Big Data in OpenStack Storage

Ivan Tomašić, Aleksandra Rashkovska, Matjaž Depolli, Roman Trobec

Department of Communication Systems Jožef Stefan Institute, Ljubljana, Slovenia

- Introduction
- Swift in the CLASS project
- Experience with installation of OpenStack
 Storage
- Hybrid Cloud Storage (OpenStack Storage and AmazonS3)
- Conclusion

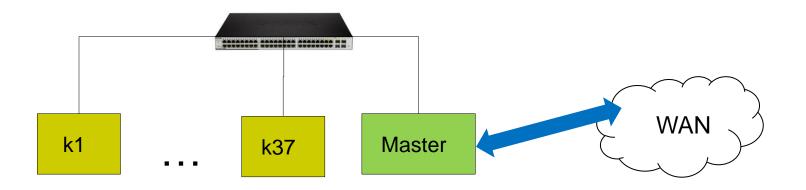
Experience with installation of OpenStack Storage

Ivan Tomašić Ivan.Tomasic@ijs.si

Introduction

- OpenStack Object Storage in the CLASS project
- OpenStack Object Storage (Swift) installation:
 - Hardware and software platform
 - Current Swift installation on IJS
 - Installation details
 - Work on progress
- Benchmarks
- Conclusion

Swift in the CLASS project


- IJS group is responsible for CLASS/Petabyte storage
- Until M6 we identified requirements for IaaS needed for CLASS/Petabyte system and recommendations for its users
- We determined 12 main criteria for comparison of the available systems: scalability, data model, failure handling, compatibility, security, ...
- Three types of storage systems were distinguished regarding their data model:
 - relational (SQL databases),
 - NoSQL databases and
 - Systems that store unstructured data objects.

Swift in the CLASS project – cont.

- We analyzed open source systems: WALRUS (Eucaliptus), SWIFT, LUSTRE, TWISTED STORAGE, TASHI, SECTORE/SPHERE, HADOOP, MYSQL CLUSTER, MONGO DB
- And commercial cloud-based storage: MICROSOFT AZURE, ORACLE, AMAZON S3, GOOGLE
- We selected SWIFT (Object storage) and HADOOP (DFS) for test implementation and testing.
- We foresee different application scenarios:
 - A single user with high storage requirements (private)
 - Multiple users of shared data
 - A single user with dynamic amount of data (need for extension of private storage with public storage)
 - Same as above, but for shared data
 - Some other scenarios could appear?

Hardware and software platform

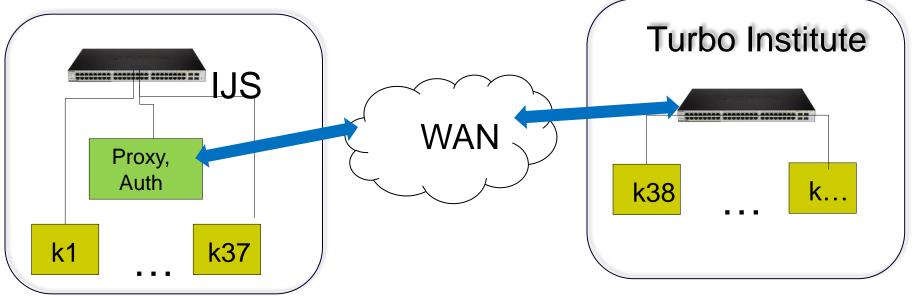
- Cluster on Jožef Stefan Institute (JSI):
 - 37 nodes:
 - Master node
 - Working nodes
 - Each node is independent machine
 - Nodes are connected with Gigabit Ethernet

Hardware specifics and operating system

- The base is the HP DL160 G6 server:
 - up to 2 processors
 - up to 18 x 16 GB of RAM
- Processor Intel Xeon 5520 (4 cores and hyperthreading
- 6 GB RAM (DDR3, ECC, 1060 MHz, 3 channels)
- 500 GB hard disk (3.5 in, SATA, 7.2 K rotations/min)
- **RAID only the master node** has 4 HDs:
 - RAID 1+0 with 917 GB of storage space altogether
- All the nodes have 64-bit Ubuntu Server 11.04

