goals for a context

N . rec(N|) is equivalent to ". Guarded reception goals in

RG are structured just like transmission obligations, except

that they specify places to receive from and combinations

of message elements which are to be received. An any spec-

i�es reception from any place. Mapping a rec into a set of

guarded message receptions, one must bear in mind how the

message elements have been combined into messages in the

implementation of the trans for the particular context. Be-

fore a PE can execute its behaviour speci�cation, all rec ex-

pressions in it must be suitably mapped.

A set(V ar,V al) sets the local copy of the auxiliary vari-

able V ar to the value V al.

For illustration, we present in Table 3 a protocol speci�ca-

tion derived by our tool for the service described in Exam-

ple 1. At that point, the reader should just brie
y glance over

it, to get familiar with the protocol speci�cation language.

Places are expected to interpret their behaviour speci�ca-

tions in the following way: Whenever a place sets the value of

a variable, it immediately propagates it into the guards of its

future behaviour, deletes the guards which already evaluate

to true, and eliminates the " terms resulting from the guards

evaluating to false. Subsequently, the place continues ser-

vice execution according to the newly adapted behaviour

speci�cation. Care is taken that places are supplied with suf-

�cient knowledge for guard evaluation before the guarded

actions become pending for execution.

Example 2 Table 4 shows the state of the service and the

corresponding PE speci�cations from Tables 2 and 3 after

the external service parameters u and v and the auxiliary

variables alt(1) and alt(2) (i.e. their local copies) have

been set to true. In the adapted service speci�cation we see

that the �rst two of the four consecutive service parts have

already been executed. In the place speci�cations we observe

that, with the knowledge obtained so far, the places have been

able to evaluate the guards of all their immediately executable

Table 4

Situation after a partial run of the server from Tables 2 and 3.

SERVICE(u1:1,u2:4,u3:3,u4:3|

x:1,x:2,x:4,y:1,y:2,y:3|x:1|

q:[4:4|4:4,4:4,4:4,1:2,1:2,2:1]) =

(i*u1(|||x||q:3:2)|||j@4(||||q:1));

(((k@4(x);l*u4(y||||q:5))[]m@4(|x))|||

((n*u4;o@4(y))[]p*u4(y)))

END

ENTITY 1(x,y|y,x|q:0:2|q:0:3:alt(3),q:0:5::alt(3)) =

rec(24|3,4);i*u1(|||x||q:3:2);trans(22|4,3);

(((rec(13|any);trans(14|<[3,3],q>))[|3]rec(16|any))|||

((rec(17|,any);trans(18|<4,y>))[|4]rec(20,any)));

rec(27|<any,x>)

END

ENTITY 2(x,y|y|q:0:1|q:0:1) =

(rec(13|any)[|3]rec(16|any))

END

ENTITY 3(y|y|q:0:0|q:0:0) =

trans(24|1,4);rec(22|1,4);

(((rec(14|4,<[4,4,4,1,1],q>);l*u4(y||||q:5))[|3]

rec(16|any))|||

((n*u4;trans(17|1);trans(18|4))[|4]

(p*u4(y);trans(20|1,4))))

END

ENTITY 4(x|x,y:alt(4)|q:1:3|

q:0:0:alt(3),q:0:3::alt(3)) =

trans(24|1);rec(24|3);

j@4(||||q:1);trans(22|3);rec(22|1);

(((k@4(x);trans(13|1,2);trans(14|3,<[3,3,3],q>))[|3]

(m@4(|x);trans(16|1,2,3)))|||

((rec(18|3,<any,y>);o@4(y))[|4]rec(20|any)));

trans(27|<1,x>))

END

Table 5

A brief presentation of the protocol derivation mapping

No. Mapping rule

1 T

p

(ServSpec) := ENTITY p(IP (p)jOP (p)jIQ(p)jOQ(p))

= T

p

((e; ")) END

2 T

p

(e) := ((p = Place)! e)

3,4 T

p

(e) := (att b(User; p; e) ! e)

5 T

p

(e) := (T

0

p

(e

1

); trans(Nj : : :); rec(Nj : : :);T

p

(e

2

))

6 T

p

(e) := (T

p

(e

1

)jjjT

p

(e

2

))

7 T

p

(e) := ((T

0

p

(e

1

); (: : :! set(alt(N); true)))[GuardjN]

(T

0

p

(e

2

); (: : :! set(alt(N); false))))

where T

p

(") := ", T

0

p

(e) := (T

p

(e); trans(Nj : : :); rec(Nj : : :))

actions.

3 Basic Ideas of the Protocol-Derivation Process

Behaviour speci�cation for a place p is derived from a ser-

vice speci�cation by the mapping T brie
y presented in Ta-

ble 5 (where the �rst column identi�es the production rule(s)

from Table 1 to which the particular row applies), followed

by simpli�cation that always includes initial evaluation of

guards and elimination of " terms. As in earlier similar algo-

rithms, mapping of a service speci�cation proceeds in a com-

positional way, by mapping its constituent parts (subexpres-

sions, service subbehaviours). Protocol derivation is guided

4

Table 3

A protocol speci�cation derived for the service described in Example 1

ENTITY 1(y|y,x:u|q:0:0|q:0:0:(alt(3)^:v^:alt(2)),

q:0:1:(v^alt(3)^:alt(2)),

q:0:2:(alt(2)^alt(3)^:v),

q:0:3:(v^alt(2)^alt(3)),

q:0:4:(:v^:alt(2)^:alt(3)),

q:0:5:((v^:alt(3))_(alt(2)^:alt(3)))) =

(((a*u1(|x||||q:2:2);trans(2|2,<4,x>);trans(3|3);

set(alt(1),true))[y|1]

(b@1(|||||q:2:2);trans(4|3,4);set(alt(1),false)));

rec(26|2);

((d@1;trans(8|<3,y>,(alt(1)!4),(:alt(1)!2));

trans(11|2);set(alt(2),true))[|2]

