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Abstract: This paper explores an application of a novel mesh-free Local Ra-
dial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] in
solution of coupled heat transfer and fluid flow problems with solid-liquid phase
change. The melting/freezing of a pure substance is solved in primitive variables
on a fixed grid with convection suppression, proportional to the amount of the solid
fraction. The involved temperature, velocity and pressure fields are represented on
overlapping sub-domains through collocation by using multiquadrics Radial Basis
Functions (RBF). The involved first and second derivatives of the fields are cal-
culated from the respective derivatives of the RBF’s. The energy and momentum
equations are solved through explicit time stepping. The pressure-velocity cou-
pling is calculated iteratively, with pressure correction, predicted from the local
continuity equation violation [Kosec and Šarler (2008a)]. The solution procedure
is assessed on the classical rectangular 2D cavity melting benchmark test [Gobin
and Le Quéré (2000)] which encompasses a low Prandtl 0.02 and Stefan number
0.01 situation (metal) with Rayleigh numbers 2.51e4 and 2.5e5, and a high Prandtl
50 and Stefan number 0.1 situation (paraffin wax) with Rayleigh numbers 10e7 and
10e8. The results of the mesh free simulation of the related four cases have been
compared with the results of a spectra of different numerical methods [Bertrand,
Binet, Combeau, Couturier, Delannoy, Gobin, Lacroix, Quéré, Médale, Mencinger,
Sadat and Vieira (1998)] in terms of liquid-solid interphase position at a fixed time,
and time evolution of the average hot side Nusselt number and average cavity liquid
fraction. The results show good agreement with other approaches in terms of the
dynamics of the interphase boundary and complicated flow structure, despite the
simplest LRBFCM implementation. The advantages of the method are simplicity,
accuracy, and straightforward applicability in non-uniform node arrangements.
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1 Introduction

The computational modeling of systems with solid and liquid phase has become
a highly popular research subject due to its pronounced influence in better un-
derstanding of nature as well as in the development of the advanced technolo-
gies. Melting of the polar ice caps and manufacturing of nano-materials are two
typical contemporary examples. The related historical, physical and computa-
tional aspects are described in monographs [Alexiades and Solomon (1993), Crank
(1999), Dantzig and Rappaz (2009)] and review articles [Yao and Prusa (1989),
Fukusako and Yamada (1993), Šarler (1995), Prescott and Incropera (1996), Ret-
tenmayr (2009)]. The classical numerical methods such as the Finite Volume
Method (FVM) or the Finite Element Method (FEM) are used for solving these
problems in the majority of the simulations [Dantzig (1989), Viswanath and Jaluria
(1993)]. Despite the powerful features of these methods, there are often substantial
difficulties in applying them to realistic, geometrically complex three-dimensional
transient problems. A common drawback of the mentioned methods is the need to
create a polygonisation, either in the domain and/or on its boundary. This type of
meshing is often the most time consuming part of the solution process and is far
from being fully automated. The numerical simulations of engineering solid liquid
systems are mainly based on the averaged or mixture equations, defined on the en-
tire solid and liquid domain, with the interphase conditions, incorporated into the
non-linearity of the governing equations. The proper numerical solution of these
equations requires adaptation of the discretization in the vicinity of the moving
boundary. The principal bottleneck in these types of numerical methods is the time
consuming re-meshing of the evolving interphase boundaries and phase domains.
The polygonisation problem is thus even more pronounced. The application of
the alternative numerical methods to FVM and FEM, such as the mesh reduction
[Šarler and Kuhn (1998b), Šarler and Kuhn (1998a), Šarler and Kuhn (1999)] or
meshless [Šarler (2002)] methods, for phase change problems is relatively rare at
the present.