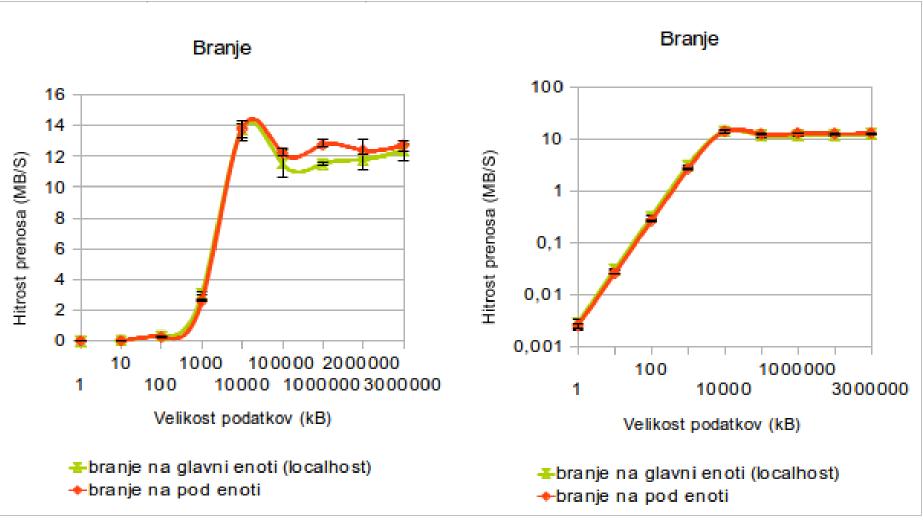
Swift installation on IJS

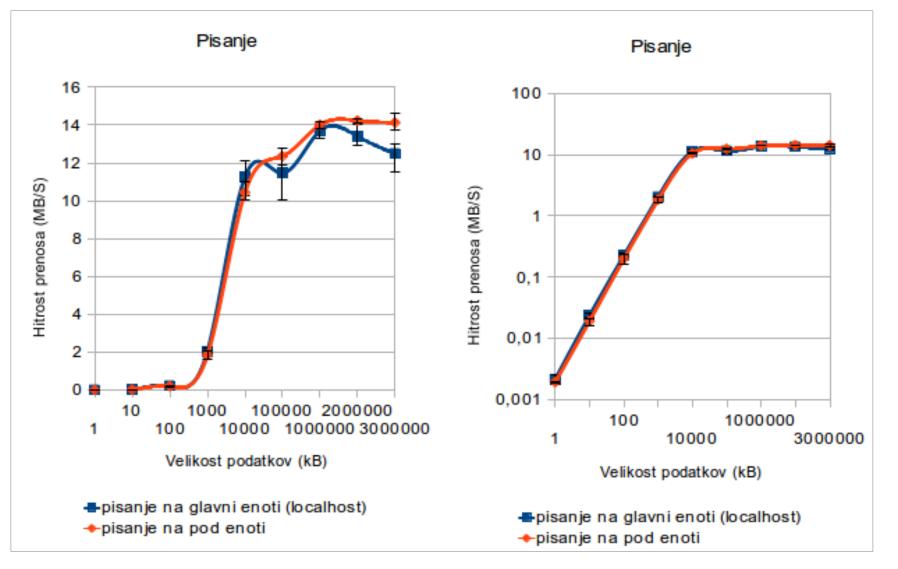
- Current Swift installation on IJS has the following configuration:
 - Master node is running:
 - Proxy server
 - Authorization server
- Working nodes k10, k11, k12, k13, k14 are each running:
 - Object services
 - Container service
 - Account services


Current IJS Installation details

- Number of partitions: 2^9=512
- Number of replicas: 3
- Number of zones: 5
- XFS file system (XATTRS) recommended
- Authorization:
 - Swauth
 - TempAuth is used at the present time

Work in Progress


- Extend Swift to the whole cluster
- Perform additional tests and benchmarks (Hadoop)
- Multiple data centers installation:


