
Received February 24, 2021, accepted March 19, 2021, date of publication March 26, 2021, date of current version April 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069043

Three-Point Synchrophasor Estimator With Better
Off-Nominal Frequency Leakage Reduction
ROMAN NOVAK , (Member, IEEE)
Department of Communication Systems, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia

e-mail: roman.novak@ijs.si

This work was supported by the Slovenian Research Agency under Grant P2-0016.

ABSTRACT Synchronous phasor measurements have long been an important tool in power flow modelling
and network state estimation as well as in many other tasks that support power grid observability. Classic
phasor estimation algorithms are often preferred over complex alternatives. They are based on a variant of
the Discrete Fourier Transform (DFT) while relying on a sampling frequency locked to the system nominal
frequency. The spectral leakage caused by the small off-nominal frequency excursions in such settings
introduces errors that are handled by the estimation algorithms to a different extent. Well-known three-point
averaging filter (3P) is a low-cost spectral leakage reduction technique in one of the simplest estimators based
on a single-bin DFT. However, it only partially removes the oscillating components. When an independent
standard-based frequency tracking is available, the errors can be further compensated with minimal cost.
We propose a frequency-corrected three-point estimator (F3P) to eliminate the induced spurious spectrum
progressively with the increasing sampling rate while building on the analytical expression of the remaining
error. We show performance benefits of the F3P under finite sampling rates when compared to the baseline
3P and to the classical Interpolated DFT (IPDFT) in static conditions. The F3P removes most of the leakage
without the need of data resampling. In less ideal conditions with additive 50-dB noise, up to a 10-fold
reduction of the 3P error is achieved. The error ratio of the reference IPDFT over the F3P is approximately
1.4 under the same conditions and largely independent of the frequency excursion. The presented simulation
results prove the algorithm’s superior performance in most of the steady-state tests defined by the relevant
Standard, whereas the dynamic performance can be brought to an acceptable level by the use of a single-cycle
observation window, with the response times comparable to those of the IPDFT.

INDEX TERMS Digital signal processing, discrete Fourier transform, measurement errors, phasor measure-
ment unit, power distribution, synchrophasor.

I. INTRODUCTION
Power grid observability is based on the increasingly sophis-
ticated measurement instruments and techniques. Voltage or
current phasor representation, i.e., magnitude and phase angle
at a selected measurement point, is the key parameter, among
many other uses, for modelling power flow, network state
estimation, wide are control, or for critical event detection.
Phasor Measurement Units (PMUs) are commonly deployed
over the transmission networks. They are gradually installed
in the distribution grids as well [1], where the more dynamic
operational parameters raise stringent accuracy requirements.
For instance, lower power flows and shorter line distances

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

are just two reasons for the reduced phase displacement
of the synchronous measurements. Low voltage differences
also constrain the tolerable error levels of the synchronous
measurements, with the misalignment of the external clock
references further penalizing the measurement accuracy. The
latter is also caused by the use of diverse clock synchroniza-
tion techniques.

Phasor estimation algorithm is at the core of PMU-like
devices. In order to estimate a phasor from the set of acquired
samples, the algorithm typically adopts a form of Discrete
Fourier Transform (DFT), modifying it in a way to derive
properties of a single fundamental frequency. Because the
actual frequency of power systems dynamically fluctuates
within a relatively narrow range, data sampling is com-
monly locked to the system’s rated frequency provided by
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an external clock reference. Other approaches are certainly
possible; however, they typically increase the complexity of
measurement devices.

The fact that sampling process is slightly out of sync
from the actual off-nominal frequency leads to the well-
known spectral leakage in the DFT [2]. The leakage shows
as the induced spurious spectrum due to discontinuities at
the sample window boundaries. It is a primary source of
errors in the estimated phasors. In addition to the underes-
timated magnitudes and shifted angles, a stream of conse-
quent estimates exhibits slow and fast oscillations both in
magnitude and phase angle, with the severity depending on
the difference between the nominal and the actual frequency.
The oscillations, especially the faster ones, are a cause of
concern because they affect the comparison of imprecisely
synchronized measurements and even more those following
in time. Note that in power systems we are mostly concerned
with the difference of two phasors. As demonstrated latter,
the fast oscillations occur at the second harmonic of the mea-
sured off-nominal frequency if the above estimation principle
is used.

Although some of the effects of frequency leakage can be
considerably minimized by adopting an appropriate window
function, a three-point averaging filter (3P) proves to be very
effective while using the simplest rectangular window and a
single-bin DFT [3]. However, the second-harmonic ripple is
not entirely eliminated and some error remains. The objective
of the presented work is to eliminate this type of error further
in order to improve the estimation accuracy even with the
loosely synchronized clocks while preserving fast response
and low complexity of the baseline algorithm. We focus on
the estimators with good performance under the static condi-
tions, as required by many power grid applications. In accor-
dance with the distinction made by the recently published
International Standard that regulates synchrophasor measure-
ment devices for power systems IEC/IEEE 60255-118-1 [4],
i.e., the Standard, those estimators are better suited for the
measurement M-class devices as opposed to the protective P-
class devices.