In order to understand and numerically model the complicated phenomena that ac-
company dissolution/solidification of complex engineering alloys, a much simpler
sub-system of melting/freezing of a pure substance, driven by natural convection,
has to be studied first. Analytical solutions for melting of the pure substances in the
1D domain (Stefan’s problem), where the fluid flow can be induced only by the den-
sity change due to phase change are quite well known [Šarler (1995)]. Inclusion
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of the natural convection and therefore the complex flow structures in 2D makes
the “simple” melting/freezing problem not amenable to closed form solution. The
numerical simulation is required to obtain the behavior of such systems. Due to
the complexity of the problem, neither a commonly agreed quantitative experimen-
tal data nor the commonly agreed numerical benchmark solutions are known at
the present, despite the many attempts: [Jany and Bejan (1987), Viskanta (1988),
Bertrand, Binet, Combeau, Couturier, Delannoy, Gobin, Lacroix, Quéré, Médale,
Mencinger, Sadat and Vieira (1998), Le Quéré and Gobin (1999), Stella and Giangi
(2000), Mencinger (2003), Hannoun, Alexiades and Zee Mai (2003)]. The spec-
trum of differing experimental data and differing simulations for the same melting
systems (usually melting of tin or gallium) is enormous. It was recently even not
known if the correct flow structure in certain melting systems is monocellular or
multicellular [Hannoun, Alexiades and Zee Mai (2003)].

The focus in this work is to demonstrate the applicability of the recently devel-
oped mesh-free LRBFCM in melting/freezing problems and the enlargement of the
spectrum of simulations of such phase change problems in the range of parameters,
previously not yet published. The solution is in mesh-free methods represented on
the arbitrarily distributed set of nodes without any additional topological relations
between them. These mesh-free methods represent a promising technique to avoid
the polygonisation problems [Kansa (1990a), Kansa (1990b), Chen (2002), Atluri
and Shen (2002b), Atluri and Shen (2002a), Liu (2003), Atluri (2004), Liu and Gu
(2005)]. This paper is focused on one of the simplest class of mesh-free methods
in development today, the Radial Basis Function [Buhmann (2000)] Collocation
Methods (RBFCM) [Šarler (2007)].

The method has been applied in different scientific and engineering problems from
heat transport [Zerroukat, Power and Chen (1998)] and convective diffusive prob-
lems [Šarler, Perko and Chen (2004)] to the fluid flow problems [Šarler, Perko,
Chen and Kuhn (2001)], phase change phenomena [Kovačević, Poredoš and Šarler
(2003 )], wave equations [Haq, ul-Islam and Arshed (2008)] and solid mechanics
problems [Mai-Duy, Khennane and Tran-Cong (2007), Le, Mai-Duy, Tran-Cong
and Baker (2008)], as well. The method has been formulated by integrating the par-
tial derivatives [Mai-Duy and Tran-Cong (2003)] and applied to transient problems
[Mai-Cao and Tran-Cong (2005)], fluid flow [Mai-Duy, Mai-Cao and Tran-Cong
(2007)] and moving boundaries [Mai-Cao and Tran-Cong (2008)]. Different im-
provements have been applied such as the advanced Neumann boundary conditions
treatment [Libre, Emdadi, Kansa, Rahimian and Shekarchi (2008)].

