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A B S T R A C T

Electrocardiogram (ECG) recordings are indicative for the state of the human heart. Automatic analysis of
these recordings can be performed using various computational methods from the areas of signal processing
and machine learning. In addition to the 12-lead ECG devices and the Holter monitor, as currently the most
widely used ECG screening methods in clinical practice, ECG recordings are recently often acquired with small
novel wireless ECG body sensors. These novel types of body sensors allow for ECG monitoring and analysis to be
used for a much broader array of applications than only diagnosing cardiovascular disorders. The new types of
ECG measuring devices, as well as their broader and more frequent use, pose new challenges in the processing
and analysis of ECG, and furthermore, raise the need for automatic, low-cost, real-time, and efficient ECG
monitoring that can be used at home or under ambulatory settings alike. This paper provides a comprehensive
survey on the variety of both ECG data and computational methods in various applications: morphological
and rhythmic arrhythmia detection, signal quality assessment, biometric identification, respiration estimation,
fetal ECG extraction, and physical and emotional monitoring. It includes an extensive overview of 45 diverse
ECG public databases and their analysis with state-of-the-art computational ECG methods. We highlight the
most notable achievements in each of these ECG application areas in the recent years, and, furthermore,
identify future trends in computational ECG analysis, especially analysis of ECG from mobile devices. The
general conclusion is that ECG for medical diagnosis is successfully analyzed with the existing methods, while
different applications during daily ECG monitoring are still open fields. Given how deep learning has been able
to successfully address a lot of the most significant computational ECG problems, like arrhythmia classification,
in future, it is expected for deep learning methods to be comprehensively tested in areas where they have not
been yet applied, such as respiration estimation and fetal ECG extraction.
1. Introduction

Electrocardiography is the most common and extensively used vital
sign monitoring process in modern healthcare systems. Electrocardio-
gram (ECG) recordings capture the electric potential on the body
surface, which is a result of propagation of the electrical signal in the
heart (Trobec et al., 2018). Consequently, many cardiac abnormalities
have a signature on the ECG signal and their identification can help
diagnose cardiac disorders. In 2019, cardiovascular disorders caused
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32% of all deaths in the world according to the World Health Orga-
nization (WHO, 2021), which makes them a major burden worldwide.
Therefore, early detection of the patients at risk, monitoring of the di-
agnosed patients, and a better understanding of the disease mechanisms
are crucial for improving diagnosis and treatment.

ECG can be recorded in different formats: standard 12-lead ECGs
provide information on cardiac activity from 12 different perspectives
(leads) during a short time, whereas Holter ECGs record the electrical
activity of the heart over longer periods of time (several hours) from
5–7 leads. In addition to these two methods, which are currently the
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Fig. 1. Savvy ECG sensor in use.
widely used ones in clinical practice, small novel wireless ECG body
sensors are being developed. The market of medical-grade wearable
ECG devices has expended during the last years, including products
from the big players in the electronic industry, like Samsung with S-
Patch Cardio1 and Philips with their wearable biosensor,2 and even
more, products by companies specialized in medical equipment, like
ZIO by iRhythm,3 VitalPatch by VitalConnect,4 KardiaMobile ECG by
Qardia,5 and Savvy ECG by Saving.6 As an example, the Savvy ECG
sensor, developed at the Jožef Stefan Institute (Rashkovska et al.,
2020), is presented in Fig. 1. These sensors are intended for long-term
monitoring and provide single-lead ECG by measuring the electrical
potential difference between proximal electrodes placed on the skin
near the heart, accordingly also called differential lead. These types of
body sensors allow for ECG analysis and monitoring to be used for a
much broader array of applications than only diagnosing cardiovascu-
lar disorders. The provision of mobile health (mHealth) services, like
patient monitoring in hospitals, remote medical support, or monitoring
during sport activities are some of the newly established areas. In
addition, ECG body sensors usually combine different functions into
in a single physical device, and are consequently often referred to as
multi-functional body sensors (Trobec et al., 2014).

The new types of ECG measuring devices, as well as their broader
and more frequent use, pose new challenges. Some of them are related
to hardware and communications aspects, such as the need to allow
greater patient mobility and provide wireless transmission of the data
from the device to a nearby personal terminal (Rashkovska et al.,
2020). Other challenges arise in the processing and analysis of the sig-
nals. Namely, large amounts of ECG data are being recorded using these
new measurement devices and manually studying such large amounts
of ECG data can be tedious and time-consuming. This increases the need
for automatic, low-cost, real-time, and efficient ECG monitoring that
can be used at home or under ambulatory settings alike. Therefore,
there is a need for powerful computational methods to maximize the
information extracted from comprehensive ECG data. The variety of

1 https://www.wellysis.com/.
2 https://www.usa.philips.com/healthcare/product/HC989803196871/

wearable-biosensor-wireless-remote-sensing-device.
3 https://www.irhythmtech.com/.
4 https://vitalconnect.com/.
5 https://qardia.com.au/for-patients/kardiamobile-ecg-services.
6 http://savvy.si/.
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ECG data and their applications also calls for a diversity of algorithms
to address this need (Lyon et al., 2018).

This paper provides a comprehensive survey of the variety of both
ECG data and algorithms. First, it sets the ground base by providing
an overview of the processing methods and algorithms that form the
ECG analysis pipeline: denoising, segmentation, feature extraction and
selection, learning algorithms and evaluation methods. After that, the
paper mainly focuses on an overview of the experimental setups and
results for a broad range of ECG application tasks: morphological and
rhythmic arrhythmia detection, signal quality assessment, biometric
identification, respiration estimation, fetal ECG extraction, and physical
and emotional monitoring. It also includes an overview of commercial
ECG analysis software. Furthermore, a critical review of the methods
and data used in the encompassed research is also provided, conclud-
ing with final remarks and future challenges in computational ECG
analysis.

Related survey studies on ECG analysis mostly focus on one appli-
cation area, most often arrhythmia detection (Dinakarrao et al., 2019;
Hoefman et al., 2010; Luz et al., 2015), and lately also on respiration
estimation from ECG (Charlton et al., 2018). Other application areas
have been surveyed very little or not at all. Some survey studies focus
only on one methodology, in particular, the very popular deep learning
approach (Faust et al., 2018). Compared to previous survey studies,
the main significance of this paper is recognized in the variety of
public ECG databases covered as well as the opportunities for their
comprehensive analysis in light of different application areas as end-
tasks. Moreover, the focus of this paper is on the newest trends in
the ECG analysis field, mainly ECG from mobile devices, attempting
to identify the directions in which ECG analysis is headed.

The main contributions of this paper can be summarized as follows:

• Survey of computational methods used in different stages of the
ECG analysis pipeline: denoising, segmentation, feature extraction
and selection, learning algorithms, and evaluation methods,

• Extensive overview of 45 most significant and popular databases
containing various ECG recordings,

• Highlighting the most notable achievements in recent years for
7 ECG application areas: morphological and rhythmic arrhyth-
mia detection, signal quality assessment, biometric identification,
respiration estimation, fetal ECG extraction, and physical and
emotional monitoring,

• Identifying future trends in computational ECG analysis, espe-
cially analysis of ECG from mobile devices.

https://www.wellysis.com/
https://www.usa.philips.com/healthcare/product/HC989803196871/wearable-biosensor-wireless-remote-sensing-device
https://www.usa.philips.com/healthcare/product/HC989803196871/wearable-biosensor-wireless-remote-sensing-device
https://www.irhythmtech.com/
https://vitalconnect.com/
https://qardia.com.au/for-patients/kardiamobile-ecg-services
http://savvy.si/
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Fig. 2. ECG analysis pipeline.
The main goal of the critical overview is to research which kinds
of ECG data are already well-researched and which data-collection
scenarios are still to be explored.

2. ECG analysis pipeline

This section presents the algorithms used in different stages of the
ECG analysis pipeline presented in Fig. 2. The pipeline includes the
following steps: preprocessing (including denosing and segmentation),
feature extraction and selection, learning algorithms, and finally, eval-
uation methods. It is important to note that not all of the steps are
applicable in all application scenarios — this depends on the final task
and the experimental setting.

2.1. Denoising

One of the first usual steps in the pipeline is reducing the noise in
the ECG signal. Low frequency noise relates to signal baseline oscil-
lations resulting from body movements and respiration, while power
line interference and digitization of analog electrical potential result
in high-frequency noise. In general, the most widely used approach
to reduce the noise in ECG is the application of a standard Finite
Impulse Response (FIR) filter to the signal, as performed in Raj and
Ray (2018) and Trobec et al. (2012), or an Infinite Impulse Response
(IIR) filter, most commonly Butterworth filters found in Da Poian et al.
(2015). Usually, band-pass filters with varying cut-off frequencies are
being used (with the low frequency starting as low as 0.1 Hz and
the high one up to 100 Hz) (Luz et al., 2015). Other alternative
approaches include Discrete Wavelet Transform (DWT) (Dinakarrao
et al., 2019), Empirical Mode Decomposition (EMD) (Dinakarrao et al.,
2019; Satija et al., 2019; Weng et al., 2006), which partitions the
signal into multiple Intrinsic Mode Functions (IMFs), as well as patch-
based methods such as the Non-Local Means (NLM) algorithm (Tracey
& Miller, 2012). Furthermore, Bayesian filtering methods have also
been explored for ECG denoising, more specifically methods aimed
for nonlinear systems (Luz et al., 2015; Sameni et al., 2007), such as
extended Kalman filters (Sayadi, 2008).

Adaptive techniques for ECG denoising are also well-researched.
Such techniques are capable of tracking the signal under non-stationary
conditions and accordingly adjusting the parameters of a denoising
filter. An example thereof is the adaptive filter proposed in An and
Stylios (2020), which shows better performance in motion reduction
than other methods. Another example of an adaptive filter is the re-
cent work on low-distortion adaptive Savitzky–Golay (LDASG) filtering
method (Huang et al., 2019). This is a novel method based on a popular
denoising technique used for the so-called Savitzky–Golay filtering,
which is a FIR filter designed using polynomial approximation. The
LDASG filtering method is discussed in more details in Section 3.3.

2.2. Segmentation

An important part of the pipeline is segmentation of the ECG signal.
A large portion of the studies perform the end task on a beat-by-beat
level, which means they look at each heartbeat separately during the
analysis. Another option is to employ a fixed sliding window technique
on the entire signal instead (Charlton, Bonnici et al., 2016; Hannun
et al., 2019; Mousavi et al., 2019; Yao et al., 2020), with possibly a
different number of beats in each window, or extract ECG sequences
containing a specific number of successive beats (Šprager et al., 2017).
3

Fig. 3. Characteristic ECG heartbeat shape.

In this section, we will focus on methods that operate on beat-by-
beat level and on QRS detection algorithms, which are crucial for
determining the location of each beat.