In summary, the contributions of this paper are as follows.
• Frequency-corrected three-point averaging filter (F3P)
is proposed to efficiently remove most of the
off-nominal frequency leakage in the subsequently eval-
uated magnitudes and phase angles under the steady-
state conditions.

• An independent Standard-complying frequency tracker
is only employed to preserve the low computational cost
and the responsiveness of the baseline estimator.

• No amplitude or phase angle calibration is required due
to the frequency-mismatched data sampling. An addi-
tional reduction of the discretization error and, hence,
the faster convergence towards the total elimination of
the leakage-induced effects is achieved by the intra-
sample phasor interpolation.

• The F3P is being shown to outperform the reference
Interpolated DFT (IPDFT) [5], [6] in most of the

steady-state tests defined by the Standard. In addition,
the impact of sampling rate on the F3P performance has
been studied. One-cycle variant of the F3P is proposed
in order to improve the dynamic performance.

In the following, a brief survey of related work is presented
in Section II. In Section III we recall the analytical expres-
sion for the leakage if single-bin DFT is estimated at off-
nominal frequency while using rated frequency clock. Next,
the remaining error after the three-point average is derived.
Frequency-corrected filtering is then showed to eliminate
the second harmonic ripple in settings with no discretization
error. Phasor interpolation is introduced as a way to reduce
that discretization error below sampling rate limits. The F3P
is evaluated in Section IV, where a comparison is made with
the classical IPDFT. The analysis is focused on the standard-
ized steady- and dynamic-state tests. Further, we quantify the
impact of the sampling frequency and provide a comparison
of the estimator to some of the state-of-the-art proposals.
A short discussion is given in Section V, followed by the
conclusion in Section VI.

II. RELATED WORK
The research of phasor estimation algorithms is generally
driven by the three main factors, namely the efficiency of
handling the off-nominal frequencies, the overall accuracy
and the tradeoff between the accuracy and the responsive-
ness. Variations of the discrete Fourier technique are the
most common [7]–[9], with Kalman filter [10] and the least-
squares methods [11], [12] as the more complex options for
improving the accuracy while sacrificing the simplicity. Note
that the proposed F3P belongs to the first DFT-based group.
Frequency tracking and resampling is another technique to
reduce the errors [3]. The estimators that completely abandon
the DFT approach find their foundation in a complex Taylor
expansion [13], wavelets [14], adaptive filtering [15] or in the
signal subspace [16]. The flat-top finite-impulse response fil-
ters can efficiently handle harmonic phasor estimation while
using a bank of quadrature oscillators [17]. On the other hand,
maintaining a fast response time while providing acceptable
accuracy is best captured by the IPDFT [18] and some of its
improvements [5], [6], [19], [20], although the fast response
times of the latter are questionable. Iterative approaches are
commonly used to improve accuracy in the off-nominal case
[21]. Other calibration-based methods have been proposed
that take into account a power system model to eliminate
erroneous phase angle differences [22]. The impact of mea-
surement errors on the synchrophasor-based applications is
also widely studied, with a more recent systematic evaluation
in [23]. Table 1 presents some highlights and limits of the
aforementioned phasor estimation techniques.

III. CORRECTION OF THE LEAKAGE EFFECT
The leakage phenomenon represents the dominant source of
errors if phasor estimate is based on the discrete Fourier
transform. In order to quantify that error, let us first assume
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TABLE 1. Phasor estimation techniques.

that the signal can be modelled by a sinusoid

x(t) = Xm cos(2π ft + φ) (1)

with a frequency f , phase shift φ and peak amplitude Xm.
A complex number

X =
Xm
√
2
ejφ (2)

is then, by definition, the phasor representation of (1).
In power systems the root mean square (RMS) value of the
input signal is more customary than the peak amplitude,
hence the division of Xm by

√
2. Measuring equipment makes

use of a digitized stream xn = x(n1t) at fixed sampling
rate Fs = 1/1t . A multiple of the system nominal fre-
quency Nf0 is commonly chosen as the sampling frequency
in phasor measurement devices [3], [5]. Given an interval of
M sampling points, where M is an integer multiple of N ,
i.e., M = pN , p ∈ N1, the most straightforward way of
estimating (2) under the above conditions is to compute the
p-th harmonic component of the normalized DFT