(f@1;trans(10|3,<4,y>,(alt(1)!4),(:alt(1)!2));

trans(12|2);set(alt(2),false)));

trans(24|((:v^:alt(2))!<[4],q>));

rec(24|3,4,(:alt(1)!2));

i*u1(|||x||q:3:2);trans(22|4,(alt(2)!3));

(((rec(13|any);

trans(14|((v^alt(2))!<[3,3],q>),

((alt(2)^:v)!<[3,3,3],q>),

(:alt(2)!<[4,4,4,4],q>)))[|3]

rec(16|any))|||

((rec(17|,any);trans(18|(alt(2)!<4,y>)))[|4]

rec(20,any)));

rec(27|(u!<any,x>)))

END

ENTITY 2(x,y|y,x:(alt(3)^:alt(1))|

q:0:0::v,q:0:1:v|

q:0:0:((alt(1)^:v)_(alt(3)^:v)),

q:0:1:((v^alt(1))_(v^alt(3))_

(:v^:alt(1)^:alt(2)^:alt(3))),

q:0:2:((v^:alt(1)^:alt(2)^:alt(3))_

(alt(2)^:v^:alt(1)^:alt(3))),

q:0:4:(v^alt(2)^:alt(1)^:alt(3))) =

(((rec(2|1);u2>4;set(alt(1),true))[y|1]

(c*u2;trans(4|3,4);set(alt(1),false)));

trans(26|1,(:alt(1)!<4,x>));

((rec(8|(:alt(1)!1));(:alt(1)!e*u2(x|||||q:3:4));

trans(6|(:alt(1)!4));rec(11|any);

set(alt(2),true))[|2]

(rec(10|(:alt(1)!1));

(:alt(1)!g*u2(x|||||q:1:2));

rec(12|any);set(alt(2),false)));

trans(24|((alt(2)^:v^:alt(1))!<[4],q>),

(:alt(1)!1),(:alt(1)!4));

((rec(13|any);

trans(14|((v^alt(2)^:alt(1))!<[3,3,3],q>),

((alt(2)^:v^:alt(1))!<[3,3],q>),

((:alt(1)^:alt(2))!<[4],q>)))[|3]

rec(16|any)))

END

ENTITY 3(|x:(alt(3)^:alt(2)),y:alt(2)|q:0:0|

q:0:0:alt(2),q:0:1::alt(2)) =

(((rec(3|any);set(alt(1),true))[y|1]

(rec(4|any);set(alt(1),false)));

((rec(8|<any,y>);set(alt(2),true))[|2]

(rec(10|1);h*u3(||x|||q:1:1);set(alt(2),false)));

trans(24|1,4);rec(22|(alt(2)!1),(alt(2)!4));

(((rec(14|(alt(2)!4),

((v^alt(1)^alt(2))!<[4,4,4,1,1],q>),

((v^alt(2)^:alt(1))!<[2,2,2,1,1],q>),

((alt(1)^alt(2)^:v)!<[4,4,1,1,1],q>),

((alt(2)^:v^:alt(1))!<[2,2,1,1,1],q>));

(alt(2)!l*u4(y||||q:5)))[|3]

rec(16|any))|||

(((alt(2)!n*u4);trans(17|(alt(2)!1));

trans(18|(alt(2)!4)))[|4]

((alt(2)!p*u4(y));

trans(20|(alt(2)!1),(alt(2)!4))))))

END

ENTITY 4(|x,y:(alt(4)_:alt(2))|q:0:0::v,q:1:0:v|

q:0:0:(alt(3)_:alt(1)),

q:0:1:(alt(1)^:alt(2)^:alt(3)),

q:0:2:(alt(1)^alt(2)^:v^:alt(3)),

q:0:3:(v^alt(1)^alt(2)^:alt(3))) =

(((rec(2|<any,x>);set(alt(1),true))[y|1]

(rec(4|any);set(alt(1),false)));

rec(26|(:alt(1)!<any,x>));

((rec(8|(alt(1)!1));(alt(1)!e*u2(x|||||q:3:4));

rec(6|(:alt(1)!2));u4>3;set(alt(2),true))[|2]

(rec(10|<any,y>,(alt(1)!1));

(alt(1)!g*u2(x|||||q:1:2));

set(alt(2),false)));

trans(24|1,((alt(1)^alt(2)^:v)!<[4],q>));

rec(24|3,((alt(1)^alt(2)^:v)!<[4],q>),

((alt(2)^:v^:alt(1))!<[2],q>),

((:v^:alt(2))!<[1],q>),(:alt(1)!2));

j@4(||||q:1);trans(22|(alt(2)!3));rec(22|1);

(((k@4(x);trans(13|1,2);

trans(14|(alt(2)!3),

((v^alt(1)^alt(2))!<[3,3,3],q>),

((alt(1)^alt(2)^:v)!<[3,3],q>),

((alt(1)^:alt(2))!<[4],q>));

rec(14|((v^alt(1)^:alt(2))!<[1,1,4,1,1],q>),

((v^:alt(1)^:alt(2))!<[1,1,2,1,1],q>),

((alt(1)^:v^:alt(2))!<[1,4,1,1,1],q>),

((:v^:alt(1)^:alt(2))!<[1,2,1,1,1],q>));

(:alt(2)!l*u4(y||||q:5)))[|3]

(m@4(|x);trans(16|1,2,3)))|||

(((:alt(2)!n*u4);trans(17|(:alt(2)!1));

rec(18|(alt(2)!3),(alt(2)!<any,y>));o@4(y))[|4]

((:alt(2)!p*u4(y));rec(20|(alt(2)!any)))));

trans(27|(u!<1,x>)))

END

by various pre-calculated attributes of the parts (more de-

tails in Section 6).

3.1 Supporting User Mobility

Though it might seem strange, we shall start by explaining

how user mobility is supported, so that we can stop worrying

about it.