Each heartbeat in an ECG signal is characterized with a specific
waveform. This can be observed on Fig. 3, where we show an ECG
heartbeat with its characteristic fiducial points (P, Q, R, S and T),
and segments and duration intervals (PR interval, PR segment, QT
interval, ST segment), as well as the QRS complex. Each of these entities
corresponds to a specific phase in the cardiac cycle (Barrett et al.,
2010), with the QRS complex corresponding to the most significant
cardiac activity: the depolarization of the ventricles. This process is
reflected in the ECG waveform with the largest potential differences,
forming the R-peak. The location of an R-peak is highly important
because it is used as an equivalent for the location of a heartbeat.
Therefore, determining the R-peak locations is very significant in com-
putational ECG analysis, mainly as a preprocessing step in beat-by-beat
level classification algorithms (Luz et al., 2015), but also to perform
additional analyses such as heart rate variability (HRV) analysis (Oweis
& Al-Tabbaa, 2014).

The literature on detection of the most important ECG character-
istic, i.e. the QRS complex, is vast, with many different approaches
having been adopted in the last 30 years. One of the first QRS detectors
with satisfactory performance is the one from Pan and Tompkins (Pan &
Tompkins, 1985), based on analyses of slope, amplitude, and width of
ECG waves. The Pan–Tompkins algorithm includes both low and high
pass filtering for noise reduction, differentiation, squaring and moving
window integration of the signal, ending by applying multiple adaptive
thresholds to the peaks detected from the resulting waveform. Different
methods based on the Pan–Tompkins algorithm have been developed
subsequently, such as the popular Hamilton–Tompkins detector (Hamil-
ton & Tompkins, 1986), as well as the Hamilton variant (Hamilton,
2002), with sensitivity and positive predictive value of up to 0.998.

In addition to improving performance, in recent years efforts have
been made in developing faster QRS detection algorithms. Pan
-Tompkins demonstrates high detection accuracy, but it has been shown
that improvements regarding efficiency can be made by proposing
simple-fast algorithms such as the optimized knowledge-based method
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in Elgendi (2013). They suggest a basic approach consisting of two
moving averages calibrated by a knowledge base of ECG recordings,
using only two parameters. Their method shows comparable detection
results to Pan–Tompkins and its variants.

Lastly, it is worth mentioning that there have been some attempts
to treat QRS detection as a separate machine learning task and use
neural networks for localization of QRS complexes, more specifically
multilayer perceptron (MLP) (Chromik et al., 2021) and convolutional
neural networks (CNN) (Xiang et al., 2018) architectures. However,
these cases are not representative of the standard ECG analysis pipeline,
which this paper attempts to identify, since generally simple and fast
QRS detectors are preferred as a first step in a pipeline for more
complex ECG analysis tasks, most commonly arrhythmia detection.

2.3. Feature extraction and selection

There is a wide range of features that can be extracted from an
ECG signal, in order to perform different end-tasks. When making a
diagnosis, medical experts take into account the relative positions of
the ECG components and their amplitudes, most notable of which is
the time between the R peaks of consecutive heartbeats — the RR
interval (Arzeno et al., 2008). RR intervals are necessary for HRV
analysis, which is sometimes used for rhythm classification (Hirsch
et al., 2021), but also in different tasks related to physical activity and
emotion (Seshadri et al., 2019). Other features of this kind are the PR
interval, the width of the QRS complex and the QT interval (Dinakarrao
et al., 2019; Luz et al., 2015). The amplitude and duration of these
shapes can sometimes suggest different problems with the heart, which
is why the correct detection of these entities is of high importance. For
example, the diagnosis of atrial arrhythmia depends on the presence or
absence of P-waves, as well as their duration and timing (Macfarlane
and et al., 2010). This group of features, which represents different
statistical values derived from the fiducial ECG points, is referred to
as temporal morphological features. Different methods, referred to as
ECG segmentation algorithms, can be used to find these fiducial points,
which generally incorporate some kind of QRS detection as their first
step (Beraza & Romero, 2017), covered separately in the previous
section.

Another approach is the extracting of features in the frequency
domain by using Fast Fourier Transform (FFT) in order to discover
changes in the power spectrum of the ECG waves (Dinakarrao et al.,
2019). However, pure frequency-domain-based analysis is not so often
used and more popular are methods operating in the time–frequency
domain. Examples thereof are the application of Stockwell transform (Ra
& Ray, 2018) and wavelet transform (Li et al., 2017; Qin et al., 2017)
to ECG signals, whereby the coefficients obtained can be regarded as
features of the ECG. More advanced statistical approaches can also
be used for feature extraction from ECG, such as Higher Order Statis-
tics (HOS) (Šprager et al., 2017), Autocorrelation-Linear Discriminant
Analysis (AC/LDA) (Agrafioti & Hatzinakos, 2010) and Independent
Component Analysis (ICA) (Da Poian et al., 2015). Some of these
methods, mostly the transforms mentioned above, aim to model the
ECG beat instead of directly extracting specific features.

As most of the methods discussed previously generate a large num-
ber of features, feature selection and dimensionality reduction are
usually performed. This can be done with standard algorithms for
feature ranking used in machine learning, such as the maximum Rel-
evance Minimum Redundancy (mRMR) algorithm (Mei et al., 2018)
and Sequential Feature Selection (SFS), as well as Principal Component
Analysis (PCA) (Qin et al., 2017) and Singular Value Decomposition
(SVD) (Šprager et al., 2017) for dimensionality reduction. In addition,
in recent years, different stochastic optimization algorithms are being
increasingly used for feature selection, e.g. Genetic Algorithm (GA) in Li
4

et al. (2017) and Artificial Bee Colony (ABC) in Raj and Ray (2018).
2.4. Learning algorithms

This section presents the different learning algorithms and ap-
proaches commonly used in ECG analysis tasks. The methods covered
vary from simple and explainable, such as rules, to the very complex
deep neural networks. Furthermore, the section focuses on learning
algorithms for supervised tasks, more specifically classification, as this
is the most prominent type of end-task in recent studies.

The simplest type of diagnostic classification is using a set of
rules. Developing rules usually requires high level of expert knowledge
(strong involvement of medical professionals) since expert features are
required. In addition, the rules or criteria obtained with this kind
of analysis are explainable, which makes them desirable in clinical
settings. Such an example is presented in Macfarlane et al. (2004),
where a criterion for acute myocardial infarction is established from
statistical analysis of ECG data and since then it has been adopted as
standard in diagnostic practice. Furthermore, a successful rule-based
beat classifier has been implemented by Hamilton (2002), which dis-
tinguishes normal from ventricular beats with a multi-stage algorithm
utilizing beat matching techniques and beat morphology rules.

In addition to the simpler types of methods using rules and template
matching, in the final classification step of the ECG analysis pipeline, a
lot of different standard machine learning algorithms for classification
can be used. There have been experiments with almost all existing clas-
sifier types in the past, however, most common and highest-performing
in recent literature are Support Vector Machines (SVM) (Qin et al.,
2017; Raj & Ray, 2018), with occasional use of Random Forest (Lyon
et al., 2018), Nearest Neighbors Classifier (Šprager et al., 2017) and
MLP networks (Chromik et al., 2021; Li et al., 2017). Furthermore,
stochastic optimization methods are utilized in the parameter setting
and tuning of the machine learning algorithms, which is an important
step towards achieving best possible performance in the end-task.
Examples thereof are the use of ABC in Raj and Ray (2018) and GA
in Li et al. (2017).

Deep neural networks are probably the most researched learning
algorithms right now — they are also very prominent in the area of
ECG analysis. For all types of signals and images, including ECG, the
architectures used are built with convolutional layers in their basis and
are, therefore, called convolutional neural networks (CNN). In addition
to all deep networks being some type of a CNN (Kiranyaz et al., 2017;
Smith, Walsh et al., 2019), different additional mechanisms have been
employed. A common example thereof are the so-called residual neural
networks (ResNet), built by introducing residual blocks (Hannun et al.,
2019; Ribeiro et al., 2020) consisting of multiple convolutional layers,
with additional skip-connections which jump over blocks. Skipping
over layers speeds up the training by reducing the problem of vanishing
gradients. Other mechanism make use of the temporal dependency
of both the ECG signal and its corresponding classes, such as Long
Short-Term Memory (LSTM) (Chauhan & Vig, 2015; Yao et al., 2020),
Gated Recurrent Units (GRU) (Chen et al., 2020) and Attention mech-
anisms (Chen et al., 2020; Hong et al., 2019; Mousavi et al., 2019; Yao
et al., 2020).

An example of a complex deep learning architecture, combining
a few of the mentioned advanced deep learning mechanisms, can be
observed in Fig. 4. The architecture shown on this figure is taken
from the study in Mousavi et al. (2019) and it is used for classifica-
tion, more specifically arrhythmia detection. It includes both attention
mechanism and LSTM units. Encoder–decoder architectures are also
very popular for some ECG tasks, like heartbeat classification for ar-
rhythmia detection (Mousavi & Afghah, 2019) and fetal ECG signal
denoising (Fotiadou et al., 2020). They are especially suitable for
sequence-to-sequence mapping when a signal as time-series is required
at the output. On another hand, while deep learning methods are
mainly used as end-tasks, they are also very successful as feature
extractors combined with simple classifiers such as 1-Nearest Neighbor,

as has been shown in Labati et al. (2018).
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Fig. 4. Example deep learning architecture, combining CNN, LSTM and attention (Mousavi et al., 2019).
2.5. Evaluation methods

Different evaluation schemes can be used to evaluate supervised
learning tasks for ECG analysis. The most important distinction when
designing an evaluation setup for any kind of medical application
is whether data from the same patients, which form the training
dataset, is present in the testing dataset or not. Having this in mind,
the Association for Advancement of Medical Instruments (AAMI) has
proposed guidelines for evaluation of arrhythmia detection methods
in the ANSI/AAMI EC57 standard (ANSI/AAMI EC57, 2012). Similar
recommendations are also part of the IEC 60601-2-47 standard (IEC
60601-2-47, 2012). While the AAMI EC57 standard is used in FDA
clearance, the IEC 60601-2-47 standard is widely used in CE mark certi-
fication. According to the standards, evaluation can be performed using
the intra-patient (Mousavi & Afghah, 2019; Qin et al., 2017), inter-
patient (Mousavi & Afghah, 2019; Qin et al., 2017; Raj & Ray, 2018;
Zhai et al., 2020) or patient-specific (Kiranyaz et al., 2017; Raj & Ray,
2018; Zhai et al., 2020) schemes. The inter-patient paradigm reflects
most real-life use cases, where the algorithms need to perform well
when the analysis platform is utilized for entirely new people, while
the patient-specific one allows for personalized approaches in ECG
analysis. This general idea is applicable to almost all supervised tasks
in the domain of medicine, however, these paradigms are originally
established for arrhythmia detection using the most utilized database
— MIT-BIH Arrhythmia (Moody & Mark, 2001). In the case of larger
databases, mainly those that do not contain beat-by-beat annotations,
such as the PTB-XL database (Wagner et al., 2020), the evaluation
is exclusively inter-patient since a large enough number of distinct
patients is present and other paradigms bring no benefits.