X ′r =

√
2

M

r+M−1∑
n=r

xne−
j2πpn
M , (3)

where the use of running index r eliminates phase rotation
due to the computation shift. Under the assumption of noise-
free x(t) and infinite computing precision, (2) is exactly equal
to (3) if f = f0 and N > 2. If f is only close to f0, as it
is the case in power systems, (3) is an approximation of
(2) due to the well-known DFT leakage phenomenon. The
exact relation between the two expressions in closed form
for a given discretization index r is derived in [3] and can

be written as

X ′r = PXejr(ω−ω0)1t + QX∗e−jr(ω+ω0)1t

P =
sin M (ω−ω0)1t

2

M sin (ω−ω0)1t
2

ej(M−1)
(ω−ω0)1t

2 ,

Q =
sin M (ω+ω0)1t

2

M sin (ω+ω0)1t
2

e−j(M−1)
(ω+ω0)1t

2 (4)

whereω = 2π f ,ω0 = 2π f0 andX∗ is a complex conjugate of
the true phasor representation X . In other words, X ′r is the cal-
culated phasor representation of a noise-free x(t) if a single-
bin DFT without any elaborate windowing, i.e., rectangular
window, is taken at nominal frequency f0. The two summation
terms in (4) consist of complex attenuation partsPX andQX∗,
which are independent of discretization index r and rotate at
angular speeds of ω − ω0 and ω + ω0, respectively. The two
rotations show as a composite magnitude oscillation at the
angular frequency of 2ω. Also due to the compound effect of
both rotations, the phase angle falsely drifts and oscillates as
illustrated in Fig. 1.

The faster oscillations can have severe consequences for a
comparison of slightly misaligned measurements or for the
applications where precise phasor value is required, and they
should preferably be removed. On the other hand, the slower
phase drift, which is also an oscillation in longer term,
is much less disturbing and is tolerated even in the state
estimators [24]. Moreover, the latest Standard requires this
type of phasor rotation to be included in the reported phasors
if the power system frequency is different from its nominal
value. Note, however, that factor P should still be eliminated
by the phasor estimation algorithm.
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FIGURE 1. Illustration of an exaggerated DFT leakage effect on the
estimated magnitude and phase angle.

A three-point averaging filter (3P) has been regularly used
to mitigate the faster oscillations before the appearance of
more elaborate estimators [3]. The filter averages three pha-
sor estimates spaced at constant phase angle of π/3 with
respect to the nominal frequency. This corresponds to the
angle difference of 2π/3 for the second harmonic. The 3P
can be written as

X3P
r =

1
3
(X ′

r−N
6
+ X ′r + X

′

r+N
6
). (5)

In discrete units the spacing angle equals N/6 samples. Apart
from the frequency dependent attenuation compensation due
to the already mentioned P and Q terms, the correction of
the estimator oscillations has, to the best of our knowledge,
stopped here. The assumption has been that the remaining
error is negligible for practical applications, arguing that
1ω = ω−ω0 is sufficiently small in power systems, whereas
ω + ω0 is close enough to 2ω0 for which the three-point
average works perfectly. We show that an order of magnitude
more precise phasor estimate can be achieved by going one
step further, which in steady-state conditions brings largely
inferior 3P estimator on par with or better than more complex
state-of-the-art estimators.

First, by using identities r1t = t , N1t = T0 and T0 =
2π/ω0, one can estimate a closed-form alternative to (4) for
a DFT with the addition of the three-point average as

X3P
r = PXejr(ω−ω0)1t

(
1
3
+

2
3
cos

(
(1−

ω

ω0
)
π

3

))
+QX∗e−jr(ω+ω0)1t

(
1
3
+

2
3
cos

(
(1+

ω

ω0
)
π

3

))
.

(6)

The derivation of (6) is provided in Appendix A. The three-
point average only attenuates the original summation terms.
Fig. 2 shows the actual attenuation factors for the off-nominal
frequencies in the range of ±5Hz, which fits the widest
frequency range of the standard M-class compliance. At both

FIGURE 2. Additional attenuation factors introduced by 3P to the
closed-form expression.

frequency extremes, Q-term, which is responsible for the
faster oscillations, still keeps up to 6% of its unfiltered value.

Here, a modified three-point average is proposed with the
spacing corrected by factor

k =
2ω0

ω + ω0
. (7)

The redefined frequency-corrected three-point average

XF3Pr =
1
3
(X ′

r−k N6
+ X ′r + X

′

r+k N6
), (8)

using the same substitutions as in derivation of (6), entirely
eliminates the second term in the closed-form expression

XF3Pr = PXejr(ω−ω0)1t
(
1
3
+

2
3
cos

(
2π
3

(ω − ω0)
(ω + ω0)

))
. (9)

The derivation of (9) is provided in Appendix B. Because
kN/6 is generally a real number, it needs to be rounded to the
closest integer. Therefore (8) only converges to the closed-
form expression as the sampling rate tends to infinity. The
slowly rotating phasor is finally acquired by dividing (9) with
the remaining complex attenuation constant.