The main drawback of this global method lies in the need for solving the global ma-
trices in order to solve the problem. The condition number of the global matrix is
highly sensitive to the shape of the basis functions and the nodes distribution. The
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problem becomes important even with small number of nodes (≈1000). The miti-
gation of the related problem has been attempted by domain decomposition [Mai-
Duy and Tran-Cong (2002)], multi-grid approach and compactly supported RBFs
[Chen, Ganesh, Golberg and Cheng (2002)] which all represent a substantial com-
plication of the original simple method. The radial basis functions have been first
put into context of porous media flow by [Šarler, Gobin, Goyeau, Perko and Power
(2000)] where the natural convection problem in Darcy porous media, and later
Darcy-Brinkman porous media [Šarler, Perko, Gobin, Goyeau and Power (2004)]
have been solved by the dual reciprocity boundary element method (DRBEM).
This method belongs to the semi-mesh-free methods, because the domain fields are
approximated by the global interpolation with the RBFs and the boundary fields
by the boundary elements (polygons). The truly mesh-free RBFCM has been for
the first time used for solution of Darcy porous media in [Šarler, Perko and Chen
(2004)]. A substantial breakthrough in the development of the RBFCM was its
local formulation, LRBFCM. Lee at al. [Lee, Liu and Fan (2003)] demonstrated
that the local formulation does not substantially degrade the accuracy with respect
to the global one. On the other hand, it is much less sensitive to the choice of the
RBF shape. The local RBFCM has been previously developed for diffusion prob-
lems [Šarler and Vertnik (2006)], convection-diffusion solid-liquid phase change
problems [Vertnik and Šarler (2006)] and subsequently successfully applied in in-
dustrial process of direct chill casting [Vertnik, Založnik and Šarler (2006)]. The
algorithm was tested on the classical De Vahl Davis natural convection problem
[Kosec and Šarler (2008a)] and the natural convection problem [Kosec and Šarler
(2008b)] in Darcy porous media. The engineering k-epsilon turbulence modeling
was implemented by [Vertnik and Šarler (2009)]. The LRBFCM represents a local
variant of the already developed global RBFCM (or Kansa method) for thermo-
fluid problems [Šarler, Perko, Chen and Kuhn (2001), Šarler (2005)]. An improve-
ment of the method by adding the characteristics of he solution has been proposed
[Stevens, Power, Lees and Morvan (2009)].

The present paper extends the spectra of physical problems, solved by LRBFCM, to
thermo-fluid problems with phase change. The paper is structured in the following
way: The governing set of mass, energy and momentum equations are given first.
Special attention is focused on the description of the phase-change of pure sub-
stance. The solution procedure is described in time-discretised setting, followed by
the details of the LRBFCM and numerical implementation. The performance of
the developed algorithm is assessed on the melting of low Prandtl number material
(tin), illustrating melting of metals, and high Prandtl number material (paraffin),
illustrating the melting of organic materials. The simulated observation time of
melting process is longer than previously published attempts. Due to the lack of
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a reliable fine-grid reference benchmark solution for melting, additional tests are
first done on a more simple system. This involves natural convection in a tall cavity
with width/height aspect ratio 1/4 filled with low Pr number fluid (situation, typi-
cal for the early stage of melting of metals). The obtained LRBFCM multicellular
flow results of the tall cavity case are compared with the already known reliable
(discretization independent) FVM and FEM solutions, and the obtained LRBFCM
results of the melting cases are compared with the spectra of the results of the
Gobin and Le Quéré benchmark. The assessment of the results is followed by the
conclusions and further research directions.

2 Governing equations

Consider a connected fixed domain Ω with boundary Γ occupied with the solid-
liquid phase change material. The material is considered pure, i.e. phase-change
occurs at a fixed sharp melting/freezing temperature Tm. All material properties
are considered to be constant and equal in both phases. The main goal of this
paper is the calculation of the transient temperature, velocity and pressure fields
in the system by the LRBFCM. These fields are governed by the coupled mass,
momentum and energy equations [Voller, Mouchmnov and Cross (2002)]. The
energy transport is described through equation

∂H
∂ t

+∇ · (Hv) = ∇ · (λ∇T ) (1)

where λ , H, T and v stand for time, density, thermal conductivity, enthalpy, tem-
perature and velocity, respectively. The heat flux due to phase change is embedded
into the definition of the enthalpy. The enthalpy dependence on the liquid fraction
and the temperature is constituted as

H(T ) = cpT + flL (2)

where cp, fl and L stand for specific heat, liquid fraction and latent heat, respec-
tively. The enthalpy thus has a jump L at the melting/freezing temperature, i.e.