The inter-patient paradigm used in most studies splits the MIT-
BIH dataset into two sets called DS1 and DS2. This split has been
proposed in de Chazal et al. (2004) and has been adopted in practice
as a standard extension of the inter-patient evaluation paradigm. DS1
(consisting of recordings from patients with IDs: 101, 106, 108, 109,
112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208,
209, 215, 220, 223 and 230) is used to train classification models and
DS2 (containing patient IDs: 100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233 and
234) is used only for testing. For the patient-specific paradigm, the
dataset is again split into 2 groups, the first one containing recordings
from patients with IDs starting with 1 (100, 101, 103...), while the
second one contains the recordings from patient with IDs starting with
2 (200, 201, 202...). The first group is used to form a set of common
train heartbeats, while a separate training dataset is built for each
patient in the second group. These patient-specific datasets consist of
the common train heartbeats, together with beats from the first 5 min
from the specific patient’s recording. The remaining 25 min of each
5

patient’s recording are used to test the classification models. The third
standardized evaluation paradigm is intra-patient, which includes a
random split of all heartbeats into train and test, disregarding which
patient they come from.

Annotating ECG data is a relatively expensive process, however,
collecting ECG data is fairly simple. For this reason, semi-supervised
learning is very suitable for ECG analysis because it allows to include
unlabeled recordings in the training phase and it has been shown
that this could enhance classification performance. Semi-supervised
pipelines for ECG classification are most commonly performed as an
improvement over the patient-specific evaluation, without the need for
labels in the 5-min data from the specific patient. More specifically, the
study in Zhai et al. (2020) uses a common label pool as well as iterative
label estimation and label update over the unlabeled patient-specific
data.

Another evaluation method used commonly in supervised learning,
especially in limited-data situations such as ECG analysis, is cross-
validation (Qin et al., 2017). Cross-validation can be used in different
evaluation settings, even though, when it comes to the evaluation
schemes for the MIT-BIH Arrhythmia database described above, ran-
dom cross-validation is usually performed in the intra-patient schema,
while inter-patient and patient-specific have pre-defined singular train-
test splits. In addition, cross-validation can be performed as a part of
parameter setting and initial evaluation of the models before perform-
ing testing on a separate test set, which is the case in the study in Raj
and Ray (2018) where a 14-fold cross validation for parameter setting
on the training dataset is executed. Related to limited number of data
samples, and more importantly, imbalance in the number of samples of
each class, different data augmentation techniques could be employed.
An example thereof is the use of the SMOTE technique to increase
the number of samples from less-represented classes in the training
dataset (Mousavi & Afghah, 2019).

In addition to evaluation strategies, also important are the perfor-
mance measures used to estimate and compare the performance of
the methods. Classification tasks are usually evaluated using predictive
accuracy, which is the portion of total samples correctly classified.
Accuracy is however not the most reliable metric in the case of im-
balanced problems, as are most medical applications, including ECG
classification. Therefore, other measures, such as precision, recall, F1-
score (Bramer, 2007), and area under the ROC curve (AUC) (Fawcett,
2006), are used as well. These metrics are defined for binary classifica-
tion, or for each class separately in the case of multi-class classification.
Since a large portion of the studies dealing with heartbeat classification
for arrhythmia detection include more than two classes, per-class met-
rics need to be averaged into a single performance measure. Averaging
can be performed in a macro, micro or weighted manner, with macro
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measures calculating a simple mean over all classes, and are consid-
ered most suitable for evaluating imbalanced multi-class classification
cases (Strodthoff et al., 2021).

In application areas where heartbeat location is important, such as
QRS detection and fetal ECG extraction, precision and recall are widely
used to evaluate performance (ANSI/AAMI EC57, 2012). In addition,
for fetal ECG extraction, the ANSI/AAMI EC57 standard allows for
a ±50 ms acceptance interval between the detected and the closest
reference annotation. Some QRS detection methods also consider the
average time error between the detected and reference R peak (Arzeno
et al., 2008).

3. Applications

This section will cover the most significant areas of application of
ECG analysis present in the research field in most recent years. We will
provide an overview of the recent advances in ECG analysis, focusing
on the different data-collection scenarios and end-tasks. The studies
include a range from already well-established commercial products to
implementations still in the research phase. The areas will be examined
in the following order: arrhythmia detection and rhythm abnormalities,
signal quality assessment, biometric identification, respiration estima-
tion, fetal ECG extraction, physical and emotional monitoring, and
finally, commercial ECG analysis software.

Regarding the data used to perform the ECG analysis, there are a
lot of publicly available databases containing ECG recordings. They are
of high importance and studies analyzing data available to everyone
have higher value because this allows for fair comparison. In Table 1,
the most significant and popular databases have been summarized,
alongside with information about: the type of the recordings they
include, like sampling frequency, number of leads, length and size
(in terms of number of recordings); annotations included (in terms of
targeted application areas); and notable studies using them. We can
see that there are different settings for recording ECG signals, ranging
from the standard 12-lead resting ECG to long-term monitoring with
the Holter monitor. In the table, the databases with higher recording
frequency and 12 or 15 leads are obtained with the standard resting
ECG monitor, while the ones with a few leads are obtained with the
Holter monitor. Further, we can observe that the recordings are of
various duration, ranging from 10 s up to 24 h, and different sampling
frequencies, usually 250 Hz or higher. Most of the databases listed in
the table are available through the PhysioNet repository,7 which is an
online platform for sharing medical data. Additionally, a few of the
datasets can be found on other public repositories such as figshare,8
Zenodo,9 and IEEE Data Port.10 The goal of this section is to provide
an overview of these databases and put them into context of specific
end-tasks (application areas) in the next subsections. The application
end-tasks for which these datasets can be used are determined by the
present annotation types, and the additional signals and information
they contain besides the ECG.

3.1. Heartbeat classification for arrhythmia detection

Various heartbeat abnormalities are known as arrhythmias under
one name. These abnormalities are detected by medical professionals
using ECG due to its simplicity and non-invasive nature. The develop-
ment of automatic ECG-based heartbeat classification and arrhythmia
detection methods represents a large portion of the research involving
computational methods for ECG analysis. There are two main categories
of arrhythmias. The first type are called morphological arrhythmias and

7 https://physionet.org/.
8 https://figshare.com/.
9 https://zenodo.org/.
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https://ieee-dataport.org/.
are characterized by the irregularity of a single heartbeat. The second
type are the so-called rhythmic arrhythmias, characterized by a set
of irregular heartbeats. This section focuses on automatic detection of
morphological arrhythmia types, while the next one handles separately
the problem of detecting the different types of ECG rhythms.

The most popular publicly available arrhythmia database is the MIT-
BIH Arrhythmia database (Moody & Mark, 2001). It includes Holter
recordings from 48 subjects, 23 healthy and 25 selected to include
clinically significant arrhythmias. This database contains annotations
for a large number of both rhythmic and morphological arrhythmias,
however, it is mostly used to differentiate single-heartbeat (morpho-
logical) irregularities. The annotations are on the locations of the
R-peaks of each heartbeat, which is usually the case for all PhysioNet
datasets. In addition to MIT-BIH Arrhythmia, other databases, such as
the American Heart Association (AHA) database11 and the St. Peters-
burg Institute of Cardiological Technics 12-lead Arrhythmia (INCART)
database (Tihonenko et al., 2007), are used in a lot of studies for this
task. Furthermore, there are a few novel datasets that contain heartbeat
form labels, in addition to other diagnostic statements, but they have
not been used as extensively as the MIT-BIH Arrhythmia Detection
database in morphological arrhythmia detection studies yet. Examples
thereof are the PTB-XL database (Wagner et al., 2020) and the Shaoxing
People’s Hospital’s 10,000 patients arrhythmia database (Zheng et al.,
2020). Unlike the standard MIT-BIH datasets that contain beat-level
annotations, this new generation of arrhythmia datasets provides a set
of labels for each ECG recording. The recordings in these datasets are
much shorter, usually around 10 s, and only the information that an
arrhythmia is present is given. The exact locations of the irregular
heartbeats are not given, which requires a modified approach since
heartbeat segmentation methods are not necessary.

AAMI in the ANSI/AAMI EC57 standard provides guidelines for
grouping the large number of arrhythmia types into 5 main classes (N
- normal, S - supraventricular arrhythmia, V - ventricular arrhythmia,
F - fusion beats and Q - unknown) (ANSI/AAMI EC57, 2012), which
are employed in a large portion of the research (Chauhan & Vig, 2015;
Kiranyaz et al., 2017; Mousavi & Afghah, 2019). Moreover, because the
most significant arrhythmia classes are supraventricular ectopic beats
(S beats) and ventricular ectopic beats (V beats), the ANSI/AAMI EC57
standard suggests that classification models are also evaluated and
compared by their performance on these classes. For this reason, SVEB
and VEB precision, sensitivity, specificity and F1-score are reported
as main performance metrics in a large portion of the research (Raj
& Ray, 2018; Sellami & Hwang, 2018; Zhai et al., 2020). In addition
to grouping of arrhythmias in the classes suggested by AAMI, some
recent studies also perform classification on a different label set (Li
et al., 2017; Qin et al., 2017; Raj & Ray, 2018). Here, the classes are
more specific arrhythmia types than the ones according to the AAMI
guidelines, which makes them less-represented in the datasets and the
task potentially more demanding. The MIT-BIH Arrhythmia database
contains up to 16 different morphological arrhythmia annotations,
which are classified in 16 classes in the study in Raj and Ray (2018),
achieving an accuracy of 0.963 using a Discrete Orthogonal Stockwell
Transform (DOST) as a feature extraction method. Other studies, such
as Li et al. (2017) and Qin et al. (2017), focus only on 6 class labels.

Various machine learning methods have been used for classification
of heartbeats according to arrhythmia types, most often using standard
classifiers, such as SVM and Random Forest, combined with advanced
feature extraction and selection methods (Li et al., 2017; Qin et al.,
2017). However, the latest best-performing methods are mostly based
on deep learning. One example is the study in Mousavi and Afghah
(2019), which uses a combination of a simple convolutional archi-
tecture with 3 layers, followed by an encoder–decoder architecture,

11 Can be obtained on USB at https://www.ecri.org/american-heart-
association-ecg-database-usb.

https://physionet.org/
https://figshare.com/
https://zenodo.org/
https://ieee-dataport.org/
https://www.ecri.org/american-heart-association-ecg-database-usb
https://www.ecri.org/american-heart-association-ecg-database-usb
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Table 1
ECG databases for various application areas.