Correction factor k establishes the ideal three-point spac-
ing for the elimination of the Q-term due to

(ω + ω0)k
T0
6
=

2π
3
. (10)

In practice, such an ideal cancellation cannot be achieved
for at least two reasons. The actual frequency can only be
estimated and there is no such thing as an infinite sampling
rate.

Finite sampling rate inevitably introduces errors. While
N can be chosen such that N/6 is integer value, kN/6 is
generally noninteger value. Discretization artefacts at given
sampling rate can be reduced by using interpolation between
the known discrete-time values. Here, a linear interpolation
is proposed because of its low-cost implementation and good
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performance. For instance, the interpolation of the first sum-
mation term in (8) can be done as

X ′
r−k N6

≈ X ′rL + µ(X
′
rH − X

′
rL ), (11)

where rL = br − kN/6c and rH = dr − kN/6e are the lower
and upper integer indices, respectively, whereas µ = r −
kN/6− rL is the interpolation factor.
The F3P requires an estimate of the actual frequency,

which is not calculated by the algorithm itself, like, for
example, by the six-parameter, second order Taylor’s expan-
sion [13]. Here we rely on the existing frequency tracking
algorithms. In order to maintain the independence of the pha-
sor estimation algorithm from the actual frequency tracker,
we distance ourselves from the particular implementation,
but assume that frequency estimation is compliant with the
Standard in terms of the maximum frequency error (FE)
allowed for a specific operational condition. The interested
reader is referred to [3] for a comprehensive introduction on
the frequency estimation techniques.

IV. EVALUATION
We assess the accuracy of the F3P with respect to the
static and dynamic performance metrics outlined in the syn-
chrophasor measurements standard [4]. The evaluation is not
a measurement compliance test as that would require actual
laboratory tests of physical PMU device as a whole, which
includes the influence of other functional blocks, such as
analogue front end and filtering. Nevertheless, we test the
core algorithm in isolation and compare the results to those
provided in [5], where similar methodology was used to eval-
uate and compare the IPDFT to the number of alternatives.
In that way, a comparison is established between multiple
synchrophasor evaluation algorithms without the need to
actually implement all of them. The steady-state tests include
off-nominal frequency offset test, accuracy assessment in the
presence of additive wideband noise, as well as harmon-
ics and out-of-band interference tests. On the other hand,
the dynamic performance tests assess the accuracy of phasor
estimates of a modulated signal, measure performance during
a system frequency ramp, and evaluate phasors during abrupt
steps in amplitude or phase angle. The performance measure
used in the evaluation is the Total Vector Error (TVE), which
is the normalized difference between the reference and the
assessed phasor, sensitive to both the amplitude and the phase
angle error

TVE =
|X ′ − Xref|
|Xref|

. (12)

The maximum frequency errors considered are those spec-
ified by the Standard for the more limiting P-class devices.
In the steady-state tests±0.005Hz is assumed, whereas under
the dynamic conditions ±0.06Hz, ±0.01Hz and ±0.005Hz
maximum FEs are applied in the modulation, ramp and step
tests, respectively.

A. REFERENCE IPDFT ESTIMATOR
We take the IPDFT as a reference approach in the following
analysis. The IPDFT variants are among the most frequently
used algorithms in synchrophasor measurements with good
performance in terms of residual error. The base principles
and formulas are given next for the sake of completeness.
Further theoretical and practical details are available in sev-
eral texts, e.g., [5], [6], [18], [20]. We choose the algorithm
variant with the best documented performance [5], [6].

Although not strictly needed, the assumption of the
off-nominal frequency deviating from the nominal frequency
less than half of the DFT frequency resolution δf simplifies
both the formulation and the algorithm implementation

|f − f0| ≤
δf

2
, (13)

where δf equals Fs/M with Fs being the sampling rate and
M the window length. In the first step, the selected IPDFT
applies a maximum sidelobe decay (MSD) window to the
input signal and computes the DFT

Y (k) =
M−1∑
m=0

wmxme−
jk2πm
M k ∈ [0 . . .M − 1], (14)

where the H -term MSD belongs to the cosine windows with
the most rapidly decaying sidelobes [6]

wm =
H−1∑
h=0

(−1)hah cos
2πhm
M

m ∈ [0 . . .M − 1]. (15)

The number of samples M is required to span several cycles
of the nominal frequency, typically 2 to 5. In the case of
H = 3, the window coefficients are a0 = 0.375, a1 = 0.5 and
a2 = 0.125. Note that F3P parameter p is equivalent to H .
We keep the original notation of IPDFT for clarity.