fl(T ) =

{
T ≥ Tm; 1
T < Tm; 0

(3)

A narrow melting/freezing interval is artificially introduced instead of (3) in order
to avoid the numerical instabilities. The liquid fraction is therefore constituted as

fl(T ) =


T ≥ Tm +TL; 1
T < Tm; 0
Tm +TL > T ≥ Tm; T −Tm/TL

(4)
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with Tm standing for melting/freezing interval. The equation (4) collapses to the
equation (3) in case TL = 0.The results obtained with such phase-change inter-
valsmoothing are physically reasonable as long as theinterval is small enough [Dal-
huijsen and Segal (1986)]. The fluid flow is described by Navier-Stokes equations-
for mass and momentum conservation.

∇ ·v = 0 (5)

∂ (ρv)
∂ t

+∇ · (ρvv) =−∇P+∇ · (µ∇v)+F (6)

with P, µ , ρ and F standing for pressure, viscosity, and body force due to gravita-
tional acceleration, respectively. The standard Boussinesq approximation is adopted
in order to model the body force

F = ρ [1−βB(T −Tref)]g (7)

with g, βB and Tref standing for gravitational acceleration, coefficient of thermal
expansion and reference temperature for density. The artificially introduced phase-
change interval TL transforms the sharp phase change interphase boundary into
an artificial mushy region. This region is from the fluid flow perspective usu-
ally modeled as porous media with the addition of Darcy or/and Brinkman and/or
Forcheimer terms. We do not expect extensive mushy region in our case, since TL

is small. Therefore, the mushy region “porous media” is constituted in a most sim-
ple manner by suppressing the velocity field in the mushy region. This is achieved
by multiplying it with the liquid fraction. This ensures proper limiting physical
behaviour of velocity field (0 in the solid phase and v in the liquid phase).

We seek the solution of the governing equations at time t = t0 + ∆t, where t0 rep-
resents initial time and ∆t positive time increment, by assuming known initial tem-
perature, pressure and velocity fields at time t = t0: T = T0; P = P0; v = v0, and
known Dirichlet and Neumann boundary conditions for temperature

T = T D
Γ ; p ∈ Γ

D, t > t0 (8)

∂T/∂nΓ = T N
Γ ; p ∈ Γ

N , t > t0 (9)

at the Dirichlet and Neumann parts of the boundary Γ∪ΓD + ΓN and the no-slip
and no-penetration Dirichlet boundary conditions for velocity

v = vD = 0, p ∈ Γ, t ≥ t0 (10)

where p = ipx + jpy stands for position vector with Cartesian base vectors i and j,
and Cartesian spatial coordinates px and py.



Solution of Phase Change Problems 197

3 Solution procedure

The solution procedure is represented in three entities. In the first one, the ma-
nipulations of the time-discretized governing equations are made. In the second
one, the meshless space discretization is discussed. In the last one, the numerical
implementation issues are elaborated.

3.1 Time discretization

The explicit time discretization is adopted to cope with the transience terms in mo-
mentum and energy equations. The Navier-Stokes equations (5) and (6) are solved
iteratively by completely local pressure-velocity coupling, based on the pressure
correction, predicted from velocity divergence (mass conservation violation).

In the first step the velocity is estimated from the discretized form of equation (6)

v̂ = v0 +
∆t
ρ

[−∇P0 +∇ · (µ∇v0)+F0−∇ · (ρv0v0)] (11)

where v̂ denotes velocity at time t0 +∆t, v0, P0 denote velocity and pressure at time
t0 and ∆t stands for the time-step length. The calculated velocity v̂ does not satisfy
the mass continuity equation (5) in general. In order to couple mass continuity
equation with the momentum equation, an iteration process is used where in the
first iteration (m = 1) the velocity and the pressure are set to

vm = v̂ (12)

Pm = P0 (13)

where m stands for iteration index. To project the velocity into the divergence free
space, a velocity correction v̂ is added