Database Frequency Leads Length of recordings No. of recordings (people)

MIT-BIH Normal Sinus Rhythm
360 Hz 2 Up to 24 h 18
Applications: biometric identification

Studies: Elgendi (2013), Li et al. (2020), Mousavi et al. (2019), Sameni et al. (2007) and Sayadi (2008)

MIT-BIH Arrhythmia
360 Hz 2 (MLII and

V1/2/4/5)
30 min 48

Applications: arrhythmia detection, signal denoising

Studies: An and Stylios (2020), Bassiouni et al. (2018), Chauhan and Vig (2015), Elgendi (2013), Hamilton (2002),
Huang et al. (2019), Kiranyaz et al. (2017), Li et al. (2017), Mousavi and Afghah (2019), Qin et al. (2017), Raj
and Ray (2018), Salloum and Kuo (2017), Satija et al. (2019), Sayadi (2008), Sellami and Hwang (2018), Tracey
and Miller (2012), Weng et al. (2006) and Zhai et al. (2020)

MIT-BIH Long Term
360 Hz 2 or 3 14 h–20 h 7
Applications: arrhythmia detection
Studies:

MIT-BIH Supraventricular
Arrhythmia

360 Hz 2 30 min 78
Applications: arrhythmia detection
Studies: Elgendi (2013)

Sudden Cardiac Death Holter
250 Hz 2 Up to 24 h 23 (18 sinus, 1 paced and

4 AF)

Applications: rhythmic arrhythmia detection
Studies: Greenwald (1986)

MIT-BIH Atrial Fibrillation (AF)
250 Hz 2 10 h 25
Applications: rhythmic arrhythmia detection, biometric identification
Studies: Li et al. (2020), Mei et al. (2018) and Mousavi et al. (2019)

MIT-BIH ST Change
360 Hz 2 30 min 28
Applications: biometric identification
Studies: Elgendi (2013) and Li et al. (2020)

MIH-BIH Noise Stress Test (NST)
360 Hz 2 30 min 12 ECG + 3 noise
Applications: signal denoising
Studies: Elgendi (2013), Huang et al. (2019), Sameni et al. (2007) and Sayadi (2008)

Long-Term ST
250 Hz 2 or 3 21 h–24 h 86 (80)
Applications:
Studies:

Intracardiac Atrial Fibrillation
1 kHz 5 endocardial +

3 surface
1 min 8

Applications: rhythmic arrhythmia detection
Studies:

Long Term Atrial Fibrillation (AF)
128 Hz 2 24 h 84
Applications: rhythmic arrhythmia detection
Studies: Elgendi (2013) and Mousavi et al. (2019)

Atrial Fibrillation (AF)
Classification - PhysioNet/CinC
Challenge 2017

300 Hz 1 9 s–60 s 8,528
Applications: rhythmic arrhythmia detection
Studies: Mei et al. (2018)

European ST-T
250 Hz 2 2 h 90 (79)
Applications:
Studies:

CU Ventricular Tachyarrhythmia
250 Hz 1 8 min 35
Applications: rhythmic arrhythmia detection
Studies: Nolle et al. (1986)

BIDMC Congestive Heart Failure
250 Hz 2 20 h 15
Applications: rhythmic arrhythmia detection
Studies: Baim et al. (1986)

PTB Diagnostic ECG
1 kHz 15 10 s–2 min 549 (290)
Applications: biometric identification
Studies: Fotiadou et al. (2020) and Labati et al. (2018)

PTB-XL
1 kHz 12 10 s 21,837 (18,885)
Applications: arrhythmia detection
Studies: Strodthoff et al. (2021)

QT
250 Hz 2 15 min 100
Applications: signal denoising
Studies: Elgendi (2013) and Fotiadou et al. (2020)

St. Petersburg Institute of
Cardiological Technics 12-lead
Arrhythmia (INCART)

257 Hz 12 30 min 75
Applications: arrhythmia detection
Studies: Elgendi (2013) and Fotiadou et al. (2020)

(continued on next page)
7



Expert Systems With Applications 203 (2022) 117206E. Merdjanovska and A. Rashkovska
Table 1 (continued).
Database Frequency Leads Length of recordings No. of recordings (people)

American Heart Association
(AHA)

250 Hz 2 3 h (30 min
annotated)

155

Applications: (ventricular) arrhythmia detection
Studies: Hamilton2002

The China Physiological Signal
Challenge 2018

500 Hz 12 6 s–60 s 6,877
Applications: arrhythmia detection
Studies: Yao et al. (2020)

Abdominal and Direct Fetal ECG
(ADFE)

1 kHz 4 abdominal
maternal + 1
direct fetal

10 min 5

Applications: fetal ECG extraction
Studies: Da Poian et al. (2015) and Fotiadou et al. (2020)

Fetal electrocardiograms -
B1_Pregnancy_dataset

500 Hz 4 abdominal
maternal

20 min 10

Applications: fetal ECG extraction
Studies: Da Poian et al. (2015) and Fotiadou et al. (2020)

Fetal electrocardiograms -
B2_Labour_dataset

500 Hz–1 kHz 4 abdominal
maternal + 1
direct fetal

5 min 12

Applications: fetal ECG extraction
Studies: Da Poian et al. (2015) and Fotiadou et al. (2020)

Noninvasive Fetal ECG -
PhysioNet/CinC Challenge 2013

1 kHz 1 abdominal 1 min 75 train + 100 test
Applications: fetal ECG extraction
Studies: Andreotti et al. (2014) and Da Poian et al. (2015)

Non-Invasive Fetal ECG
Arrhythmia

500 Hz–1 kHz 4–5 abdominal
maternal + 1
chest maternal

7–32 min 26 (14 healthy, 12
arrhythmia)

Applications: arrhythmia detection
Studies: Behar et al. (2018)

MIMIC
1 kHz 12 / 67,830 (30,000)
Applications: respiration extraction
Studies: Charlton, Villarroel et al. (2016) and Pimentel et al. (2015)

Fantasia
250 Hz 1 2 h 40
Applications: respiration extraction, biometric identification
Studies: Elgendi (2013), Li et al. (2020) and Varon et al. (2020)

Motion Artifact Contaminated
ECG

500 Hz 4 20 s 1
Applications: signal denoising, exercise monitoring
Studies: Behravan et al. (2015)

ECG-ID
500 Hz 1 (lead I) 20 s 310 (90)
Applications: biometric identification
Studies: Bassiouni et al. (2018) and Salloum and Kuo (2017)

Stress Recognition in Automobile
Drivers

496 Hz 1 (MLII) 50–90 min 27
Applications: emotional monitoring, respiration estimation
Studies: Varon et al. (2020)

Combined measurement of ECG,
Breathing and Seismocardiograms
(CEB-SDB)

5kHz 2 (leads I and II) 1 h 20
Applications: biometric identification, respiration estimation
Studies: Li et al. (2020)

Preterm Infants Cardiorespiratory
Signals (PICS)

500 Hz/250 Hz 1 20 h–70 h 10
Applications: respiration estimation
Studies: Gee et al. (2017)

Vortal
500 Hz 1 (lead II) 10 min 45
Applications: respiration estimation
Studies: Charlton, Bonnici et al. (2016)

ECG-Fitness
/ 2 1–2 min per activity 17
Applications: signal denoising, exercise monitoring
Studies: Spetlik et al. (2018)

Glasgow University Database
250 Hz 3 (leads II & III

and cheststrap
V2-V1)

10 min (2 min per
5 activities)

25

Applications: signal denoising, exercise monitoring
Studies: Porr and Howell (2019)

Shaoxing People’s Hospital’s
10,000 patients arrhythmia
database

500 Hz 12 10 s 10,646
Applications: arrhythmia detection
Studies: Yildirim et al. (2020)

(continued on next page)
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Table 1 (continued).
Database Frequency Leads Length of recordings No. of recordings (people)

Continuously Annotated Signals of
Emotion (CASE)

1 kHz 2 or 3 40 min (a few min.
per video)

30

Applications: emotional monitoring
Studies: Zhang et al. (2021)

Cognitive Load, Affect and Stress
(CLAS)

256 Hz 1 30 min 62
Applications: emotional monitoring
Studies:

Intelligent Athlete Monitoring for
Cardiovascular Wellness
(iAMwell)

2 kHz 2 or 3 / 15 (6 athlete and 9 non
athlete)

Applications: signal denoising, exercise monitoring
Studies:

MARSH
/ 2 (lead I and II) 15 min 29
Applications: respiration estimation
Studies: Pirhonen and Vehkaoja (2020a)

Atrial Fibrillation (AF) Screening
300 Hz 1 (lead I) 40 s 2422
Applications: rhythmic arrhythmia detection
Studies:

Intercity Digital
Electrocardiogram Alliance
(IDEAL)

200 Hz 3 24 h 202
Applications: arrhythmia detection, biometric identification
Studies: Labati et al. (2018)

Lobachevsky University
Electrocardiography (LUDB)

500 Hz 12 10 s 200
Applications: arrhythmia detection
Studies:
built from bidirectional LSTM units. They also perform oversampling of
the less-represented classes using the SMOTE technique, as a solution
to one of the most challenging aspects of the MIT-BIH Arrhythmia
database — class imbalance. This problem is also successfully addressed
in Sellami and Hwang (2018), where a novel loss function for a con-
volutional neural network is proposed. This function, which changes
the loss weights dynamically according to the distribution of classes in
each batch, is referred to as batch-weighted loss. Using batch-weighted
loss, an aggregate F1 score of 0.897 is achieved for the inter-patient
evaluation schema for all 5 classes, which is the state-of-the art result
for this task on the MIT-BIH Arrhythmia database.

All of the above mentioned methods require heartbeat segmentation
because the learning algorithms operate on a single-heartbeat level. A
slightly modified approach is employed when using the new generation
of datasets mentioned previously, which contain sequence-level anno-
tations. Heartbeat form classification has been successfully performed
using different types of neural network architectures, most notably
using an improved residual neural network (xresnet) and achieving an
AUC of 0.896 (Strodthoff et al., 2021). They use an overlapping sliding
window approach by training the classifier on 2.5 second-long segments
and generating a prediction for each of the segments. These predictions
are then aggregated to produce a single prediction for the entire
signal. This study demonstrated that segmenting the heartbeats is not
necessary to obtain satisfactory arrhythmia classification performance.