Let the location of the DFT maximum of (1) is at fixed
index kmax. In the next step, the IPDFT chooses the second
largest DFT amplitude either at kmax− 1 or kmax+ 1 and sets
parameter ε to 0 or 1, respectively. This step prevents using
a single cycle M because kmax must be at least 2. In order to
compute phasor representation of the input signal, α and δbin
are calculated next as

α =
|Y (kmax + ε)|
|Y (kmax − 1+ ε)|

(16)

δbin =
(H − 1+ ε)α − H + ε

α + 1
. (17)

The final interpolation step gives an estimate in the form of
peak amplitude Ym and phase angle φ

Ym =
22H−1πδbin|Y (kmax)|
M sin (πδbin)(2H − 2)!

H−1∏
h=1

(h2 − δ2bin) (18)

φ = 6 Y (kmax)−πδbin+π
δbin

M
−
π

2
sign(δbin)− 6 W−

π

2
,

(19)
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where

W =
H−1∑
h=0

(−1)h0.5ah[
e−

jπh
M

sin( πM (−δbin − h))
+

e
jπh
M

sin( πM (−δbin + h))

]
. (20)

B. STEADY-STATE EVALUATION
Steady-state tests are designed to measure phasor accuracy in
conditions under which the amplitude, frequency and phase
angle are fixed for the period of the measurement.

FIGURE 3. 3-cycle IPDFT [5] (red), 3P [3] (green) and F3P (blue)
magnitude oscillations at f = 51.5 Hz, Fs = 10000 samples/second and
f0 = 50 Hz; the estimators are applied to a noise-free signal.

FIGURE 4. 3-cycle IPDFT [5] (red), 3P [3] (green) and F3P (blue) phasor
angle oscillations at f = 51.5 Hz, Fs = 10000 samples/second and
f0 = 50 Hz when applied to a noise-free sinusoid.

1) OFF-NOMINAL FREQUENCY OFFSET TEST
The off-nominal frequency offset test, in particular, is the
fundamental steady-state test to measure the amount of
remaining spectral leakage due to mismatched sampling rate.
According to the Standard, maximum TVEmust be observed
over the full test interval. The importance of the maximum
value is illustrated in Fig. 3 and Fig. 4, where the magnitude

and phase errors are shown for consequent discretization
indices. The 3-cycle IPDFT is compared to the 3-cycle 3P
and F3P. The number of samples per rated 50Hz cycle was
set to 200, i.e., Fs = 10000. The remaining fast oscillation
for a chosen off-nominal frequency of 51.5Hz is significant
for the 3P and less pronounced for the IPDFT. In the case of
F3P, the oscillation is barely noticeable, but still present due
to the finite sampling rate.

FIGURE 5. Maximum TVE of estimated phasors of a noise-free sinusoid in
the range of ±5 Hz from the nominal 50 Hz are shown for the 3-cycle
IPDFT [5] (red), 3P [3] (green) and F3P (blue) at Fs = 10000
samples/second.

ThemaximumTVE for a selected range of off-nominal fre-
quencies is depicted in Fig. 5 for a 10-second stream. Because
most power systems operate in a relatively narrow band of
frequency, the off-nominal frequency range of 50Hz ± 5Hz
is considered sufficiently wide for the analysis. The range
is also recommended for the M-class compliance in the
Standard, whereas P-class devices targeting fast response pro-
tection applications have narrower frequency range require-
ments. In Fig. 5, the algorithm parameters are set to
N = 200, p = H = 3 and f0 = 50Hz. Overall, the F3P
manages to reduce the maximum TVE for at least an order
of magnitude in comparison to the 3P and the IPDFT over
the entire frequency range. In the case of IPDFT, most of the
error is caused by the spectral interference from the image
component [5]. On the other hand, the remaining F3P error is
strictly a consequence of the finite sampling rate.

Under the noise-free steady-state conditions and in line
with (8), the F3P should eliminate fast oscillations in pha-
sor estimates when sampling rate approaches infinity. Next,
we want to establish the amount of residual TVE under
the realistic finite sampling rates. For comparison purposes,
the input signal is still assumed to be noise-free and without
measurement inaccuracies. Fig. 6 shows the maximum TVE
as a function of the number of samples per nominal cycle for
sampling rates from 1 to 20 kHz. Again, the off-nominal fre-
quency of 51.5Hz is selected to demonstrate the differences
between the three estimators.
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FIGURE 6. The impact of finite sampling rates on the maximum TVE;
shown are 3-cycle IPDFT [5] (red), 3P [3] (green) and F3P (blue) estimates
at f = 51.5 Hz.