User mobility can be implemented simply by properly

guarding protocol actions by variables recording past deci-

sions in the service execution. In Section 3.5 we explain how

places are timely supplied with the knowledge necessary for

evaluation of action guards. As by the time that actions

become pending, their guards are completely evaluated, we

may in the subsequent discussion forget about the guards,

i.e. about mobility.

5

Example 3 Let's return to the Example 2. The auxiliary

variable alt(2) has been set to true because the �rst alterna-

tive has been selected upon the second choice in the service.

That means that user u4 has moved from place 4 to place 3.

In Table 3 we see that both places record the value of alt(2).

So in the future they know, for example, that l*u4(...) must

be executed at place 3, not at place 4 (see Table 4).

3.2 Inter-Place Communication

As the �rst step towards protocol correctness, we ensure

that every protocol message sent is actually received, by fol-

lowing the strategy of [8].

Unlike to [6], protocol messages serving for data exchange

and those serving for inter-place synchronisation are treated

in a uniform way, i.e. using trans procedures for their com-

bined transmission and rec procedures for their combined

reception. Any message so exchanged serves for synchroni-

sation of its sender and its recipient, while messages with

elements additional to the context identi�er N also serve for

data exchange.

The structure of a service speci�cation reveals the points

in the service execution where protocol message exchanges

might be necessary. In Table 5 we see that the points are sit-

uated between consecutive service parts, i.e. upon sequential

composition operators, and at the ends of the service parts

mapped by T

0

instead of T. Every point represents an in-

dividual message exchange context, i.e. a message exchange

procedure (MEP) consisting of the message transmissions

and their corresponding receptions pertaining to the context.

The derived behaviour of any place p has basically the

same structure as the service augmented with identi�ers of

its MEPs. Every service primitive or MEP has its image at

p and the operators combining subbehaviours are the same

as in the service.

Behaviour composition operators specify the partial or-

der in which actions are executed. By having message recep-

tions always speci�ed in the same points as the correspond-

ing transmissions, we ensure that the partial order speci�ed

for the receptions is the same as for the transmissions. In

other words, the recipients never require that messages are

received in an order di�erent from that in which they have

been sent. Hence if places properly progress through the ser-

vice, they will also properly receive the protocol messages

sent.

Example 4 The above concepts are illustrated in Table 6,

where e is a small service behaviour, that is in e

0

augmented

with identi�ers of its MEPs. The subexpressions of e and the

MEPs are then mapped onto individual places 1 and 2, and

the two local speci�cations subsequently simpli�ed.

Proper progress of the distributed system is ensured by

proper implementation of each individual service primitive

and each individual composition operator, as discussed in

the following subsections. Individual service behaviour types

are mapped very much like in [8].

Table 6

Illustration to Example 4

e = (((a@1;b@2);c@1)|||((d@2;e@1)[]f@2))

e

0

= (((((a@1;MEP

1

);MEP

2

;b@2);MEP

3

);MEP

4

;c@1)|||

((((d@2;MEP

5

);MEP

6

;e@1);MEP

7

)[](f@2;MEP

8

)))

T

1

(e) � (((((a@1;";");trans(2|2);";");";");

";rec(4|2);c@1)|||

((((";";");";rec(6|2);e@1);";")[]

(";";rec(8|2))))

� ((a@1;trans(2|2);rec(4|2);c@1)|||

((rec(6|2);e@1)[]rec(8|2)))

T

2

(e) � (((((";";");";rec(2|1);b@2);";");

trans(4|1);";")|||

((((d@2;";");trans(6|1);";");";")[]

(f@2;trans(8|1);")))

� ((rec(2|1);b@2;trans(4|1))|||

((d@2;trans(6|1))[](f@2;trans(8|1))))

3.3 Implementation of Individual Service Primitives

An individual service primitive (see Table 5(2{4)) is imple-

mented at any place p as it is, but preceded by a guard de�n-

ing the conditions under which it is to be executed at p. For

a �xed location primitive (2), the guard is true for the place

to which it belongs, and false otherwise [8]. If it is executed

for a mobile User (3,4), its execution is at any place guarded

by its dynamically evaluated attribute att b(User; p; e), that

speci�es whether User is just before executing the service

part e attached to p.

A service primitive is executed by an individual place p,

and its distributed implementation introduces no protocol

messages, i.e. its implementation is trivially correct. How-

ever, if it is to be executable, the other places must ensure

that its input parameters are available at p in time. How this

is achieved, we explain in Sections 4 and 5.

3.4 Implementation of Parallel Composition

Implementation of parallel composition (6) requires no ad-

ditional inter-place synchronisation. Its correctness is based

on the cross-cut theorem [4] on re-grouping of parallel pro-

cesses. For a pair of e

1

and e

2

running in parallel, there

are processes T

p

(e

1

) and T

p

(e

2

) for each place p. We have

the pool of processes organised as a group of local processes

(T

p

(e

1

)jjjT

p

(e

2

)) communicating over the protocol chan-

nels, and we would like to show that that is from the point of

the service equivalent to the group of the T

p

(e

1

) processes

(the distributed implementation of e

1

) running in parallel

to the group of the T

p

(e

2

) processes (the distributed imple-

mentation of e

2

).

The problem is that in the second case, the two groups

use for intra-group communication the same set of protocol

channels and might thus potentially interfere on them [16].

That is because the channels support asynchronous commu-

nication, and not synchronous like in [4]. Fortunately, in [14]

we have been able to show that there is no interference on

FIFO protocol channels, if the parallel composition opera-

tor introduces no synchronisation between e

1

and e

2

and if

6

places are always willing to receive protocol messages in the

order in which they have been sent (see Section 3.2).

Example 5 In the example in Table 6, the two parallel ser-

vice parts both use the protocol channel leading from place 2 to

place 1, but the reader can check that the messages issued on

the channel concurrently are nevertheless properly received.

