
Comments on deriving protocol specifications from service specifications

written in LOTOS

Monika Kapus-Kolar

Jožef Stefan Institute

POB 3000, SI-1001 Ljubljana, Slovenia

Fax: +386 61 1262 102

monika.kapus-kolar@ijs.si

Monika Kapus-Kolar received the B.S. degree in electrical engineering from the University of

Maribor, Slovenia, in 1981, and the M.S. and Ph.D. degrees in computer science from the

University of Ljubljana, Slovenia, in 1984 and 1989, respectively. Since 1981 she has been

with the Jožef Stefan Institute, Ljubljana, where she is currently a researcher at the

Department of Digital Communications and Networks. Her current research interests include

formal specification techniques and methods for development of distributed systems and

computer networks.

Comments on deriving protocol specifications from service specifications

written in LOTOS

Abstract: An algorithm by Kant, Higashino and Bochmann for service-based protocol

synthesis in the standard specification language LOTOS is discussed. It is demonstrated that

the transformations for distributed implementation of synchronised parallel execution and of

disabling are not correct in a general case.

Keywords: distributed service implementation, protocol synthesis, compositional correctness-

preserving transformation, LOTOS

1 Introduction

[3] proposes an algorithm for service-based protocol synthesis for a distributed server

consisting of an arbitrary finite number of protocol entities (PEs) pairwise communicating

over reliable, unbounded FIFO channels. The algorithm takes a specification of the expected

external behaviour of the server (the service), with each service action already allocated to

one of the PEs, and derives behaviours of individual PEs (the protocol) together implementing

the service. The specification language is Basic LOTOS [1].

The algorithm is compositional, i.e. if a service expression e is a composition of a set of

subexpressions e, Tp(e) - the mapping of e onto a PE p - is expressed in terms of Tp(e) for

each of the e, where implementation of each e uses an individual set of protocol messages.

Hence [3] actually proposes transformations for distributed implementation of individual

LOTOS behaviour composition operators.

In the present paper we report that two of the transformations are not correct in a general

case, i.e. they might generate a protocol with an unspecified reception or a deadlock. Section

2 discusses implementation of synchronised parallel execution, and Section 3 implementation

of disabling. Section 4 contains conclusions. It is expected that the reader is familiar with [3].

The notation used is also that of [3].

2 Problems with implementation of synchronised parallel execution

Let a server consist of PEs 1 and 2 and let

e  e1[b
2
]e2  (((a

1
;exit)(b

2
;exit))(c

2
;exit))[b

2
](d

1
;b

2
;exit)

be the behaviour that we are implementing. The protocol generated by the algorithm of [3]

would be of the form

T1(e)  T1(e1)T1(e2)  (a
1
;s2(1);exit)(d

1
;s2(2);exit)

T2(e)  T2(e1)[b
2
]T2(e2)  (b

2
;r1(1);c

2
;exit)[b

2
](r1(2);b

2
;exit)

where an "a
p
" identifies action a at PE p, an "sp(m)" transmission of protocol message m to p,

an "rp(m)" reception of m from p, and the protocol messages 1 and 2 respectively identify the

“” operator and the “;” operator connecting d
1
 and b

2
.

One of the possible runs of the distributed server is “a
1
;s2(1);d

1
;s2(2)”. After the actions,

the e1 part could execute b
2
, but that requires synchronisation with b

2
 in the e2 part, that is

guarded by a non-executable r1(2). For note that the e1 and the e2 part of the server use the

same protocol channel, where the message currently available for reception is 1, not 2. If the

capacity of the channel buffer is 1, as assumed in Section 5 of [3], the server blocks even

before s2(2). A solution would be to introduce, at least virtually, separate channels from PE 1

to PE 2 for each of the two server parts. Besides it seems that such problems never occur if

parallel service parts are executed independently (the case of pure interleaving).

3 Problems with implementation of disabling

Implementing an e of the form e1[e2, where e2 is supposed to be written in an action prefix

form and have a single starting participant (SP), [3] doesn’t require instantaneous disabling of

the e1 part by the e2 part of the server, for that is in a distributed system with asynchronous

internal communication generally impossible. Upon an initial action within the e2 part, a

protocol message is sent to all PEs to disable their e1 parts, but before receiving the message,

a recipient might execute some further actions within its e1 part.