With respect to the 3P estimator, the maximum TVE con-
verges towards the theoretical value that follows from (6).
As expected, the F3P TVE quickly approaches zero with
less accurate interpolation lobes and minimums at values for
which kN/6 is being close to integer. On the other hand,
the IPDFT is not sensitive to the sampling rate. However, its
constant maximum TVE is quickly outperformed by the 3FP,
e.g., in Fig. 6 for the sampling rates over 2.5 kHz. Because
sampling rate must be chosen sufficiently high to avoid the
aliasing effects on the input signal, this should not be a
problem for real devices. In conclusion, the F3P presents
attractive properties. It exhibits a monotonically decreasing
error and the off-nominal frequency independence. Further,
all estimators are well below the 1% TVE threshold recom-
mended by the Standard.

2) ADDITIVE WIDEBAND NOISE TEST
Phasor estimation takes place in practice on a noisy input.
Measurement errors alone can be regarded as a noise, though
high-frequency transients and harmonics of the prevailing
system frequency are far larger contributors. Uncertainties
can be further attributed to the synchronization mechanisms,
data acquisition equipment and to the transducers. Here we
deal with the additive wideband noise, for which a separate
test is defined by the Standard. Some of the disruptions
are evaluated by the dynamic-state tests later on, whereas
harmonics are targeted in the next subsection.

The other parameters being fixed as in the off-nominal
frequency offset test, we introduce a zero-mean, normally
distributed additive white Gaussian noise with variance corre-
sponding to the 50 dB signal-to-noise ratio (SNR). The results
are presented in Fig. 7.

The 3-cycle F3P performs better than both reference esti-
mators under the same simulation conditions even though the
IPDFT handles abrupt changes in the extracted portion of
a signal with a smooth window function, tailing off signal

FIGURE 7. Performance of 3-cycle F3P (blue) versus IPDFT [5] (red) and
3P [3] (green) estimators; white Gaussian noise is added to the input
sinusoid at 50 dB SNR and Fs = 10000 samples/second.

more gradually as the F3P square windowing. However,
the approximations made by other parts of the IPDFT algo-
rithm cancel this advantage. All results in Fig. 7 are below the
1% TVE threshold. Note that the error of a frequency tracker
is also negligible for the first two steady-state tests. Indeed,
the frequency estimation proposed in [3] and amended with
a single-cycle averaging filter is highly efficient in such
conditions. The FE can easily be reduced well below the
required ±0.005Hz.

3) HARMONIC DISTORTION
Input signals may be corrupted by the harmonics. The actual
impact on the estimator’s accuracy decreases with the har-
monic number. Therefore, only the second harmonic test
is presented here, for which the maximum distortion is
expected. Further, 10% of the fundamental amplitude is used
for the interfering harmonic signal, which is the larger of
the two values in [4]. With respect to the above condi-
tions, this is the first test, where the IPDFT surpasses the
F3P in terms of the evaluated fundamental phasor accuracy,
as shown in Fig. 8. In order to reduce the error below the
1%TVE threshold, an additional correction is necessary, such
as to evaluate the second harmonic phasor first and subtract
the value from the estimated fundamental phasor. Similar
approach can be found in [5]. Applying the FE of±0.005Hz
in this test leads to 0.1 increase of the maximum TVE.

4) OUT-OF-BAND INTERFERENCE
The quality of a phasor estimation algorithm is evaluated next
in terms of its filtering capability of interfering frequencies
that fall outside the power system operating range, i.e., out-of-
band frequencies. According to the Standard, the minimum
interfering frequency range should span from 10 to 100Hz
for the nominal frequency of 50Hz. Further, the pass-
band is coupled to the phasor reporting rate. In the case
of 25 reports per second, the excluded passband evaluates
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FIGURE 8. Second-harmonic distortion test for 10% harmonic amplitude
and 3-cycle IPDFT [5] (red), 3P [3] (green) and F3P (blue) estimators at
Fs = 10000 samples/second.

FIGURE 9. Out-of-band interference rejection test in the range from
10 to 100 Hz, excluding the passband; 3-cycle IPDFT [5] (red),
3P [3] (green) and F3P (blue) estimators are applied to the fundamental
power signal at f = 48.75 Hz, which is interfered with sinusoids at 10% of
the fundamental magnitude level.

at [f0 − 25/20, f0 + 25/20] = [37.5, 62.5]Hz. Off-nominal
frequency f = 48.75Hz is chosen in the tests presented
in Fig. 9. The required magnitude level of the interfering
signals, introduced one at a time, is 10% of the measured
sinusoid magnitude.

The F3P has better out-of-band interharmonic rejection
capability than the IPDFT for most of the observed range.
The exception are frequencies below 13Hz and above 88Hz.
However, the 1.3%TVE threshold is only reached for roughly
half of the tested out-of-band frequencies. Better performance
would require an additional filtering of the input signal.
Similar to the previous test, 0.1 increase of the maximum
TVE is observed if the FE is set to ±0.005 Hz.

FIGURE 10. Maximum TVE of modulated off-nominal frequency;
1- and 3-cycle F3P (blue) is compared to the 3-cycle IPDFT [5] (red) and
3P [3] (green) using both the amplitude and the phase angle modulation
factor of 0.1 and 5 Hz modulation frequency.