3.5 Implementation of Choice

Like in [8], we require that an e of the form (e

1

[Guard]e

2

)

(7) is such that distributed implementation of the choice

requires no distributed decision-making, i.e. no additional

protocol messages.

In [8], Guard is always empty, i.e. there are no service pa-

rameters whose value would resolve the choice in advance. In

that case it is required that all the starting service primitives

of e

1

and e

2

belong to the same place. The choice is made

locally at the place upon the �rst primitive of the selected al-

ternative, while other places enter the alternative upon mes-

sages received within the implementation of the alternative.

Example 6 In the example given in Table 6, place 2 makes

the choice and invites into the selected alternative place 1.

Note that the invitation is also sent in the second alternative,

although place 1 has no service primitive speci�ed in it. That

is to prevent place 1 from permanent waiting for a potential

activation of the �rst alternative [8].

If Guard is not empty, the choice is implied by the values

of the service parameters listed in it. In that case we make

sure that the executors of the starting service primitives of

the alternatives (their starting places) know the values before

execution of e starts. Hence again places enter one of the

alternatives in a co-ordinated manner.

Example 7 In the example in Table 2, the �rst choice is

based on the value of service parameter y. The places that

consequently must (and do) know y initially are place 1 (as

the executor of a*u1 and b@1) and place 2 (as the executor of

c*u2).

In Example 6 we have met a place originally participat-

ing in only one of the alternatives, while the missing invita-

tion to the other alternative e

2

has been introduced by using

T

0

p

(e

2

) instead of T

p

(e

2

). In such manner, a place always

participates in both alternatives or in none. Thereby we en-

sure that the participants are properly co-ordinated not only

upon entering e, but also upon terminating it.

By participating in the implementation of e, a place im-

plicitly receives information on the selected alternative. As

explained in Section 3.1, such information might be neces-

sary for supporting user mobility. It might also help a place

to determine the current distribution of the knowledge of a

service parameter.

Example 8 Suppose that a place p forgets a parameter x in

one alternative, but not in the other. If another place p

0

must

afterwards supply x to p, p

0

should know the decision upon

the choice, to avoid the transmission in the case that p still

knows x.

Initially, each choice operator (identi�ed by an N) in the

service speci�cation is assigned a virtual global Boolean vari-

able alt(N), whose value is set when the decision is made

and indicates whether the �rst of the two alternatives has

been selected. Whenever a place p detects an interesting de-

cision, it makes a local copy of the associated variable. p sets

the variable upon terminating the selected alternative. The

set command is guarded, where the guard indicates whether

p might need the variable for evaluation of guards of its fu-

ture actions. If a p originally participates in none of a pair of

alternatives, but must detect the choice, care is taken that

an invitation is sent to p at the end of each individual alter-

native.

Example 9 For the service in Table 2, Table 3 shows that

the identi�er of the �rst choice operator is 1, i.e. the decision

recorded in alt(1). Place 3 originally participates in none of

the alternatives, but alt(1) is present in its future guards.

Therefore place 3 is informed on the selected alternative (by

rec(3|any) or rec(4|any), respectively) and sets its copy of

the variable.

In [8], the place informing other places that a particular al-

ternative has just been completed is always the unique start-

ing place of the alternative. If Guard is non-empty, there

might be several starting places. Fortunately, the exact iden-

tity of the sender is irrelevant for the protocol correctness

and we are free to chose any of the starting places. If there

are several such places, we make sure that each of them has

at that point of service execution su�cient knowledge to de-

termine on its own whether to send the message or not.

[8] also requires that alternatives e

1

and e

2

have equal

ending places, i.e. places executing their ending actions, but

the requirement is super
uous [17].

3.6 Implementation of Sequential Composition

Executing its implementation of an (e

1

; e

2

), a place �rst

executes its e

1

part, possibly concluded by some additional

protocol message exchanges upon its completion, that are

introduced by mapping T

0

. Namely, if there is a place p

expected to transmit some service parameter values upon

the subsequent sequential composition operator, but not yet

knowing that service execution is progressing towards the

MEP, the transmission is stimulated by a message sent to p

within the MEP at the end of e

1

. The sender is selected in

the same manner as for the messages sent upon termination

of an alternative within a choice (see Section 3.5).

Example 10 In Table 2, consider the service subexpression

(k@4(...);l*u4(...)), an alternative of the third choice

subexpression in the service. Place 1 doesn't participate in

its service primitives, but is expected to transmit some ele-

ments of queue q upon the sequential composition operator

(see trans(14|...) in Table 3). To initiate the transmission,

place 1 must previously receive an indication that the partic-

ular alternative has been selected (speci�ed by rec(13|any)).

7

After their e

1

parts, places execute the MEP belonging

to the sequential composition operator, before proceeding to

their e

2

parts. The messages sent upon the operator serve

primarily to prevent a premature start of e

2

. For that pur-

pose it is in principle necessary that the ending places of e

1

transmit to the starting places of e

2

[18,8]. However, if such

a message has already been sent at the end of the imple-

mentation of e

1

, it may be omitted from the MEP belonging

to the sequential composition operator, for the recipient al-

ready knows that the sender has completed its service prim-

itives in e

1

. Another sort of messages sent upon the opera-

tor are messages carrying service parameters which have the

exchange scheduled for the particular point.

In [8], a MEP belonging to a sequential composition op-

erator is never preceded by a MEP upon the end of e

1

, but

we may pretend that both MEPs are actually a single MEP

consisting of two consecutive parts.

Anyhow, there might be more and longer messages sent

upon a sequential composition operator than in [8], but that

is not problematic. For observe that for a proper reception of

the messages it is su�cient that their senders enter execution

of the (e

1

; e

2

) before the transmission, and they do.

In Table 5(1) we see that there is an additional sequential

composition operator introduced just after the e specifying

the overall service behaviour. Where necessary, its serves for

a �nal dispatching of the service parameters required to be

known at the recipient places upon the service completion

(the OP part of a service speci�cation).