For any PE p, Tp(e)(Tp(e1)Relp(e1))[Tp(e2), i.e. upon termination of the e1 part, a

protocol message is sent from every ending participant (EP) of e1 ([3] requires that the only

starting participant of e2 is one of them) to any PE in the server. The message is intended for

prevention of disabling after e1 terminates, though we accept that communication delays

might sometimes render the prevention unsuccessful.

However, the transformation has several problematic properties.

1) The start of Tp(e2) might prevent reception of some protocol message already sent to p

within the e1 part.

2) Similarly, a reception within Relp(e1) might be disruptable by Tp(e2).

3) It might happen that a non-starting participant p of e2 already terminates Tp(e1)Relp(e1)

and thereby Tp(e), while for the starting participant p of e2 Tp(e2) is still executable, so

that execution of the e2 part actually starts, but is subsequently blocked because of non-co-

operation of p.

To understand the first two problems, consider the following example: Let a server consist

of PEs 1 and 2 and let

e  e1[e2  (a
1
;((b

1
;exit)(c

2
;exit)))[(d

2
;((e

1
;exit)(f

2
;exit)))

be the behaviour that we are implementing. The protocol generated by the algorithm of [3]

could be of the form

T1(e)  (a
1
;s2(1);b

1
;((s2(2);exit)(r2(2);exit)))[(r2(3);e

1
;exit)

T2(e)  (r1(1);c
2
;((s1(2);exit)(r1(2);exit)))[(d

2
;s1(3);f

2
;exit)

The scenario “a
1
;s2(1);d

2
;…” renders r1(1) non-executable (the first problem), while

“a
1
;s2(1);r1(1);b

1
;s2(2);d

2
;…” renders r1(2) non-executable (the second problem).

The first problem can be avoided by requiring AP(e1)1 [2], where attribute AP lists all

the participants of a particular service part. Together with restrictions R2 and R3 in [3] that

implies p:AP(e1)SP(e2)EP(e){p} (localised decision-making) and also solves the

second problem:

1) Relp(e1) contains no reception.

2) At any other PE p, Relp(e1) is a reception from p, and Tp(e2) also starts by a reception

from p. As the two messages travel along the same FIFO channel, the message in Tp(e2)

never disrupts the message in Relp(e1) that can only be sent as the first of the two.

However, the third problem remains, as demonstrated below. Let a server consist of PEs 1 and

2 and let

e  e1[e2  (a
1
;exit)[(b

1
;c

2
;d

1
;exit)

be the behaviour that we are implementing. The protocol generated by the algorithm of [3]

could be of the form

T1(e)  (a
1
;s2(1);exit)[(b

1
;s2(2);r2(3);d

1
;exit)

T2(e)  (r1(1);exit)[(r1(2);c
2
;s1(3);exit)

If e is followed by some other service part, exit of any Tp(e) (below denoted as “exit
p
”) is a

local matter of p, thus the following scenario is executable: “a
1
;s2(1);r1(1);exit

2
;b

1
;s2(2)”. We

see that PE 2 receives message 1, indicating that e2 will not be activated, and terminates.

However, exit
1
 that should follow the transmission of the message is disrupted by activation

of T1(e2), resulting in a deadlock because of non-co-operation of PE 2 in the e2 part. The

deadlock even occurs if the capacity of the channel buffer is 1, as assumed in Section 5 of [3].

 Obviously for the decision-making p it is not acceptable to have Relp(e1) on the left side

of the “[” operator. That is avoided in [2], where a solution is given for two-party systems

with synchronous channels, but probably also works for FIFO channels. For the last example,

a protocol in lines with [2] would be

T1(e)  ((a
1
;exit)[(b

1
;s2(2);r2(3);d

1
;exit))(s2(1);exit)

T2(e)  (r1(1);exit)[](r1(2);c
2
;s1(3);r1(1);exit)

i.e. the decision-making PE 1 in all cases first terminates (T1(e1)[T1(e2)) and only then

proceeds to informing PE 2.