C. DYNAMIC PERFORMANCE
The proposed estimator is based on the intrinsically static
phasor model, derived under the assumption of a steady-state
sinusoidal waveform in accurate measurement applications.
Nonetheless, we also give the results of the three standardized
tests to evaluate the expected dynamic performance.

1) MODULATION TEST
The modulation test is designed to establish the minimum
synchrophasor measurement bandwidth. For that purpose,
the input needs to be modulated in amplitude and/or phase.
The phasor measurement should be within the 3% TVE limit
at the nominal frequency. Because Fig. 10 gives a maximum
TVE for the whole range of off-nominal frequencies, only
central values are subject to the limit. Presented is the worst
case when both the amplitude and the phase angle modulation
are applied at the same time while using 0.1 for the mod-
ulation factors and the modulation frequency of 5Hz. The
3-cycle F3P is clearly outperformed by the IPDFT, but still
under the 3% TVE limit. On the other hand, the 1-cycle F3P
takes advantage of a shorter observation window and reduces
the error the most. The use of maximum FE of ±0.06Hz
affects mostly the frequencies at both ends of the presented
range with the flat region remaining closely to that of Fig. 10.

2) FREQUENCY RAMP TEST
Performance during a linear ramp of the system frequency is
the second dynamic test. In Fig. 11, a constant ramp rate Rf
of 1Hz/s is applied to the nominal frequency from the start.
The measured TVE in the interval between 4.5 and 5 seconds
is shown for the three 3-cycle estimators as well as for
the 1-cycle F3P. While the 3P shows a periodic envelope,
the IPDFT and F3P steadily increase the TVE with the slope
barely noticeable. The IPDFT surpasses the 3-cycle F3P in
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FIGURE 11. Frequency ramp test; time snapshot of the TVE is shown for
the 1-cycle F3P (blue and labeled) and 3-cycle IPDFT [5] (red),
3P [3] (green) and F3P (blue) estimators at 1 Hz/s linear ramp rate, when
applied to the nominal frequency from time zero.

terms of accuracy. Similar conclusion does not hold when the
IPDFT is compared to the 1-cycle F3P, with the F3P show-
ing better performance. Note that if the frequency tracker
is allowed to fluctuate randomly with the maximum FE of
±0.01Hz, which is the value permissible by the Standard for
the reference frequency

f (t) = f0 + Rf t, (21)

the TVE increases to 0.08% and 0.39% for the 1- and 3-cycle
F3P, respectively. However, all the estimators are within the
1% TVE threshold.

3) AMPLITUDE AND PHASE STEP TESTS
The following two tests are defined by the Standard in order
to evaluate the dynamic behavior of an estimator during a
transition between two steady states. The amplitude step test
requires a sudden change in the amplitude of a signal at
the nominal frequency. The change should amount to 10%
transition up or down. Maximum response time tr is among
the more important parameters that needs to be evaluated
in reference to the steady-state error limits. Formally, the
response time is determined from the measured TVE as the
difference between the time that TVE leaves the steady-state
threshold accuracy and the time it returns to and remains
within the next steady-state limit. Figure 12 shows the TVE
during a time window between 1.8 and 2.2 s with the ampli-
tude step occurring at the middle. The maximum TVE at
approximately 5% is reached by all the estimators; however,
the IPDFT reacts faster than the 3-cycle 3P and F3P, which is
attributed to the use of non-rectangular window function. The
shortest reaction time is achieved by switching to the 1-cycle
F3P. Note that the IPDFT has no 1-cycle alternative. Table 2
lists the response times. Taking into account the maximum
allowed time of 7/f0 = 140ms, all the values are within the
Standard requirements for the measurement class devices.

FIGURE 12. Amplitude step test; a 10% step in amplitude is applied to a
sinusoid at nominal frequency. The plotted TVE of the 1-cycle F3P (blue
and labeled) and 3-cycle IPDFT [5] (red), 3P [3] (green) and F3P (blue)
estimators show their dynamic behavior around the transition time.

TABLE 2. Standard step test response times.

FIGURE 13. Phase step test; a π/18 step in phase angle occurs in the
middle of time axis for a signal at nominal frequency. Time dynamics of
the TVE is shown for the 1-cycle F3P (blue and labeled) and 3-cycle IPDFT
[5] (red), 3P [3] (green) and F3P (blue) estimators.

The phase step test requires a sudden π/18 change in the
phase angle. Figure 13 presents the results, this time with the
maximum achievable TVE at 9%. The same conclusions can
be drawn as for the above amplitude step test. The respective
response times are available in Table 2. The IPDFT results
closely resemble those reported in [5]. The F3P response
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TABLE 3. Step test response times of competing approaches.