3.7 A Statement on Protocol Correctness

The correctness of a protocol derived for a service has two

aspects.

� The control aspect secures that exactly the speci�ed se-

quences of service actions are implemented, that the ser-

vice users can select the available alternatives just if the

server was not distributed, and that all the protocol mes-

sages sent are properly received.

� The data aspect secures that the protocol messages timely

deliver service data to their recipients.

From the aspect of control, the protocols we derive are

structured like in [8]. To be exact, we have so far in Section 3

identi�ed some di�erences, but also explained that they are

irrelevant for protocol correctness. Hence if [8] is correct from

that aspect, so is our algorithm. The correctness of [8] has

been proven in [7]. Later some
aws have been identi�ed

[16], but not in the implementation of the behaviour compo-

sition operators that we allow in service speci�cations. Thus

we conclude that the protocols we derive are correct from

the control aspect, and explain the handling of data in the

following sections.

4 Handling of Unstructured Service Parameters

As already told, those parameters are virtual global vari-

ables that places concurrently access. The only restrictions

that we pose on their use within a service are the natural

ones. It must never be speci�ed that a place uses a parame-

ter value that is currently globally unknown or unstable, or

is just being deleted at the place.

[9], the ideas of which we follow, gives a designer the free-

dom to choose the point of execution when an unstructured

parameter is delivered to a PE needing it. Our algorithm sets

the parameter distribution scheme automatically. In princi-

ple a parameter is transmitted to a place as soon as there

is no doubt that it will be needed there, either for execu-

tion of a service primitive (Section 3.3) or to select the right

service alternative upon a choice with a non-empty guard

(Section 3.5). If a parameter is being supplied for execution

of a service primitive for a mobile user, it might take long,

before the executor of the primitive, i.e. the recipient of the

parameter, is determined.

In some cases, however, a parameter exchange is speeded

up into a MEP where it is not yet completely certain if the

recipient will need the value. First, a parameter needed by

a decision-making initial service primitive of an alternative

is delivered before the choice expression is entered, to avoid

changing the original form of decision-making from external

to internal. Second, delivery of a parameter might be speeded

up to avoid its concurrent duplicate transmission within ser-

vice parts using the parameter concurrently.

Example 11 Let's have a look at the primitive p*u4(y) in

Table 2. Its input parameter y is from the beginning known

to places 1 and 2, and not forgotten by any of them, while the

executor of the primitive is place 3 or 4. Just in front of it,

there is no sequential composition operator upon which the

parameter could be delivered. Moreover, a message exchange

at that point would resolve the choice for which p*u4(y) is

an initial primitive, i.e. the decision-making action would be

an internal action of the distributed server, while originally

the decision-making action is the primitive executed with the

consent of the user u4. Thus the parameter must be delivered

before the choice expression ((n*u4;o@4(y))[]p*u4(y)). In

the particular case, that is convenient also because y is needed

at the recipient place in both alternatives.

In parallel to the choice expression, there is the expression

((k@4(x);l*u4(y...))[]m@4(|x)), that also needs y at the

recipient place. To prevent duplicate transmission of y, we

move its exchange before the start of the parallel service parts.

Now which is the earliest convenient point for transmitting

y? It is just after d@1 or just after f@1, because there we have a

sequential composition operator and we already know that the

executor of p*u4(y) and l*u4(y...) will be place 3 or place

4, respectively. For the transmitter, we have decided that it

should be place 1 (see Table 3).

In [9], the current value of an unstructured parameter x

is always distributed by its generating place. Since we allow

8

that the generator forgets such an x before distributing it,

our tool allows x to be sent to a particular destination by

any place knowing it at the MEP for which the transmission

has been scheduled. If there are several such places, their

guards for the transmission are conceived such that 1) x is

sent by exactly one of the places, and 2) the number of the

alt variables addressed in the guards is minimised.

Example 12 Suppose that a place 1 always knows the value

of a parameter x intended for transmission in the particu-

lar MEP, while places 2 and 3 know it only under conditions

Cond and :Cond, respectively. We decide that the transmit-

ter should be place 1, for otherwise the other two places would

have to keep track of Cond.

5 Implementation of Distributed Virtual Queues

Virtual queues are distributed over queues residing at indi-

vidual places. Each place maintains one such queue per vir-

tual queue. In its front part, elements generated by the place

are stored and wait for transmission to their consumers. In

its rear part, elements wait for consumption by service prim-

itives at the place. So the front part of a virtual queue is

distributed over the front parts of the corresponding local

queues, and its rear part over their rear parts.

Upon each sequential composition operator, some initial

elements from the rear part of a virtual queue might be

moved to the tail of its front part. That is performed by the

places storing the elements that are being moved, transmit-

ting them to their future consumers, that by the time must

be completely known. If the structure of the service speci�-

cation is not correct, that is not the case and the protocol

derivation fails. Note that a place might need to "transmit"

to itself, if it is both the producer and the consumer of a

queue element.

Example 13 Let's return to the service from Example 1, to

the particular service run addressed in Example 2. Initially,

the state of the virtual queue q is [4:4|2:1], i.e. there is a

priority 4 element residing in its front part at place 4, and

a priority 1 element residing in its rear part at place 2. The

initial state of the corresponding local queue at place 2 is [|1],

i.e. there are no elements in its front part and a priority 1

element in its rear part. For place 4, the state is [4|], while

for places 1 and 3 it is [|].

a*u1, executed at place 1, appends to q 2 elements with pri-

ority 2. That changes the state of q into [4:4|1:2,1:2,2:1],

i.e. the new elements overtake the priority 1 element in its

rear part. The state of the corresponding local queue at place

1 changes into [|2,2].