∇ · (vm + v̂) = 0 → ∇ ·vm =−∇ · v̂ (14)

The velocity correction is assumed to be affected by the pressure correction only

v̂ =−∆t
ρ

∇P̂ (15)

where P̂ stands for the pressure correction. The pressure correction Poisson equa-
tion is constructed by applying the divergence over equation (15)

∇
2P̂ =

ρ

∆t
∇ ·vm (16)
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Figure 1: The considered physical system schematics

Instead of solving the equation (16) globally [Divo and Kassab (2007)] with the
appropriate pressure correction boundary conditions, the pressure correction is as-
sumed to be proportional to the Laplace of pressure correction. In the second step,
the pressure correction is therefore calculated as

P̂≈ `2
∇

2P̂ = `2 ρ

∆t
∇ ·vm (17)

where ` stands for the characteristic length. The assumption (17) enables [Kosec
and Šarler (2008a)] for solving the problem completely locally. In the third step,
the intermediate pressure and velocity are corrected as

Pm+1 = Pm +β P̂ (18)

vm+1 = vm−β
∆t
ρ

∇P̂ (19)

where β stands for a suitable relaxation parameter. If the criteria

∇ ·vm+1 < εv (20)

is not met, than the iteration returns back to the equation (12), else the pressure-
velocity iteration is completed and the calculation proceeds to the next step.
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The energy equation (1) is solved in the fourth step

H(T ) = H(T0)+∆t [∇ · (λ∇T0)−∇ · (H(T0)v0)] (21)

where T0 and T denote temperature at time t0 and t0 +∆t. In the fifth step, the liquid
fraction is updated by equation (2). After solution of the new enthalpy field, the
temperature and the liquid fraction are updated

T = T (H) (22)

fl = fl(T ) (23)

Before attempting the next time step, the velocity field is in the sixth step multiplied
with the liquid fraction in order to disengage the convection in the solid phase

v = flv (24)

3.2 Meshless spatial discretization

The pressure, velocity and temperature fields are interpolated on the coincident
grid points by RBFs [Buhmann (2000)]. The calculation domain is divided into
overlapping sub-domains (Figure 2). An arbitrary scalar function θ is represented
on each of the local sub-domains as

θ (p)≈
N

∑
n=1

αnRn (p) (25)

with p, Rn, αn and N standing for the RBF, the collocation coefficient and the
number of the collocation points, respectively. Hardy’s multiquadrics RBF’s are
defined as

Rn (p) =
√

r2
n (p)+ c2r2

0; r2
n = (p−pn) · (p−pn) (26)

where c represents a dimensionless shape parameter. The scaling parameter r2
0 is

set to the maximum nodal distance of the sub-domain. The coefficients αn are
obtained from the collocation condition which implies the exact satisfaction of the
equation (25) in the nodal points. In case the number of the nodes is the same as
the number of the terms in the expansion (25), the system simplifies to

θ (pi) = θi =
N

∑
n=1

αnRn (pi) (27)

Rααα = θθθ (28)
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where the matrix elements Rni = Rn(pi). Solution of the linear system of equations
(28) provides the collocation coefficients αn and therefore the spatial derivatives of
the function θ can easily be obtained through derivation of the equation (25)

∂

∂ pσ

θ (p)≈
N

∑
n=1

αn
∂

∂ pσ

Rn (p) (29)

∂ 2

∂ 2 pσ

θ (p)≈
N

∑
n=1

αn
∂ 2

∂ 2 pσ

Rn (p) (30)

where pσ=x,y. All necessary derivatives to construct the involved divergence, gra-
dient and Laplace operators can be calculated through equations (29) and (30). All
matrix elements Rni need to be evaluated only once before time-stepping begins.