First Benchmark Results

- Test procedure:
 - Writting nad reading
 - Two types of access:
 - From master machine (local host)
 - From distant machine 1Gb/s connection
- Expected values:
 - Speed from master machine > speed from distant machine
 - Writting and reading speeds > 50 MB/s

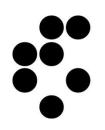
First Benchmark Results -Reading

First Benchmark Results – Writing

Benchmark Results - Comments

- Reading and writting from distant machine is a bit faster - unexpected
- We noticed that while read or writte operation one core on the master node is at 100% utilization
- We expected higher speeds
- System fine tuning -> reruning benchmarks

Conclusion


- Difference in bandwidth up to 10x between Swift and Hadoop in reading and writing to the same architecture.
- We have to find out more details about performance
- Perform additional tests and benchmarks, also between multiple data centers installations
- Result system evaluation and prescription for fine tuning

Hybrid Cloud Storage (OpenStack Storage and AmazonS3)

Aleksandra Rashkovska

Aleksandra.Rashkovska@ijs.si

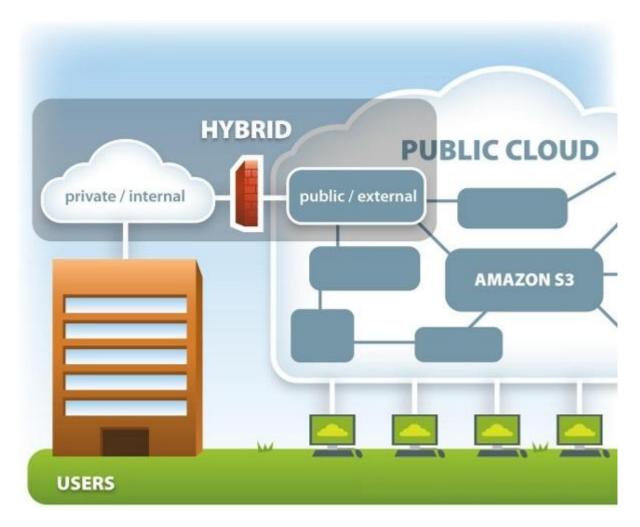
- Cloud Storage: public, private, hybrid.
- Approaches for migration to public cloud storage:

Three routes to implementation.

 OpenStack Storage and AmazonS3: Implementation examples.

Public Cloud Storage

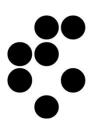
- Cloud storage option offered by a fast growing list of service providers (Amazon, AT&T, Iron Mountain Inc., Microsoft Corp., Nirvanix Inc., Rackspace Hosting Inc.)
- Infrastructure: usually low-cost storage nodes with an objectbased storage stack.
- Data in the cloud is accessed mostly via REST and SOAP.
- Redundancy is achieved by storing each object on at least two nodes.
- Usage is charged on a dollar-per-gigabyte-per-month basis.
- Designed for massive multi-tenancy that enables isolation of data, access and security for each client.


Private Cloud Storage

- Runs on dedicated infrastructure.
- Usually for a single tenant.
- Do not scale to the degree public storage clouds can.

Hybrid Cloud Storage

The best of both worlds



Hybrid Cloud Storage

- Hybrid cloud storage → when traditional storage systems or private cloud storage are supplemented with public cloud storage.
- Key requirements :
 - The hybrid cloud storage must behave like homogeneous storage.
 - The hybrid cloud storage should be transparent.
 - Mechanisms to keep active and frequently accessed data on-premise and push inactive data into the cloud (policy engines to define the circumstances when data gets moved into or pulled back from the cloud)

Migration to public cloud storage

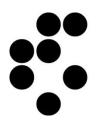
- Three routes to implement hybrid cloud storage
 - Via cloud storage software that straddles onpremise and public cloud storage (Cloud storage software implementation)
 - Via cloud storage gateways (Cloud storage gateways implementation)
 - Through application integration

(Application integration implementation for hybrid cloud storage)

Cloud storage software implementation

- Only possible today if the internal and external storage clouds run the same cloud storage software.
- Standardization initiatives in progress:
 Storage Networking Industry Association (SNIA) Cloud Data Management Interface (CDMI)
- Cloud software vendors:
 - Nirvanix Nirvanix hNode internal cloud storage
 complemented with Nirvanix Storage Delivery Network
 cloud storage
 - *EMC Corp.'s Atmos* software-based, hardware-agnostic, object-based storage stack. EMC sells Atmos to enterprises and providers, so on-premise Atmos deployments can federate with Atmos services in the cloud. EMC's most prominent customer is AT&T.