The next action on q is e*u2, executed at place 4, to

which user u2 has moved. The action appends to q 3 el-

ements with priority 4. That changes the state of q into

[4:4|4:4,4:4,4:4,1:2,1:2,2:1], i.e. the new elements

overtake the priority 1 and priority 2 elements in its rear

part. The state of the corresponding local queue at place 4

changes into [4|4,4,4]. That state of q is documented as its

initial state in Table 4.

i*u1 at place 1 appends to q 3 elements with priority 2,

while j@4 concurrently removes 1 element from its stable front

part. The resulting state of q is

[|4:4,4:4,4:4,1:2,1:2,1:2,1:2,1:2,2:1].

The states of the corresponding local queues at places 1 and

4 change to [|2,2,2,2,2] and [|4,4,4], respectively.

In the following, let's assume that the �rst alternatives are

selected upon the last two choices of the service. Hence l*u4

will remove 5 elements from the head of q. For that pur-

pose, trans(14|...) actions send the elements to place 3,

the executor of l*u4. Place 1 sends two elements and place

4 three elements. Place 3 receives them in rec(14|...), and

properly puts the elements from place 4 in front of the ele-

ments from place 1, as originally in q. The resulting state of

q is [3:4,3:4,3:4,3:2,3:2|1:2,1:2,1:2,2:1]. The states

of the corresponding local queues at places 1, 4 and 3 change

into [|2,2,2], [|] and [4,4,4,2,2|], respectively.

After l*u4, the state of q is [|1:2,1:2,1:2,2:1], while its

part at place 3 is [|].

A service speci�cation must respect some additional rules

regarding the virtual queues access. Concurrent reads from

a queue are forbidden, for otherwise it would not be possible

to determine which should be the service primitive using

a particular queue element. Concurrent writes on a queue

are allowed as long as they are with di�erent priorities, for

otherwise it would not be possible to determine the order in

which places append the elements to the queue. Reading on

an empty queue is not possible. Likewise it is forbidden to

read on a queue while there is a pending concurrent higher-

priority write on it, for the element being appended would

be overtaking the element being read.

Hence it is only possible to read on the stable initial part

of a virtual queue. The front part of a queue is stable by def-

inition, while for the purpose of transmitting, elements may

be removed only from the stable initial part of the rear part

of the queue. The more a transmission of queue elements is

delayed, the longer is the stable part of the rear part of the

queue and the higher the probability that the required num-

ber of stable elements actually exists. Therefore the adopted

policy is to delay transmission of queue elements till the last

sequential composition operator preceding the service prim-

itive that will use the elements.

6 Calculation of Service Attributes

Calculation of service-speci�cation-subexpression at-

tributes is the crucial and the di�cult part of the protocol

derivation process. An attribute typically describes a prop-

erty of an expression or some aspect of the service provider's

state (typically some property of the past history of events

or of the possible futures) just before or just after execution

of the expression. Since our algorithm automates implemen-

tation of decision making, attributes are functions of the

variables that record decisions on alternatives.

9

The �rst task is to compute attribute att b (introduced in

Section 3.3) on which nearly all other attributes depend. It

is computable if all user moves are legal. For every point in

the service, it is also necessary to make distinction between

the past (already known) decisions on alternatives, and the

future (yet unknown) decisions. That is necessary to be able

to e�ectively cut the cyclic dependences between attributes

caused by the presence of user mobility. An example of such

a cycle can be found in [12]. The problem lies in the fact that

any precise communication planning requires consideration

of the future needs of individual places, while those needs in

the presence of user mobility often depend on past actions

depending on the plan.

The second group of attributes is used for basic checks of

the service speci�cation structure. Alternative expressions

are checked for adequacy of their starting places and con-

current expressions are checked for compatibility of their pa-

rameter access. One searches for the starting and the ending

places of expressions, for the places using, generating, or for-

getting unstructured parameters, and for places reading or

writing on virtual queues.

The third group establishes places' needs for individual

service parameters. First, cases where a place obtains an

unstructured-parameter value without explicitly receiving it

are identi�ed. Then for each point in the service one estab-

lishes which places will in the future need the current values

of the unstructured parameters and the current elements of

the virtual queues.

Those needs imply parameter receptions, that further im-

ply unstructured-parameter knowledge and virtual queues

distribution at each individual point of service execution.

The attributes are calculated in the next step.

Based on the knowledge-distribution attributes, parame-

ter transmissions are planned and parameter transmitters

selected. Those attributes facilitate forming of proper trans-

mission obligations and reception goals upon sequential com-

position operators.

Service primitives, transmission obligations and reception

goals are guarded by functions of past decisions, i.e. the alt

variables. So one can calculate for each alternative, which

places must be informed of the decision, i.e. who will trans-

mit, receive or record the information. The calculations for

the alt variables are basically the same as for the ordinary

unstructured service parameters, except that they are trans-

mitted wherever that might be (not de�nitely is) necessary

for the future. That policy has been chosen because their

transmission is trivial, implemented by the �nal protocol in-

teractions introduced by the mapping T

0

. As evident from

the applications of T

0

in Table 5, such auxiliary protocol in-

teractions not only inform on the selected alternatives, but

in some cases apply also to the �rst elements of sequentially

composed pairs, where a place might have to poll a peer for

a parameter transmission. We could have introduce the aux-

iliary protocol interactions more selectively, but then decid-

ing on when to transmit would sometimes imply additional

information needs, thus inducing additional transmissions of

alt variables . . . and so on in a cascade. Obviously, detailed

optimisation of that protocol aspect is not trivial.

7 Coping with Complexity

Implementing the tool, we soon realised that precise plan-

ning of data exchanges, particularly for virtual queue ele-

ments, made the protocol derivation process very complex.

Not only that it was very time-consuming - the main prob-

lem was that even tiny service speci�cations made the tool

run out of memory. The reason was that precise attribute

calculation was not compositional with respect to the ser-

vice speci�cation structure, as one might speculate from the

compositionality of the mapping T. That is because forward

chaining keeps alternating with backward chaining, the for-

ward chaining propagating into the future the e�ects of the

already executed actions, while the backward chaining prop-

agating from the future the requirements for proper action

planning. As we didn't want to trade the quality of the de-

rived protocols for compositionality of the derivation process,

we decided to make the tool rely more on external memory

devices.