Another direction of research in arrhythmia detection is utilizing
all 12 leads present in standard clinical ECG. There have been many
new interesting datasets containing 12-lead ECG recordings suitable for
this purpose, such as the 2018 China Physiological Signal Challenge
Dataset (Liu et al., 2018), the smaller but highly annotated Lobachevsky
University Electrocardiography Database (LUDB) (Kalyakulina et al.,
2020) with 200 recordings, and the previously mentioned PTB-XL
database and the Shaoxing People’s Hospital’s 10,000 patients arrhyth-
mia database, which are of great significance due to their size and
contain heartbeat form labels, in addition to rhythm labels and other
diagnostic statements. These recordings are generally shorter that those
obtained with a Holter monitor, ranging from 10 s up to 1 min in most
databases. This kind of data allows for fusion of all 12 ECG leads in
deep learning architectures in order to obtain more reliable arrhythmia
classification. Classification accuracy of 81.2% has been achieved on
8 classes (consisting of both morphology and rhythm abnormalities)
9

present in the 2018 China Physiological Signal Challenge Dataset in Yao
et al. (2020). This study proposes attention-based time-incremental
CNN that successfully fuses the information from all leads, both spa-
tially, using convolutional layers, and temporally, using LSTM units.
Furthermore, the attention module on top of all other layers enables
for the network to concentrate on the informative parts of the signal
and additionally makes the model more interpretable. The winning
submission of the challenge (Chen et al., 2020) proposes an interesting
classification approach to utilize all 12 leads, which is also based on
CNNs, but is enhanced with an ensemble model combining 12- and
1-lead models.

The research in the area of detection of morphological arrhythmias
has been almost exclusively focused on classifying the heartbeats in
the MIT-BIH Arrhythmia database in the 5 groups of arrhythmias
established by AAMI. Some studies report almost perfect results for
this specific problem, for example, the study in Acharya et al. (2017)
reports overall precision and recall of around 96%–97%. However, this
is achieved using the intra-patient evaluation paradigm and does not
reflect a realistic scenario. Due to this variability in the evaluation
procedures employed, some of which are highly flawed, as shown in
Section 2.5, as well as the limited number of test subjects in this
public database, there is still a need for further research before em-
ploying automatic machine learning models for detecting arrhythmias
in clinical practice. Standardization of the evaluation procedure, as
well as including representative heartbeats from a variety of data
sources, instead of only one database, is necessary to further advance
the research area of heartbeat classification for arrhythmia detection.

3.2. Rhythm detection and classification

Rhythmic arrhythmias are characterized by a set of irregular heart-
beats. The most common type is atrial fibrillation (AF) and the most
widely used databases that contain such recordings are MIT-BIH AF
(Moody & Mark, 1983), the dataset from the PhysioNet Computing
in Cardiology (CinC) Challenge 2017 (Clifford et al., 2017), and Long
Term AF (Petrutiu et al., 2007). In addition, the new generation of
public ECG datasets in the last few years, including the 2018 China
Physiological Signal Challenge Dataset (Liu et al., 2018), the PTB-XL
database (Wagner et al., 2020) and the Shaoxing People’s Hospital’s
10,000 patients arrhythmia database (Zheng et al., 2020), covers a wide
range of rhythms in addition to atrial fibrillation, including different

types of tachycardia, bradycardia and heart blocks.



Expert Systems With Applications 203 (2022) 117206E. Merdjanovska and A. Rashkovska
Fig. 5. Confusion matrix from 12-class arrhythmia classification performed by (a) DNN model and (b) cardiologist in the Stanford study (Hannun et al., 2019).
The MIT-BIH AF database contains short recordings, mostly 30 s
long, and they belong to one of 4 categories: atrial fibrillation, normal
rhythm, noise, and other rhythm. The Long Term AF database, on the
other hand, offers 24-h long recordings and a larger number of an-
notations (such as atrial bigeminy, supraventricular tachyarrhythmia,
sinus bradycardia, etc.). Classification of such rhythmic arrhythmias
has been successfully done by analyzing heart rate variability, as fea-
ture in standard machine learning algorithms (Mei et al., 2018), as
well as by employing mechanisms in deep neural networks that cap-
ture the temporal characteristic of ECG signals, such as attention and
LSTM neural networks. A state-of-the-art attention-based deep neu-
ral network (Mousavi et al., 2019) has achieved one of the highest
performances at AF detection, with F1-score of 0.994 on the MIT-
BIH AF database, for two-class classification (AF and Non-AF rhythm).
This network architecture consists of two channels: the first one is
the raw ECG data input into attention and LSTM layers, while the
second one is a 2-dimensional representation of the wavelet power
spectrum of the signal as an input in LSTM layers. The Shaoxing
People’s Hospital’s 10,000 patients arrhythmia database has been used
to develop a rhythm classification model (Yildirim et al., 2020) using a
convolutional neural network and achieving an accuracy of 0.9224 for
7 rhythm types.

There are a few recent successful works on heartbeat classifica-
tion utilizing data that is not publicly available (yet). These studies
mostly focus on rhythmic arrhythmia and include a wider range of
different arrhythmia labels. One of them is the dataset used in the
study by the Stanford Machine Learning (ML) Group (Hannun et al.,
2019). They collected the data using a single-lead mobile ECG sensor,
the Zio Patch (Turakhia et al., 2013). Almost 30,000 patients were
continuously recorded for up to 14 days. Cardiologist-level perfor-
mance (F1-score of 0.837) in arrhythmia detection for 12 different
rhythm abnormalities was achieved using a deep learning approach.
The network architecture used is a very deep residual network — 34
convolutional layers are grouped in blocks with skip connections. The
final classification results of this study are given in Fig. 5, summarized
in a confusion matrix. It can be observed that the deep neural network
model performs comparable to a trained cardiologist. Another such
novel dataset is included in the Clinical Outcomes in Digital Electrocar-
diology (CODE) study (Ribeiro et al., 2020), which consists of 2 million
short 12-lead clinical ECG recordings, including AF, sinus bradycardia
and tachycardia. They exhibit promising results (F1 score of 0.925)
using a deep learning network with residual blocks, similar to the one
in the Stanford study.

Atrial fibrillation is the most wide-spread type of arrhythmia. There-
fore, it is understandable that the most important recent advances in
arrhythmia detection from ECG are mostly focusing on atrial fibrillation
and distinguishing it from other common heart rhythms. Probably the
10
most noteworthy ECG analysis study in general is the study performed
by the Stanford ML Group, because of the size and the scope of the
data they collected, but also because the recordings come from a mobile
wireless ECG device, which is still very rare in this research field.

3.3. Signal quality assessment

The quality of the ECG signal is crucial for successful ECG analysis,
which is why a lot of studies focus on its assessment and improvement.
When developing a novel ECG measurement scenario or device, it is
important to be aware of the quality of the signal obtained in order
to have information on what kind of analysis could be done with
such measurements. Also, a single low-quality recording included in a
dataset could influence the performance of the entire method.

Signal quality assessment and improvement is often done as one
of the first steps when performing ECG analysis for any purpose, as
described in Section 2.1. In addition, in recent years, it has been
shown that this can also be performed using machine learning and
can be formulated as a classification task (‘‘acceptable’’ vs. ‘‘unaccept-
able’’) (Satija et al., 2019). The standard approach, however, is to focus
on improving the quality of the signal with denoising techniques (An
& Stylios, 2020; Huang et al., 2019; Sameni et al., 2007; Sayadi, 2008;
Tracey & Miller, 2012; Weng et al., 2006). Most of these techniques
are based on signal processing, the most notable of which is the mod-
ification of the Savitzky–Golay (SG) filter in Huang et al. (2019). The
SG-filter variation, called low-distortion adaptive Savitzky–Golay filter
(LDASG), is adaptive to the signal variations and is based on discrete
curvature estimation of the signal, whereby reducing the distortion
introduced by the filter. Interesting visual examples taken from this
study are shown in Fig. 6, where the denoising abilities of different
techniques can be observed when applied to noisy recordings with
different signal-to-noise ratios (SNRs), namely SNR = 0 db and SNR =
10 dB. When compared to the presented NLM and EMD-wavelet meth-
ods, the proposed LDASG filter shows very good results, successfully
reducing the noise, whilst keeping all ECG characteristics. Namely, the
average mean squared error (MSE) for the LDASG filter is lower by
33.33% when compared to EMD-wavelet and by 50% when compared
to NLM, while the average Percent Root mean-square Difference (PRD)
is lower by 18.25% when compared to EMD-wavelet and by 25.24%
when compared to NLM.

Deep learning has also shown promising results in recent efforts,
usually by using some type of encoder–decoder architecture, such as the
fully convolutional encoder–decoder with skip connections in Fotiadou
et al. (2020), inspired by a model developed for image restoration.

The standard evaluation procedure for denoising techniques is to
simulate noisy ECG by adding noise to clean ECG. This procedure was
used to obtain the MIT-BIH Noise Stress Test (NST) database (Moody
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Fig. 6. ECG denoising using EMD-wavelet, NLM and LDASG filter (Huang et al., 2019). (a) Results on noisy ECG with SNR of 0 db; (b) Results on noisy ECG with SNR of 10 db.
t al., 1984) – by adding noise recorded during a stress test to clean
ecordings from the MIT-BIH Arrhythmia database (Moody & Mark,
001). According to the AAMI EC57 and the IEC 60601-2-47 standards,
erformance evaluation on the NST database is a must when testing an
CG denoising technique. The datasets used in Fotiadou et al. (2020),
uang et al. (2019) and Satija et al. (2019) are also generated in
similar way. In these studies, either White Gaussian Noise (WGN),

onstationary real Muscle Artifacts (MA) noise or real recorded elec-
rode noise is added to clean recordings from MIT-BIH Arrhythmia,
TB (Bousseljot et al., 1995), INCART (Tihonenko et al., 2007) or
T (Laguna et al., 1997) databases. In this way, semi-realistic noisy
CG recordings are created, which usually correspond to the real types
f noisy ECG encountered during recording situations. For quantitative
valuation of a denoising technique, the average performance metrics
MSE, PRD, SNR improvement) are calculated on noisy ECG signals at
ifferent SNR levels.