But even that solution is not satisfactory in all contexts. Suppose that the service part e

runs in parallel with another service part e, to form an e as follows:

e  e[a
1
,b

1
]e  ((a

1
;exit)[(b

1
;c

2
;d

1
;exit))[a

1
,b

1
](a

1
;b

1
;c

2
;d

1
;exit)

The service is non-blocking and its only executable scenario is “a
1
;b

1
;c

2
;d

1
;exit”, for an exit

immediately after a
1
 in the e1 part of e would require synchronisation with an exit in the e

part, that is at that point of service execution not available. The derived protocol could be

T1(e)  T1(e)[a
1
,b

1
]T1(e)

 (((a
1
;exit)[(b

1
;s2(2);r2(3);d

1
;exit))(s2(1);exit))[a

1
,b

1
](a

1
;b

1
;s2(4);r2(5);d

1
;exit)

T2(e)  T2(e)T2(e)

 ((r1(1);exit)[](r1(2);c
2
;s1(3);r1(1);exit))(r1(4);c

2
;s1(5);exit)

Suppose that the distributed implementations of the two parallel service parts employ separate

sets of protocol channels, to avoid the problems discussed in Section 2. There is a scenario

“a
1
;s2(1); r1(1)” leading to a deadlock caused by the fact that the e part decides on its own to

terminate immediately after a
1
, refusing to participate in b

1
. The source of the problem is the

protocol message 1 sent upon the termination of the e1 part of e. If no such message was sent,

T1(e) would be of the form (T1(e1)[T1(e2)), and hence its termination properly synchronised

with termination of T1(e).

 [4] identifies the above problem as the problem of reporting terminations that are both

decision-making for a particular service part e and synchronised with the environment of e. It

has been demonstrated (also for the multi-party case) that such reporting can often be avoided,

thereby preventing errors of the above type.

4 Discussion and conclusions

[3] is an enhancement of the protocol derivation algorithm proposed in [5] by transformations

for distributed implementation of synchronised parallel execution and of disabling.

Unfortunately we have been able to show that none of the two transformations is correct in a

general case, though the first one becomes nonproblematic if the underlying communication

service is slightly adapted.

For implementation of disabling, alternative solutions are given in [2,4], but only for

entirely local decision-making and, in the case of [2], for two-party systems only. Besides, the

solution in [2] might be incorrect if termination of the considered service part e requires

synchronisation with the environment of e.

The example of [6] gives hope that it would also be possible to precisely handle distributed

decision-making, but then the protocol derivation transformation would be much less

compositional, and consequently difficult to understand and to implement. Hence we

conclude that the idea of [3] to give the disabling operator a semantics that is less rigorous,

but more suitable for distributed systems, is good and worth pursuing, however, the proposed

protocol derivation transformation should be amended to avoid the potential unspecified

receptions and deadlocks pointed out above or, if complete correction is not possible, the

limits of its applicability should be more clearly stated.

References

1. Bolognesi T, Brinksma E: Introduction to the ISO specification language LOTOS. Comput

Networks ISDN Syst 14(1):25-59 (1987)

2. Brinksma E, Langerak R: Functionality decomposition by compositional correctness

preserving transformation. SACJ/SART 13:2-13 (1995)

3. Kant C, Higashino T, Bochmann Gv: Deriving protocol specifications from service

specifications written in LOTOS. Distrib Comput 10:29-47 (1996)

4. Kapus-Kolar M: Employing disruptions for more efficient functionality decomposition in

LOTOS. Submitted for publication; an extended version available as Jožef Stefan Institute

Technical Report 7878, 1998; a preliminary version in Proc. EUROMICRO 97, IEEE

Computer Society, Los Alamitos Washington Brussels Tokyo 1997, pp 464-471

5. Khendek F, Bochmann Gv, Kant C: New results on deriving protocol specifications from

service specifications. In Proc. ACM SIGCOMM’89, pp 136-145, 1989

6. Langerak R: Decomposition of functionality: a correctness-preserving LOTOS

transformation. In: Logrippo L, Probert RL, Ural H (eds) Protocol specification, testing,

and verification, X. North-Holland, Amsterdam NewYork Oxford Tokyo 1990, pp 229-242