The e�ect of an expression on the knowledge distribution

of an unstructured parameter is a simple logical function of

parameter accesses during the expression, i.e. of some sim-

ple attributes of the expression, just as the distribution it-

self can be described by a �nite set of Boolean variables. On

the other hand, the e�ect of an expression on the state of a

virtual queue is in general a complicated non-linear function

of the queue state before the expression and there is poten-

tially an unlimited number of possible inputs to the func-

tion, hence it is not feasible to pre-calculate (as an auxiliary

attribute) the result of the function for each possible input.

This is the "bottle-neck" of the tool, the only case during at-

tribute evaluation where an auxiliary property of an expres-

sion must be calculated on the spot - not just by referring to

the expression, but by thoroughly examining its structure.

The bottle-neck is problematic for virtual queues that tend

to become long or that are accessed very unpredictably.

In all other cases, evaluation of an expression attribute is

purely
at (the attribute depends solely on some other pre-

calculated attributes of the expression), purely synthesised

(the attribute depends on the attribute and on some other

pre-calculated attributes of the subexpressions) or purely in-

herited (the attribute depends on the attribute of the su-

perexpression and some pre-calculated attributes of the sib-

ling expressions). So an attribute can typically be calculated

by traversing the tree that models the service speci�cation

structure in a bottom-up or a top-down fashion and in each

step considering just the attributes of a node and its sons.

Consequently, it is possible to store the pre-calculated at-

tributes on �les and read them on the
y, as necessary for

each node or group of sibling nodes encountered, in the for-

ward or in the reverse direction. Cumulative attributes can

10

be calculated iteratively, so that the number of the �les which

need to be simultaneously open is bounded.

The above tricks are very important, since for exact cal-

culation it is necessary to store a number of attributes that

is at least proportional to the number of the service subex-

pressions times the square of the number of the co-operating

places times the number of the service parameters - not to

speak of the queues! To illustrate the complexity of the task,

let us mention that there are currently 64 di�erent attribute

types, many of them inducing two- or three-dimensional ar-

rays of attributes for each service subexpression.

As for the temporal complexity, workstations have already

reached a speed that is quite acceptable. The example pre-

sented in Tables 2 and 3 took about half a minute CPU time

with SICStus Prolog running under Solaris on Sun Ultra 30 -

certainly far less than it would take to a human. One should

also add the time necessary for translating from an ordinary

speci�cation language to the adopted speci�cation language,

and vice versa, but that should be a marginal problem if com-

pared to the complexity of the protocol derivation algorithm.

A more real-life-sized service speci�cation could be

mapped into a protocol part-by-part. If

� concurrent service parts are non-con
icting,

� transfer of control between consecutive service parts is al-

ways controlled by an individual place,

� the location of the service users, the knowledge of the

unstructured service parameters and the virtual-queues

states assumed upon the start of a service part are always

secured at the end of the preceding service part, and

� the choice between alternative service parts is always con-

trolled by an individual place and the alternatives have

equal participants sets,

then merging of the protocols derived for the individual ser-

vice parts requires no additional protocol interactions, just

extension of the context identi�ers for MEPs (the N carried

in protocol messages) and choices (the N in alt(N)) with

the identi�er of the service part to which they belong. The

composition could be easily automated.

8 Comparison with Similar Algorithms and Plans

for Further Work

We know no other author supporting implementation of

user mobility and distributed virtual queues in a protocol

derivation algorithm for LOTOS or a similar speci�cation

language.

Unstructured service parameters are supported in [6,9,20].

[6] poses several rather unnatural restrictions on parameter

access. The restrictions have probably been inspired by the

original semantics of LOTOS, and strongly simplify the pro-

tocol derivation process. [9] has removed the restrictions, ex-

cept for those preventing clashes upon concurrent access of

virtual variables, but is not able to automatically generate

guards for parameter exchanges. An interesting property of

[9] is that it allows
exible scheduling of the exchanges, while

we automatically enforce a particular policy. Anyhow, the

degree of automation in our tool is much higher than in [9].

In [20], service primitives are not atomic events, but trans-

actions expected to run a special subprotocol for locking and

unlocking the virtual variables they access. The subprotocol

is not an integral part of the derived formal protocol speci�-

cation. None of the algorithms addresses the possibility that

a place forgets a service parameter or obtains its value with-

out explicitly communicating with a place currently knowing

it.

We allow only local choices, or choices based on the value

of some previously known service parameters. Some other

algorithms also support distributed choices. [21] allows only

a pair of places and no concurrency in the service, but dis-

tributed choices are implemented by hidden loops of protocol

exchanges. In [20], a distributed choice can be resolved di-

rectly by the transaction execution subprotocol, if we make

the starting transactions of alternatives adequately compete

on a variable. The distributed implementation of the LOTOS

disabling operator proposed in [23] suggests that a con
ict

can be e�ciently resolved by introducing adequate real-time

constraints, but [23] doesn't apply the idea to the implemen-

tation of the LOTOS choice operator.

We require that parallel service parts are independent from

each other, while some other algorithms [3,8,15] allow them

to synchronise on common service primitives. Among them,

only [15] is aware that the implementations of the synchro-

nised parts might collide on the asynchronous protocol chan-

nels they share [16].

We do not support implementation of the LOTOS

disabling operator. Such attempts have been made in

[3,8,15,23]. [23] resolves the distributed con
icts potentially

occurring upon disabling by real-time constraints. [3,15]

prevent the con
icts by requiring a high degree of centrali-

sation. [8] resorts to a simpli�ed dynamic semantics of the

operator. Moreover, the implementations of the operator

proposed in [3,8] are not correct in all contexts [16]. Perhaps

we could follow the ideas of [22], but they would probably be

di�cult to implement in the presence of service parameters

and mobility.