A lot of recent studies prefer to use realistic noisy ECGs and start to
ocus on recording ECG using a wireless sensor during different physical
ctivities. In that case, quality assessment needs to be applied to those
ovel datasets, usually small in size, such as the data in Ilic et al. (2019)
ollected with the Savvy sensor. There is a trend in recent years to make
hese smaller ECG datasets public. Examples thereof are the iAmWell
ataset (Elia et al., 2017), including recordings during different types
f running, and the Wearable Ambulatory ECG Dataset (Kher, 2020),
ontaining records with only simple activities, such as raising the arms
nd sitting down/standing up. However, the most notable one is the
lasgow University Database (Porr & Howell, 2019), where it has been

hown that the realistic movement noise introduced in ECG record-
ngs significantly influences the performance of most QRS detection
lgorithms. They also highlight additional shortcomings of standard
atabases, such as the MIT-BIH Arrhythmia, most notably imprecise R-
eak annotation locations, and how this results in non-realistic R-peak
etection accuracy reported in research so far. This further confirms
he need for new, better and more realistic public ECG data, most
mportantly data that contains realistic movement noise. Furthermore,
here have been some very recent efforts which attempt to assess the
uality of the signal by quantifying how well a specific QRS detector
an interpret the ECG signal (Chromik et al., 2021). Here, the quality
ssessment is not independent of the other ECG tasks, but is connected
o the QRS detection step and is measured by a proposed certainty
etric for QRS detection, which could also serve as a signal quality
11

etric.
ECG measurement standards, most commonly the 12-lead ECG and
the Holter monitor, have proven to acquire recordings of sufficient
quality for the medical analyses, usually performed in clinical practice.
Novel measurement technologies, however, as well as the modern mea-
surement scenarios they aim to be used in, require new and more exten-
sive research examining the quality of the measurements acquired, as
well as how standard ECG algorithms (denoising, QRS detection) can
be applied to them. For this reason, the publication of data recorded
using novel ECG measuring devices is of extreme importance.

3.4. Biometric identification

Biometric recognition is a mature field of research. However, the use
of physiological signal features for this task, such as the ECG trails, still
needs further improvements, although it has shown promising results.
There are still some challenges to overcome in order to make the ECG a
widely accepted biometric identity, some of which are the questions of
uniqueness and permanence over time of the ECG markers (Carreiras
et al., 2014). Concerning uniqueness, it needs to be confirmed that
ECG from one person is significantly different from the ECG of all
other people. Permanence over time, on the other hand, requires that
a person’s ECG does not change over some period of time, depending
on the use-case.

A lot of studies include data specifically collected for the task of
biometric identification. There are studies that use less-invasive ECG
recording methods than those used in clinical settings, like mobile
ECG devices (Agrafioti & Hatzinakos, 2010; Šprager et al., 2017),
however, the recordings are still not publicly available. Other recent
efforts include using ECG databases made specifically for the pur-
pose of identification, such as the ECG-ID database (Lugovaya, 2011)
in Bassiouni et al. (2018) and Salloum and Kuo (2017). More re-
cently, other general ECG databases, collected for other tasks, have
been used also for the task of biometric identification, such as: the
healthy subjects subset (with identifier E-HOL-03-0202-003) of the
IDEAL database (Couderc et al., 2005), PTB (Bousseljot et al., 1995)
in Labati et al. (2018), Fanstasia (Iyengar et al., 1996), CEB-SDB,
Normal Sinus Rhythm database (Moody, 1999), MIT-BIH ST Change
database (Albrecht, 1992) and MIT-BIH AF (Clifford et al., 2017)
in Li et al. (2020). However, most often used are the ECG-ID and the
PTB datasets. ECG-ID offers short 20-second long recordings with 10
annotated beats (QRS complexes) from 90 healthy volunteers. There
are at least 2 and up to 20 different recordings for one person. The

PTB database, on another hand, is a general diagnostic ECG database
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and includes subjects with various diagnoses and their medical history,
in addition to short (up to 2 min) 16-lead ECG recordings.

Two main tasks are usually addressed in the biometrics studies:
authentication and identification. The more challenging of the two
is identification, which involves determining the identity of a per-
son, using its biometric features/markers, given information about
the features/markers of all possible identities. For this task, statisti-
cal feature extraction methods combined with simple classifiers have
shown very successful results so far, for instance, higher-order statis-
tics (HOS) (Šprager et al., 2017) and linear discriminant analysis
(LDA) (Agrafioti & Hatzinakos, 2010). A deep neural network can also
be employed as a feature extractor, for example, CNN (Labati et al.,
2018). With this approach, a 100% testing accuracy has been achieved
on the PTB database for closed-set identification. However, both ECG-
ID and PTB databases lack some aspects which do not allow these
results to be applicable in wide daily practice. ECG-ID slightly covers
the problem of confirming permanence over time of ECG markers, by
employing multiple measurements of the same person from up to 6
month periods, however, the number of participants is fairly small (90),
which is not enough to confirm uniqueness. PTB, on another hand,
offers a larger number of people (290), but there is only one short
recording for many of the subjects, leaving open questions about the
permanence over time of the biometric ECG features.

ECG for biometrics offers advantages over other methods, mostly in
terms of its inimitability, but it still has not been applied in practice,
even though various studies have reported very high identification
scores on different datasets. The reason for this is the small scope of
these studies, however, wider research should elevate the promotion of
the application of ECG methods for biometric identification in practice
in near future.

3.5. Respiration estimation

ECG signals are a result of the electrical activity of the heart.
However, there are other processes which also influence this signal,
such as muscular activity and respiration. Respiration is one of the most
informative vital signs for the physiological state of a person or the
progression of an illness. Its continuous monitoring is valuable not only
in hospital environments, but also during daily activities. By utilizing
the phenomena that respiration modulates the ECG signal, respiration
can be extracted from it without using any additional sensors, which
supports the idea of a multi-functional device for monitoring various
vital signals by combining a minimal number of body sensors with
different functions into a single one (Depolli et al., 2016; Trobec et al.,
2014).

The challenges in this application area include estimating the res-
piratory signal and locating the breathing cycles. There are various
methods for these tasks, but they are not deterministic. Consequently,
there is a variety into the methods and results, both in the step of
estimating the respiratory waveform, as well as in locating the respira-
tory cycles, which makes various studies difficult to compare. It should
be also noted that various performance metrics are used in research
to evaluate the methods, e.g. limits of agreement (95% LOA), bias
and 2 standard deviations (2SD) in Charlton, Bonnici et al. (2016),
while Varon et al. (2020) used relative error for evaluating respira-
tory rate estimation, and cross-correlation and spectral coherency for
evaluating wave morphology similarity.

From the literature search, it can be concluded that most methods
perform signal processing to transform the ECG signal into a respiratory
one (Charlton, Bonnici et al., 2016; Sohn et al., 2017; Trobec et al.,
2012; Varon et al., 2020). Some of these studies use their private
data specifically collected for this purpose, however, there are a few
public datasets suitable for testing methods to derive respiration from
ECG, such as MIMIC, Fantasia and Drivers dataset (Healey & Picard,
2005) in Varon et al. (2020). In Fantasia and MIMIC, the subjects are
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recorded during resting, in the intensive care in the case of MIMIC and
while watching a movie in Fantasia, while the Drivers dataset includes
different levels of stress during driving, which results in various respi-
ratory rates present in the recordings. The data from the very recently
published MARSH study (Pirhonen & Vehkaoja, 2020a, 2020b) also
belongs to this group and it consists of simultaneous ECG, PPG and
respiration signals, including various controlled respiratory rates of the
subjects ranging from 0.1 Hz up to 0.6 Hz. In addition, the respiration
cycles are annotated, which makes this data suitable for respiration
extraction experiments.

The most comprehensive study of signal processing methods for
estimation of respiration from ECG is Charlton, Bonnici et al. (2016),
which uses the VORTAL dataset, collected for the purpose of this study
and openly available on request. The dataset comprises of simultaneous
recordings of both young and elderly subjects during lying supine as
well as during physical activities, such as walking and running from
the young subjects. This study implemented 314 combinations of tech-
niques for estimation of both respiratory signal and respiratory rate,
including both feature- and filter-based algorithms. The conclusion
from the study is that the best performing method for estimation of
respiratory signal is feature-based operating on ECG by fusing tech-
niques such as baseline wander (BW), amplitude modulation (AM) and
frequency modulation (FM). When it comes to estimating the respira-
tory rate, time-domain breath detection was shown as a better solution
than frequency-domain. The measurements from the best performing
method, a fusion of feature-based ECG-derived respiration (EDR) and
time-domain breath detection, had a bias of 0.0 bpm (breaths per
minute) and 95% LOA of – 4.7 bpm to 4.7 bpm. Impedance pneu-
mography (IP) – the clinical standard for continuous monitoring of
respiratory rate in a hospital environment – was ranked 5th accord-
ing to performance (after 4 ECG-derived algorithms), with a bias of
−0.2 bpm, 95% LOA of – 5.6 bpm to 5.2 bpm. This suggests that
ECG-based algorithms could be sufficiently precise for use in clinical
practice (Charlton, Bonnici et al., 2016). Other studies also make use
of the amplitude modulations of the ECG signal by respiration and
sometimes use data collected for the specific purpose of respiration
estimation, which is not publicly available yet (Trobec et al., 2012).

Besides ECG, the photoplethysmogram (PPG) waveform has also
been used to estimate respiration. PPG is another way to track the
activity of the heart — by measuring changes in blood volume over
time. However, the signal obtained in this way is less informative of the
state of the heart and is usually used only to estimate the heart rate. The
measurement procedure, on another hand, is simpler than obtaining
ECG. It involves a wrist-worn devices, which is why a lot of studies
focus on respiration extraction from PPG. For this purpose, many of
the mentioned datasets, such as MIMIC and Vortal, besides ECG and
respiration, contain also simultaneous PPG recordings. It has been
shown that PPG can also be used for respiration estimation (Charlton
et al., 2018), but the algorithms examined in Charlton, Bonnici et al.
(2016) generally performed better when applied to ECG, with a median
decrease in the 2SD of 0.8 bpm when compared to PPG. Respiratory
waveforms obtained from ECG are more precise than those from PPG,
which shows that PPG is not a replacement for ECG.

The area of EDR estimation is not so well-defined when compared
to, for example, arrhythmia detection. When it comes to evaluation
methods and data used, there are not many standard practices em-
ployed by various studies that allow for their comparison. However,
the studies have shown that, in general, a reliable respiration waveform
can be extracted from an ECG signal. It should also be noted that
respiration estimation techniques are usually based on signal processing
and there have not been yet studies using deep learning techniques
for this purpose, as opposed to other application areas where these
methods are well established. For this reason, a possible direction for
future work in ECG-derived respiration could be the use of neural

networks.
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Fig. 7. Annotated maternal (red markers) and fetal (blue markers) beats in abdominal ECG (Rashkovska & Avbelj, 2017).
3.6. Fetal ECG extraction

An interesting demonstration of the multi-functionality of ECG body
sensors is their use for monitoring fetal ECG (FECG). This can be
achieved through recording abdominal ECG (AECG) by placing the
electrodes on the maternal abdomen. It is a non-invasive method for
monitoring the cardiac activity of a fetus and has the potential to be
preferred over other more invasive methods. An example of such a
signal, containing both maternal and FECG components, with anno-
tated heartbeat locations, can be observed in Fig. 7, taken from the
study in Rashkovska and Avbelj (2017). The challenge in this tasks is
to successfully extract the FECG signal from the AECG.