 
Figure 2: The discretization schematics

Only the simplest sub-domains with five equidistant points are used in the present
paper. The described collocation method and five nodded sub-domains are schemat-
ically represented in Figure 2. Such five nodded collocation sub-domains are used
to approximate the first and the second spatial derivatives in the central sub-domain
nodes. The derivative instead of the function value is prescribed at the boundary
collocation points with the Neumann boundary conditions. The Equation (27) is in
such Neumann points pi replaced by

∂

∂ pσ

θ (pi) =
N

∑
n=1

αn
∂

∂ pσ

Rn (pi) (31)

3.3 Numerical implementation

The represented algorithm is completely explicit and local, including also the pres-
sure velocity coupling, and therefore it can be straightforward efficiently paral-
lelized. All routines have been written in the C++ language with LAPACK based
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IMKL numerical library included. The parallelization is implemented with OpenMP
protocol.

4 Numerical examples

Two physically different test case families are computed and discussed in order to
assess the behavior of the method. First, the natural convection in a tall cavity and
second, melting driven by natural convection. In both cases, a rectangular cavity
is considered. The left and the right walls are set to different temperatures while
the top and the bottom walls are insulated in both cases. All walls are solid and
impermeable.

All numerical examples that follow can be characterized by Aspect ratio, Prandtl,
Rayleigh and Stefan numbers, defined as

A = W/H (32)

Pr =
µcp

λ
(33)

Ra =
gβ∆T L3ρ2cp

λ µ
(34)

Ste =
∆T cp

L
(35)

where ∆T stands for the temperature difference, and W and H for cavity width and
height. In order to consistently observe the time evolution of the system, dimen-
sionless Fourier time is used on all figures where the time transients are presented

Fo =
λ

ρcpH2 t (36)

Dimensionless spatial coordinates, velocities and temperature are introduced as
well

x =
px

W
, y =

py

W

vx =
v̄xWρcp

λ
, vy =

v̄yWρcp

λ

Φ =
T −TCOLD

THOT −TCOLD

(37)

where px, py, T , v̄x and v̄y stand for dimensional spatial coordinates, temperature
and velocity components used in section Governing equations.(1) The Nusselt num-
ber is defined as

Nu(x,y) =−∂T (x,y)
∂x

+ vx(x,y)T (x,y) (38)
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The Nusselt number is calculated locally on a support of five collocation nodes,
similar like other derivatives in the present work.

4.1 Natural convection in a tall cavity

A differentially heated closed cavity with A = 1/4, filled with Al-4.5%Cu like melt
has been taken as a first benchmark problem. The initial temperature and velocity
are set to zero. No phase change is assumed in this test case. The problem is addi-
tionally characterized by dimensionless numbers Pr = 0.0137 and Ra = 2.81 ·105.
The case is especially interesting due to its oscillating “steady-state”‘ which is a
result of a balance between the buoyancy and the shear forces (Figure 5). This case
is also relevant for fluid flow behavior in initial stages of melting of metals, since it
has a similar geometrical arrangement (compare Figure 5 and Figure 19). This test
case has been already computed by two different numerical methods [Založnik, Xin
and Šarler (2005)] (spectral FEM and FVM) with good mutual agreement. Respec-
tively, these solutions can be used for assessment of the present LRBFCM as well.
The agreement between the present method and the other two numerical methods
is excellent (Figure 4) despite entirely different space and time discretizations em-
ployed. The agreement of the system dynamics between the three methods used
infers a high level of confidence in the present novel meshless method.