Some recent research [15,24] indicates that it would be

possible to decrease the number of the protocol messages

serving for inter-place synchronisation.

Like for example [3,8,20,23,24], we have already experi-

mented with automated protocol derivation for services with

process recursion [15]. In the presence of mobile users, and

particularly of virtual queues, it would probably require sev-

eral restrictions on the recursion type and a more advanced

scheme for recording the server state, than just the alt vari-

ables.

Like [6,9], we handle service parameters in a very abstract

way, referring only to the place and type of their access, and

not to their exact values. That could be amended, like for

example in [20,23].

It would be interesting to implement handling of real-time

11

requirements, like for example in [10,19,23].

9 Closing Remarks

As indicated in Section 7, derivation of protocols for ser-

vices supporting mobile users and distributed virtual queues

is a very complex task, usually too complex to be faultlessly

and quickly carried out by a human. On the other hand, the

task is logically very simple and can be easily mechanised.

Prolog has proven an excellent programming language for

the purpose, provided that the underlying machine is su�-

ciently powerful.

References

[1] G. von Bochmann and R. Gotzhein, Deriving protocol

speci�cations from service speci�cations, in: Proc. ACM

SIGCOMM'86 Symp. (Vermont, USA, 1986) 148{156.

[2] T. Bolognesi and E. Brinksma, Introduction to the ISO

speci�cation language LOTOS, Computer Networks and ISDN

Systems 14 (1987) 25{59.

[3] E. Brinksma and R. Langerak, Functionality decomposition

by compositional correctness preserving transformation, South

African Computer Journal 13 (1995) 2{13.

[4] P. van Eijk, Tools for LOTOS speci�cation style transformation,

in: S. T. Vong, ed., Formal Description Techniques II (North-

Holland, Amsterdam, 1990) 43{51.

[5] K. Go, A decomposition of a formal speci�cation: An

improved constraint-oriented method, IEEE Trans. on Software

Engineering 25 (1999) 258{273.

[6] R. Gotzhein and G. von Bochmann, Deriving protocol

speci�cations from service speci�cations including parameters,

ACM Trans. on Comput. Systems 8 (1990) 255{283.

[7] C. Kant, T. Higashino and G. von Bochmann, Deriving Protocol

Speci�cations Written in LOTOS, Research Report #805,

Universit�e de Montreal (1992).

[8] C. Kant, T. Higashino and G. von Bochmann, Deriving protocol

speci�cations from service speci�cations written in LOTOS,

Distributed Computing 10 (1996) 29{47.

[9] M. Kapus-Kolar, Deriving protocol speci�cations from

service speci�cations including parameters, Microprocessing &

Microprogramming 32 (1991) 731{738.

[10] M. Kapus-Kolar, Deriving protocol speci�cations from service

speci�cations with heterogeneous timing requirements, in: Proc.

3rd IEE Int. Conf. on Software Engineering for Real-Time

Systems (IEE, London, 1991) 266{270.

[11] M. Kapus-Kolar, Automated derivation of protocols handling

distributed virtual queues, in: Proc. 10th Int. Symp. on

Computer and Information Sciences (Ephesus, Izmir, Turkey,

1995).

[12] M. Kapus-Kolar, Deriving protocols for mobile service users,

Elektrotehni�ski vestnik 62 (1995) 299{307.

[13] M. Kapus-Kolar, A Prolog Tool for Protocol Derivation, Jo�zef

Stefan Institute Technical Report 7342 (1996).

[14] M. Kapus-Kolar, Employing Disruptions for More E�cient

Functionality Decomposition in LOTOS, Jo�zef Stefan Institute

Technical Report 7878 (1998).

[15] M. Kapus-Kolar, More e�cient functionality decomposition in

LOTOS, Informatica 23 (1999) 259{273.

[16] M. Kapus-Kolar, Comments on deriving protocol speci�cations

from service speci�cations written in LOTOS, Distributed

Computing 12 (1999) 175{177.

[17] M. Kapus-Kolar, J. Rugelj and M. Bona�c, Deriving protocol

speci�cations from service speci�cations, in: M. H. Hamza, ed.,

Proc. 9th IASTED Int. Symp. Applied Informatics (Acta Press,

Anaheim-Calgary-Z�urich, 1991) 375{378.

[18] F. Khendek, G. von Bochmann and C. Kant, New results on

deriving protocol speci�cations from service speci�cations, in:

Proc. ACM SIGCOMM'89 Symp. (1989) 136{145.

[19] A. Khoumsi, New results for deriving protocol speci�cations

from service speci�cations for real-time applications, in: Proc.

MCSEAI (Tunis, 1998).

[20] A. Khoumsi and G. von Bochmann, Protocol synthesis using basic

LOTOS and global variables, in: Proc. Int. Conf. on Networks

and Protocols (Tokyo, 1995) 126{133.

[21] R. Langerak, Decomposition of functionality: A correctness-

preserving LOTOS transformation, in: L. Logrippo, R. Probert

and H. Ural (eds.), Protocol Speci�cation, Testing, and

Veri�cation X (North-Holland, Amsterdam, 1990) 229{242.

[22] K. Naik, Z. Cheng and D. S. L. Wei, Distributed implementation

of the disabling operator in LOTOS, Information and Software

Technology 41 (1999) 123{130.

[23] A. Nakata, T. Higashino and K. Taniguchi, Protocol synthesis

from timed and structured speci�cations, in: Proc. Int. Conf. on

Networks and Protocols (Tokyo, 1995) 74{81.

[24] A. Nakata, T. Higashino and K. Taniguchi, Protocol synthesis

from context-free processes using event structures", in:

Proceedings of IEEE 5th Int. Workshop on Real-Time

Computing Systems and Applications (IEEE CS Press, 1998)

173{180.

[25] K. Saleh, Synthesis of communication protocols: An annotated

bibliography, Computer Communication Review 26 (1996) no.

5, 40{59.

12