There are public databases of abdominal ECG, such as Abdominal
and Direct Fetal ECG (ADFE) database (Jezewski et al., 2012) and Non-
Invasive Fetal ECG Arrhythmia database (Behar et al., 2018), available
on PhysioNet. These databases are joined in the 2013 PhysioNet/CinC
Challenge dataset (Goldberger et al., 2000; Silva et al., 2013), together
with additional both private and simulated FECG sources. This chal-
lenge dataset is most widely used in fetal ECG extraction studies, in
addition to the ADFE database separately. The ADFE database contains
signals gathered during labor from 5 different women. It consists of
four differential signals obtained from the maternal abdomen and a
reference direct FECG, recorded simultaneously using a spiral electrode
attached to the fetal head. The entire 2013 PhysioNet/CinC challenge
data contains 75 AECG recordings with annotated fetal heartbeats,
covering only normal rhythm, as well as 100 test recordings without
annotations. It has been concluded that the separation of FECG is best
done using ICA, shown both on the ADFE database (Da Poian et al.,
2015; Fotiadou et al., 2020) and the 2013 PhysioNet/CinC challenge
data (Andreotti et al., 2014). This method successfully separates the
maternal and FECG waveforms as independent components of the
signal. Another approach (Rashkovska & Avbelj, 2017) applies expert
knowledge about the size of the heart of the fetus and its QRS amplitude
compared to the mother’s, to separate fetal heartbeats, using data
specifically collected for this study with the Savvy sensor.

Similar to respiration estimation, there are various ways to evalu-
ate the methods for FECG estimation since there is no unambiguous
correct FECG as opposed to, for example, classification tasks such
as arrhythmia detection. A simpler solution is to only perceive fetal
heart rate (fHR) and calculate mean squared error (MSE) between the
estimated and true fHR as a performance metric (Clifford et al., 2011;
Da Poian et al., 2015; Silva et al., 2013). However, methods attempt-
ing to evaluate the entire FECG signal, including heartbeat locations,
range from comparing characteristic ECG intervals between estimated
and true FECG waveforms, e.g. QT and PR intervals (Fotiadou et al.,
2020), RR interval (Da Poian et al., 2015), to calculating classification
metrics (sensitivity, specificity, precision, accuracy and F1-score) of
estimated QRS complex locations, as defined in the ANSI/AAMI EC57
standard (ANSI/AAMI EC57, 2012). The standard allows for ±50 ms
acceptance interval between the detected and the closest reference
annotation. In this way, each fetal heartbeat can be effectively regarded
as either correct or false. This type of evaluation has been performed
13

on both the ADFE dataset (Da Poian et al., 2015) and the 2013
Fig. 8. Ground truth and reconstructed fetal ECG waveforms (Da Poian et al., 2015).

PhysioNet/CinC challenge data (Andreotti et al., 2014; Da Poian et al.,
2015). A sensitivity of 92.5% for the ADFE dataset is obtained by
applying ICA to compressed abdominal FECG (Da Poian et al., 2015).
On the 2013 PhysioNet/CinC challenge data, average sensitivity of
97.4% was achieved (Andreotti et al., 2014). An example reconstructed
FECG waveform from the 2013 Challenge dataset can be observed in
Fig. 8, taken from the study in Da Poian et al. (2015).

An extended dataset containing abdominal and direct fetal ECG has
been published very recently (Matonia et al., 2020), where the well-
established ADFE database available on PhysioNet is a small portion
of this collection. This new dataset consists of two subsets: one subset
(B2_Labour_dataset) is an extension of the ADFE database and contains
12 recordings during labor with reference direct FECG, while the sec-
ond subset (B1_Pregnancy_dataset) is recorded earlier during pregnancy
from 10 women with expert annotations of fetal heartbeat locations.
This database offers more comprehensive recordings than all previous
public non-invasive abdominal fetal ECG datasets, which makes it a
valuable addition and is expected to be used in future studies.

Using expert-annotated fetal ECG data, it has been shown that fetal
heart activity can be accurately estimated from AECG. Furthermore,
application examples prove that the estimation of FECG from AECG
is feasible, even when ground truth signal (simultaneous FECG) is
unavailable. Such studies (Rashkovska & Avbelj, 2017), performed on
recordings other than the ADFE, have shown consistency with medical
knowledge about FECG, which confirms that abdominal ECG is an
accurate non-invasive method for monitoring fetal cardiac activity.

3.7. Physical and emotional monitoring

In addition to the areas covered so far, ECG has the potential to
be used for monitoring the physical state and activity of a person as
well as his/her emotions. Such tasks can only be accomplished when
combining ECG with other physiological signals from other types of
body sensors (e.g. inertial sensors for physical activity, galvanic skin
response for emotions).

One important application scenario is in monitoring athletes during
demanding physical exercise and it is of high importance that the
signal obtained is of sufficient quality (Ilic et al., 2019) – area more
extensively elaborated in Section 3.3. It has been also determined that
ECG measuring devices on the chest are of great importance and cannot
be replaced with different wrist-worn alternatives and PPG (Seshadri
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et al., 2019). There are a few smaller publicly available datasets that
contain measurements during different physical activities, such as the
Glasgow University Database (Howell & Porr, 2018), Wearable Ambu-
latory ECG (Kher, 2020) and iAmWell (Elia et al., 2017). The scope
of these databases is limited, generally including only a few activities
and shorter recordings. The iAmWell dataset includes data from both
athletes and non-athletes, while the Glasgow University Database in-
cludes, besides ECG, also simultaneous accelerometer recordings, both
of which represent recording scenarios suitable for subsequent exercise
monitoring.

The situation is similar when it comes to monitoring different
human emotions using ECG. Few datasets exist such as CLAS (Markova
et al., 2019), CASE (Sharma et al., 2019) and Drivers Dataset (Healey
& Picard, 2005), which contain ECG measurements during various
emotional states of a person. The CLAS and CASE datasets record dif-
ferent emotional responses (e.g. boring, scary) from subjects by playing
videos with diverse content as well as by setting tasks for the subjects
(e.g. math problems). However, the most significant task in the field of
emotional monitoring is stress detection (Iqbal et al., 2021), especially
in the modern world. For this purpose, the Drivers Dataset has been
widely used. The entire Drivers Dataset is recorded during driving, but
through different parts of the city, which was presumed to result in
various specific levels of stress. What is common for these datasets is
that multiple signals are recorded at the same time, e.g. respiration,
galvanic skin response, acceleration, because only the combination
of sensors can allow for successful monitoring. Excluding the Drivers
Dataset, both CLAS and CASE datasets have been made public very
recently, confirming the importance of this direction of research in the
future, with ECG signals playing a significant role.

The potential range of ECG monitoring is wider than the already
well-established use for diagnosing heart conditions. Emotional and
physical monitoring using ECG are two noteworthy directions in re-
search proving this potential. However, the data and analyses done in
this direction so far have not been very extensive, usually focusing on
one part, such as QRS detection, while end-to-end analysis has not been
performed yet.

3.8. Commercial ECG analysis software

ECG analysis is a field which has been researched for over 40 years.
During this time, commercial software products have been developed
and have become well-established for some tasks, e.g. QRS detection
and ECG morphology features extraction. One of the most notable ones
is the University of Glasgow (Uni-G) ECG Analysis Software, described
in Macfarlane et al. (2005). The algorithms included in this software
have been marketed by multiple companies such as Cardioline,12 Space-
abs Healthcare13 and AMPS,14 where their product Continuous ECG
ecording Suite (CER-S) is one of the most successful commercial
CG interpretation software. It includes multiple modules, including
etection of heartbeat locations, generation of template beats, and
eat measures (QRS duration and amplitude, ST slope and duration,
tc.). Furthermore, the software can perform rule-based diagnostic
nterpretation and classification, including detection of isolated beats,
ouplets, bigeminy, and trigeminy, and rhythm analysis with detection
f tachycardia, bradycardia and atrial fibrillation.

In addition, software tools, such as Uni-G, are being used in research
tudies in the field of medicine (Demidova et al., 2019), as well as
uring the initial handling of ECG data when the goal is a more complex
utomatic task. This is the case in the CODE study (Ribeiro et al., 2020),
here the Uni-G software is used as a complementary tool in a few parts

12 https:www.cardioline.it/en/home-eng/.
13 https:www.spacelabshealthcare.com/.
14
14

http://www.amps-llc.com/prodotti-holter.
of the processing pipeline in the development of a novel deep learning
method for arrhythmia detection.

There are other widely-used software solutions, such as the Hanover
ECG System (HES) (Zywietz et al., 1990) evaluated in Khawaja et al.
(2011), offering similar services as the Uni-G software. In addition,
HES offers different software modules for resting ECG, exercise ECG
and real-time analysis, handling the ECGs obtained in these modes in
slightly different ways (e.g. more focus on denoising in exercise mode).
Traditionally, these platforms perform only the first few steps of the
computational analysis pipeline: denoising, segmentation (by detecting
beat locations), and some kind of feature extraction by calculating
beat measures. However, some of these software tools also incorporate
rule-based diagnostic classification techniques, such as the ST-Elevation
Myocardial Infarction (STEMI) detection criteria (Macfarlane et al.,
2004), included in the Uni-G software (Macfarlane et al., 2005), and
the ventricular beat detection pipeline, implemented in the open-source
EP Limited software,15 as described in Hamilton (2002).

In recent years, the research advances towards more complex ma-
chine learning techniques for ECG analysis, which are slowly starting
to be integrated in commercial ECG analysis software as well. Examples
of this are deep learning based platforms, such as Cardiomatics16 and
Cardiologs,17 which are able to classify ECG segments into a wide range
of common arrhythmia types, such as AF and ventricular beats (Smith,
Rapin et al., 2019; Smith, Walsh et al., 2019). Both Cardiomatics
and Cardiologs are implemented as cloud-based services, aimed for
postponed analysis of ECG, and are intended for ECG measurements
obtained with Holter monitors. On another hand, older traditional
software solutions (Uni-G and Hanover) are usually implemented on
the ECG measuring device itself.

Wireless ECG devices are the latest novelty in ECG measurement
technologies. They are incorporated within ECG analysis platforms,
both for postponed analysis, as well as real-time monitoring. Zio
patches18 are extensively used for daily ECG monitoring, both to obtain
a long-term measurement, which is later analyzed by a cardiologist
with ZioXT, as well as continuous telemetry monitoring for high-
risk patients with ZioAT. Other such examples are various devices by
Cardionet and Lifewatch,19 where depending on the patient’s needs,
both real-time monitoring with irregular heartbeat alerts, as well as
postponed analysis can be performed. Similar services are offered by
Cardiolyse20 and AliveCor with Kardiacare,21 usually in combination
with a smartphone application that displays the ECG features.

4. Discussion

In this section, discussion is made regarding the three main aspects
of the computational ECG analysis, surveyed in this paper: methods,
data, and applications. First, we start with the challenges set by the
penetration of mobile ECG devices.