 
Figure 3: Hot-side average Nusselt
number time development comparison:
entire transient

 
Figure 4: Hot-side average Nusselt
number time development comparison:
early stage detail
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 Figure 5: The early stage time development (first three figures) and “steady-state”

oscillations (last three figures) of a tall cavity natural convection. Temperature
contours are plotted as solid lines with contour step 0.1 and streamlines are plotted
as dotted lines with a contour step 0.2

4.2 Melting benchmark test

The melting driven by natural convection, with differentially heated vertical walls
and adiabatic horizontal walls, is solved next. The initial temperature is set to the
Tm + TL and the whole domain is initially in the solid phase. The north and the
south walls are insulated (Neumann boundary condition), the west wall is set to the
temperature above the melting temperature and the east wall is set to the Tm + TL.
This test was first proposed by Le Quéré and Gobin [Gobin and Le Quéré (2000)].
Four different cases are calculated, two with low Prandtl and Stefan numbers and
two with high Prandtl and Stefan numbers:

Table 1: Definition of melting cases

Pr Ste Ra
Case 1 0.02 0.01 2.5e4
Case 2 0.02 0.01 2.5e5
Case 3 50 0.1 1.0e7
Case 4 50 0.1 1.0e8

The results are represented in terms of liquid-solid interphase boundary position,
average hot-side Nusselt number time development, average liquid fraction time
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development (Figures 6-Figure 19). Our results of the interphase boundary po-
sition are superimposed on the resuls of several other authors [Bertrand, Binet,
Combeau, Couturier, Delannoy, Gobin, Lacroix, Quéré, Médale, Mencinger, Sadat
and Vieira (1998)] (Figures 6-9) that participated in the Gobin Le Quéré bench-
mark test. The calculated interphase boundary position is within the dispersion of
the results of other authors in all cases. The convergence of our method is checked
on the melting Case 1. Several node distribution densities have been tested. It is ev-
ident from the Figure 11 that discretization under 21x21 nodes gives unreasonable
results. From plots with finer discretizations (melting front - Figure 10 and temper-
ature cross-sections at x=0.2 - Figure 11) 51x51, 101x101, 151x151 and 201x201,
the convergence of the method is demonstrated. Both, melting front positions and
temperature cross-sections, behave convergent. Additional convergence study has
been done, where the mean temperature, and the mean melting front position are
plotted with respect to the node distribution density (Figure 18).

 
Figure 6: The melting front position at
Fo=10, Case 1

 
Figure 7: The melting front position at
Fo=10, Case 2

4.3 Numerical parameters

The shape parameter C=30 and the five nodded overlapping sub-domain strategy
has been used in all calculations. The pressure-velocity relaxation parameter is set
to the same numerical value as time step for all cases and the characteristic length
is set to the cavity width, other numerical parameters are stated in Table 3.
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Figure 8: The melting front position for
at Fo=0.1, Case 3

 
Figure 9: The melting front position at
Fo=0.1, Case 4

 
Figure 10: Discretization influence on
the melting front position at Fo=10,
Case 1

 
Figure 11: Discretization influence on
the cross-section temperatures (x=0.2)
at Fo=10, Case 1
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Figure 12: Discretization influence on
the cross-section of x velocity compo-
nent (x=0.2) at time Fo=10, Case 1

 
Figure 13: Discretization influence on
the cross-section of y velocity compo-
nent (y=0.5) at Fo=10, Case 1

 
 Figure 14: Hot-side average Nusselt number and average liquid fraction develop-

ment as a function of Fo, Case 1
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 Figure 15: Hot-side average Nusselt number and average liquid fraction develop-

ment as a function of Fo, Case 2

 
 Figure 16: Hot-side average Nusselt number and average liquid fraction develop-

ment as a function of Fo, Case 3
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 Figure 17: Hot-side average Nusselt number and average liquid fraction time de-

velopment, Case 4

 
 Figure 18: Average temperature (left) and mean melting front position (right) with

respect to the discretization, Case 1
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 Figure 19: The early stage time development of temperature contours (solid line,

step 0.1) and streamlines (dotted line, step 0.2), Case 2

Table 2: Interphase boundary positions (x,y) at Fo=10 for cases 1 and 2 and at
Fo=0.1 for cases 3 and 4