Cloud storage gateways implementation


- Cloud storage gateways sit between on-premise storage and public cloud storage.
- Cloud gateways perform data migration of data from on-premise storage into public cloud storage and vice versa, usually via policy engines.
- Cloud storage gateways vendors:
 - *Cirtas Systems Bluejet Cloud Storage Controller* blockbased cloud storage gateway appliance; currently integrated with public cloud storage services from Amazon and Iron Mountain.
 - Riverbed Technology Riverbed Whitewater cloud backup appliance offering inline data deduplication; currently integrated with the AT&T and Amazon storage clouds.

Application integration implementation for hybrid cloud storage

- All public cloud storage services offer APIs to interact with private cloud storage software and cloud gateways.
- Cloud storage APIs enable custom in-house and commercial applications to tap into public cloud storage via REST interfaces.
- Example:

Backup application vendors have started to add public cloud storage support to their backup suites.

OpenStack Storage and AmazonS3:

Cloud storage gateway implementation example

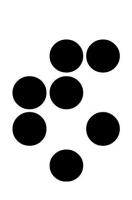
- Automating OpenStack Swift backup to Amazon S3 using SMEStorage Cloud Storage gateway
 - Requirements: Personal Lifetime Cloud or an Organisation Cloud File Server SMEStorage Account, or SMEStorage Open Cloud Platform Appliance
 - SMEStorage Cloud Dashboard:
 - 1. Add Cloud Provider

		I The Manager 3' MIN		E	-
Providers carrently in an					
Provider	Account		Herbecka P	No. Acti	-
A SigDrive	Hy Skolinive Yiler			30 EM	Settings
-th Amazon 53	My Amazon 33 films			3 Def	Settings
Google Doot	My Compile Doos Niles		- 14	\$70 Def	Serriga
tour Box.net.	Hy Revised New			25 Def	Serres
T Google Storage	Ny George Stomps film			34 210	Series.
@ RackSpece Cloudfiles	Ny RackSpace Nes			291 186	Series
Elisk/MobileHe	Hy MobioNe Tiles			91 007	Service
> Sharepoint	He Shangooint New			42 Def	Littres.
ak WebDav	Hy WebZier Flee		100	139 34	Stange
CAnaston Cloud Drive	Hy Aniazon (D)			2.08	Serrige
Coogle sites	Pp Daugh line Hut			10 04	herei
O Dportilizack	Hy OperStack Res			10 Def	Serrige
1 SkyDrive	Pp BigDrive Time			43 (34	befrigt
Google Door	He Geogle Deer Net			\$7 Dif	herei
C DrapBox	My Despillion Film			8 74	Destroy of
A SigDrive	Hy Septrice Files			159 Ibr	Averal
SMEStorage That	Dillionge		. 6	195	Distance.
Providents in page 17					
	Add new provider Yo	su tan add 3 more providens			
Chunking -					

2. Select backup cloud provider

3. Enter Amazon S3 Details

OpenStack Storage and AmazonS3:


Cloud storage APIs example

- OpenStack AmazonS3 Compatible API
 - Swift3 middleware emulates the Amazon S3 REST API on top of Swift.
- Jclouds BlobStore API
 - Jclouds open source library for the cloud in java and clojure.
 - BlobStore Portable means of managing keyvalue storage providers: AmazonS3 and OpenStack supported.

Conclusion

- Implementing hybrid clouds in data storage environment can be done in three different ways.
- Choose to implement hybrid clouds via cloud storage software, cloud storage gateways or through application integration - all viable options with several providers and products to choose from.
- Weigh your options and choose the hybrid cloud approach that best suits your storage environment.

Thank You for your attention.