4.1. Challenges for mobile ECG devices

The Holter monitor has been a standard for long-term ECG monitor-
ing for over 50 years. Future research in this field, however, will expand
the use of ECG analysis in many different areas, all thanks to wireless
mobile ECG body sensors. These new devices bring new challenges in
this field. Some of them are related to the device itself, such as lowering
the sampling frequency for longer power autonomy and reducing the
number of ECG leads measured (usually one lead) in order to be more

15 https://www.eplimited.com.
16 https://cardiomatics.com/.
17 https://cardiologs.com.
18 https://www.irhythmtech.com.
19 https://www.gobio.com.
20 https://cardiolyse.com/.
21
 https://store.kardia.com/products/kardiacare.
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https://store.kardia.com/products/kardiacare
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unobtrusive to the user. Also, since communication protocols take up
a large part of the total power consumption in most portable wireless
devices (Altini et al., 2011), dedicated communication protocols need
to be developed for wireless data transmission of ECG data, such as
the PCARD wireless protocol in Depolli et al. (2016). Moreover, large
volumes of ECG data are being recorded using these new measurement
devices. Due to this, compression is another very significant topic in
computational ECG analysis, most notably in the case of wireless ECG
devices. Furthermore, the processing power and storage capacity on
the device are limited, which additionally limits the implementation
of algorithms on the device itself, and requires dedicated methods that
would take these limitations into account (Marsili et al., 2020).

Other challenges are closely related to the use-cases of the sensors.
The placement of such sensor could vary with each use, as it is not
(always) placed by a trained professional, as in the case of Holter
monitors. In addition, long-term monitoring includes recording during
all kinds of movements of the subject, which adds noise and disturbance
to the ECG. This results in the need for more robust methods, as well
as more versatile data to develop these methods. In the following two
sections, a critical review of the state-of-the-art will be provided, in
relation to how they answer to these challenges and needs.

4.2. ECG analysis methods

The paper so far gave an overview of the current trends in the field
of computational ECG analysis. The focus is on the applied methods and
used data in various studies from different areas of application. In the
first part, we focus on the steps in the ECG analysis pipeline and we
can observe that the preprocessing methods used are fairly standard
and consistent across different studies. These methods include signal
processing techniques that are already well-established. However, with
the more frequent use of long-term daily activity ECG measurements
and making use of the multi-functionality of body sensors, signal qual-
ity and denoising have an increasingly important role and advances are
being made (Huang et al., 2019). Very recent studies, such as Fotiadou
et al. (2020), have attempted to perform quality improvement on a
complex signal, such as the extracted fetal ECG, using a deep encoder–
decoder architecture. The main challenge still remains the denoising
of muscle noise and artifacts that have frequency spectra overlapping
with the ECG spectra, especially in measurements acquired with mobile
ECG devices. Moreover, there is a lack of studies that deal with signal
quality assessment as a classification task. The same goes for QRS
detection algorithms: while there are well-established methods for their
current use, mobile ECG devices, and the new challenges they bring,
will require more accurate and faster QRS detection, which is why
studies developing such methods, like (Elgendi, 2013), are of great
importance.

When looking at the highest-performing newer methods in all ap-
plication areas, another remark concerning the segmentation step can
be made in general. They mostly use some type of a sliding window
technique, instead of the beat-by-beat classification dominant in more
traditional older studies. This variant is also more simple and less
prone to preprocessing errors due to the elimination of the need for
QRS detection. Regarding feature extraction methods, a conclusion
can be made that most existing signal processing techniques have
been proven appropriate for different ECG analysis tasks and it has
been experimented with a large number of them. When it comes to
machine learning algorithms, almost all of them are appropriate for
ECG analysis tasks and have been examined. However, the overview of
recent literature has shown that SVMs are one of the most commonly
used overall at the moment, so it can be concluded that they are
best-suitable for ECG analysis tasks.

From the overview in the paper, we can observe that deep neural
networks have gained a lot of attention in recent years in ECG analysis.
One of the most noteworthy feature of neural networks is that a lot of
15

the ECG preprocessing steps covered so far are usually (not always, as
in Labati et al. (2018)) omitted when working with them. The advan-
tage of deep learning comes exactly from that: very little preprocessing
and ECG expert knowledge is required when building the models.
This is also one of its weaknesses: consequently, the resulting models
are not explainable for the most part and probably for this reason
they have not been so widely used in commercial products yet. The
highest performance in some application areas (arrhythmia detection,
biometric identification) was achieved recently using deep learning,
which shows that these methods are a very promising direction for ECG
analysis.

Most commercial software tools for ECG analysis are aimed at use in
a clinical setting. The most widely-used example of this, the University
of Glasgow software (Macfarlane et al., 2005), is only accurate for well-
determined criteria for specific diagnoses. Overall, in these platforms,
signal processing methods have successfully been implemented for
some time by applying them to ECG signals for specific clinical tasks,
usually related to ECG morphology, such as QRS detection. These
software platforms, generally aimed at standard 12-lead ECG analysis
or for Holter monitors, are usually implemented on the measurement
device (Marsili et al., 2020), and still do not widely implement state-of-
the-art deep learning techniques for end-to-end analysis. When it comes
to machine learning and deep learning based diagnostic methods,
they are most commonly realized as cloud-based platforms, such as
Cardiologs (Smith, Walsh et al., 2019) or ViewECG.22 As mentioned in
the previous section, one of the challenges with mobile ECG sensors is
the limited storage capacity and processing power, which brings new
implementation challenges for all ECG analysis algorithms, including
QRS detection (Elgendi et al., 2014). In this case, all analysis phases are
generally performed at a remote location, either on a nearby processing
device or as a remote service, with the device only transmitting the
measurements. In some cases, after the measurement is over, only
postponed offline analysis is performed, with a comprehensive analysis
report obtained as a result.

4.3. Data and applications

In the second part, the paper has focused on the various data and
application areas for ECG analysis. The goal of the critical overview
of that part is to come to a conclusion which kinds of ECG data are
already well-researched and which data-collection scenarios are still
to be explored. In the overview of the databases, we can see that
seemingly a large amount of ECG recordings is available. However,
the largest portion of research uses only few datasets, most commonly
the MIT-BIH Arrhythmia database, which is somehow understandable
since arrhythmia detection is one of the most important areas of ECG
analysis. Almost all of this data, however, is in a hospital setting, with
a large portion being resting ECG. For example, the MIMIC dataset is
very large and comprehensive, but only covers patients in the intensive
care unit (ICU), which makes it suitable only for clinical tasks. With the
exception of the Glasgow University Database, the iAmWell Dataset and
the MARSH study, which are of relatively small size and the recordings
are short, no extensive datasets consisting of recordings during daily
movements and activities are available. Consequently, we can also
conclude that no comprehensive databases with measurements from
wireless body sensors are openly available. These kinds of data are nec-
essary for all tasks related to daily monitoring of patients (monitoring of
arrhythmia, physical exercise, breathing) and it is crucial that they are
publicly available so that wider algorithm development and comparison
are enabled.

When it comes to arrhythmia detection, there are a few databases
(MIT-BIH Arrhythmia, INCART, MIT-BIH AF, AHA) containing labeled
arrhythmia types and studies so far have achieved very high perfor-
mance on them, most notably using recurrent and attention deep neural

22 https://www.viewecg.com/.

https://www.viewecg.com/
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networks. However, these databases contain a very limited number of
examples for some arrhythmia types, and, as mentioned above, a lim-
ited variety of recording situations without including daily activities.
The Stanford study (Hannun et al., 2019), in which a cardiologist-level
arrhythmia detection and classification has been achieved using a deep
neural network, is one example of a successful study in this aspect,
but the data they collected has not been made publicly available yet.
Furthermore, a novel 12-lead ECG database for arrhythmia research,
covering more than 10,000 patients, is a very recent addition to this
category of public ECG data (Zheng et al., 2020). Considering its large
number of subjects and rhythm labels, it is a promising new direction
for research in arrhythmia detection. Nevertheless, the research chal-
lenge set here is to utilize all 12 leads in the learning process for making
more reliable models, hence more precise arrhythmia detection.

The use of databases in the task of biometric identification is very
promising. Expensive labeling is not required for this task as it is for
arrhythmia detection, so any database which includes some kind of
patient ID could be used for this task. Nevertheless, the field is still
lacking a thorough examination of the limits in regards to the number
of subjects, that is, we need to know if the information that we can
extract from the ECG is sufficient to distinguish a large population. One
of the most recent additions to the PhysioNet repository – the PTB-XL
dataset – could provide an answer to this question, because its previous
version (PTB) was proven suitable for biometric identification, and
could show whether deep learning is a better solution to this problem
as well.

5. Conclusion and future challenges

The paper gives the most comprehensive survey of ECG databases
and computational analysis methods and applications, including ex-
tensive overview of 45 public databases containing ECG recordings of
various kinds and covering 7 ECG application areas: morphological and
rhythmic arrhythmia detection, signal quality assessment, biometric
identification, respiration estimation, fetal ECG extraction, and physical
and emotional monitoring. The comprehensive survey in this paper
provides an overview of what has been successfully achieved in the
area of ECG analysis and what is just forming as a research direction.
A general conclusion is that ECG for medical diagnosis is successfully
analyzed with the existing methods, while different applications during
daily ECG monitoring are still open fields.

Having this in mind, with the demonstrated multi-functionality of
ECG monitoring, we can conclude that some kind of a general platform
would be an ultimate goal of the ECG analysis pipeline. This platform
would be flexible to different use-cases. Given how deep learning has
been able to successfully address a lot of the most significant ECG
problems, like arrhythmia classification, unification of different tasks
under one platform could happen with deep learning, in the form
of multi-task learning. In other ECG tasks, however, deep learning
methods have not been comprehensively tested yet, such as the area of
respiration and fetal ECG extraction. In addition, in order to be able to
develop such an ECG analysis platform, data from a variety of settings
needs to be available.

The lack of openly available comprehensive databases with ECG
measurements from wireless body sensors indicates that one proposed
future contribution is providing ECG data from mobile sensors to a
public repository. In order to do this, a standardization of these mea-
surements, recorded for a variety of applications, is needed first. Fur-
thermore, a comprehensive evaluation of the best-performing methods
for the applications covered in this paper, both on the measurements
from mobile ECG devices, as well as the public databases, is also a
possible direction for future work. Related to this, it is significant to
find out how well the existing state-of-the-art methods for different
tasks, trained on the open databases, perform when tested on new
measurements, such as the ones from mobile ECG devices. This kind of
standardized fair evaluation is an ultimate goal and will provide a more
comprehensive analysis of exactly how much the challenges brought by
16

mobile ECG sensors influence the performance of existing methods.
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