y Case 1 Case 2 Case 3 Case 4
0.0 0.4398 0.4270 0.0646 0.1568
0.1 0.4425 0.4339 0.0991 0.1793
0.2 0.4454 0.4583 0.1213 0.1983
0.3 0.4446 0.5272 0.1381 0.2146
0.4 0.4476 0.5926 0.1558 0.2283
0.5 0.4662 0.6403 0.1743 0.2403
0.6 0.4880 0.6743 0.1961 0.2534
0.7 0.4994 0.6919 0.2244 0.4390
0.8 0.4999 0.6919 0.2744 0.5662
0.9 0.4968 0.6755 0.366 0.6497
1.0 0.4955 0.6577 0.4156 0.7096

4.4 Mass conservation

Additional test is represented in order to evaluate the performance of the pressure-
velocity coupling. The error of the pressure-velocity coupling algorithm propagates
through the artificial mass loss due to the deviation from the divergence free veloc-
ity. The numerical mass leakage is computed as [Kosec and Šarler (2008a)]

η =−∆Fo
J

∑
j=0

1
N

N

∑
i=1

∇ ·vi( j∆Fo) (39)
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Table 3: Numerical parameters

benchmark discretization Fo time step (∆Fo) TL/TM εV

Tall cavity 25x100 5.0e-6 n.a. 0.10
Tall cavity 50x200 2.5e-6 n.a. 0.10
Tall cavity 100x400 5.0e-7 n.a. 0.10

Case 1 51x51 1.0e-5 0.01 0.10
Case 1 101x101 1.0e-5 0.01 0.10
Case 1 151x151 1.0e-5 0.01 0.10
Case 1 201x201 5.0e-6 0.01 0.10
Case 2 101x101 5.0e-6 0.05 1.00
Case 3 101x101 1.0e-4 0.01 0.01
Case 4 101x101 1.0e-5 0.05 1.00

where N stands for the number of the nodes and J = Fo/∆Fo for the number of the
time steps. The results of the mass conservation are given in Table 4.

Table 4: Mass violation time integration

benchmark Fo η

Tall Cavity 0.25 1.74e-6
Case 1 10 8.02e-6
Case 2 10 2.58e-5
Case 3 0.1 1.31e-8
Case 4 0.1 1.92e-7

4.5 Discussion

The oscillations of flow structure and Nusselt number in the Case 2 were already
reported by Mencinger [Mencinger (2003)]. A detailed discussion on the parameter
range with appearance of the flow physics based oscillations can be found in the
work [Hannoun, Alexiades and Zee Mai (2003)]. The behavior of the results of
other three cases is in good agreement with the already known solutions [Gobin and
Le Quéré (2000)]. There is a bit higher deviance in the Case 4, still the deviation of
other authors for that case is very high and it is difficult to conclude which solution
is more close to the correct solution at the present. The results of natural convection
in a tall cavity are in exceptionally good agreement with the reference simulations.
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5 Conclusions

The use of the LRBFCM in the thermo-fluid problems with phase change has been
explored in the present paper. The completely local pressure-velocity coupling
makes the algorithm entirely local. The straightforward implementation of the
algorithm is simple and easy to upgrade to more complex physical and/or geo-
metrical situations. The represented results agree with other authors within the
expected dispersion. The agreement of the results and the excellent performance
in the additional test with the high cavity low-Pr fluid encourages us to believe that
the algorithm is suitable and reliable for solving the thermo-fluids with included
phase change problems. Our future work will be focused on implementing the au-
tomatic local grid refinement with shape parameter optimization algorithm [Perko
and Šarler (2007), Bourantas, Skouras and Nikiforidis (2009)] and inclusion of
more complex physics (species transport and phase change of alloys).

Acknowledgement: The authors would like to express their gratitude to Slove-
nian Research Agency for support in the framework of the projects Young Re-
searcher Programme 1000-06-310232 (G.K.), and Multiscale Modelling of Liquid-
Solid Systems, J2-0099 (B.Š.).
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