TABLE 4. Maximum TVE of competing approaches.

times show no significant deviations if a frequency tracker
is employed with the maximum FE in compliance with the
Standard P-class threshold of ±0.005Hz.

D. COMPARISON TO THE REPORTED PERFORMANCES
The tests presented here closely resemble conditions adopted
by some other researchers to allow for a credible comparison
of the results. In addition to the IPDFT, 3P and the two F3P
variants, Table 3 and Table 4 enlist results of the non-DFT
based 6PM and WLS algorithms as well as that of the TPF,
which is a single-cycle variant of the three-point filter. The
values were reported by several papers, such as [25] and [26],
and summarised in [5]. The 6PM is a six-parameter Taylor
expansion estimator originally presented in [13], whereas
the WLS computes phasors by postulating and solving a
weighted least squares problem [12]. The response times for
the amplitude step magnitude of -20% and the phase angle
step magnitude of π/12 are shown in Table 3. Note that
the steps are larger than those required by the Standard and
presented in the previous subsection. Apart from the TPF,
the 6PM and the WLS show response times slightly below
the values reported for the 3-cycle F3P. Although designed for
dynamic conditions, the 6PM and the WLS use a window of
three and four cycles, respectively, which has some negative
effect on the response times.

The maximum TVE values of the off-nominal offset tests
in Table 4 are measured at 51Hz. The F3P clearly stands out
from the competing approaches. With respect to the dynamic
performance, the modulation test of the F3P shows weakness
with the maximum TVE above 2%, but with comparable
performance to the other estimators if shorter window is
used. The F3P performance in the ramp test is good even

if measured under the maximum frequency deviation. Here,
the IPDFT and the 1-cycle F3P show the best results.

The reported IPDFT TVE of 0.2% at the SNR of 40 dB [5]
was confirmed versus the 0.15% of the 3-cycle F3P and
0.25% of the 1-cycle F3P. Similarly, the out-of-band inter-
ference tests at lower 5% magnitude of 57.5Hz and 85Hz
interfering signals were checked. In the former case, the max-
imum TVE values of 4.6%, 3.5% and 4.8% were obtained for
the IPDFT, the 3-cycle F3P and the 1-cycle F3P, respectively.
In the latter case of 85Hz, the maximumTVE values of 0.7%,
0.2% and 1.7% were calculated.

V. DISCUSSION
The F3P is basically solving an overdetermined system of
linear equations in complex domain for unknown phasor X ,
i.e., a system consisting of (4) at three indices r . The equa-
tions are carefully spaced in time to eliminate the unknown
X∗ by a simple average. The single-bin DFT and the fre-
quency estimate need to be computed beforehand, with the
values at noninteger indices linearly interpolated from the
values at the closest integer indices. Other methods can be
used to approximate similar systems of various degrees of
freedom in the presence of noise; however, the three-point
spacing provides an elegant and, more importantly, straight-
forward approach of low computational complexity.

It appears that the formulation of (8) violates the causality
principle by referring to the future index r + kN/6. This is
usually not a problem for digital filters, where a short delay
line introduces only a small time penalty, e.g., roughly 3.4ms
at 50Hz rated frequency. The latency, i.e., the time delay from
the occurrence of an event to the time it is reported, caused by
themethod itself due to the window length and the three-point
spacing angle is small in comparison to other contributing
factors. Data time stamping is required by the Standard to
synchronize measurements in applications. When the time
reference of a phasor is being at the middle of a 3-cycle win-
dow and including the three-point delay, the inherent latency
is approximately equal to 33.4ms. The algorithm processing
time, including the time spent for digital filtering and at the
communication interface point is the prevailing factor. The
Standard sets an upper limit on the total latency. Longer laten-
cies are allowed for the measurement applications, with the
prescribed upper limit of 7/fr or 7/f0, whichever is greater,
where fr stands for the reporting rate. In the case of 25 reports
per second, the maximum allowed latency is 280ms, which
is significantly larger than the latency of the method itself.

A prototype synchrophasor measurement unit based on the
F3P has been developed and validated within the FP7 SUN-
SEED project [27]. Low and mid voltage grids of Kromberk
testbed operated by Elektro Primorska were equipped with
the units. The measurements were complemented by those
of smart meters at the user sites and successfully exploited
in the Distribution Network State Estimation (DSSE) exper-
iment. In addition to 37 fully functional PMUs, more than
600 commercially available smart meters were employed in
order to provide the grid state estimation, including the state
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of nodes with no measurements available. The theoretical
findings about the influence of uncertain model parameters
and inaccurate measurements on the DSSE are studied in [24]
and confirmed in the real-world setup. However, the topic
of state estimation is beyond the scope of this paper. The
interested reader is referred to the project deliverables [28].

VI. CONCLUSION
This paper proposed a frequency-adaptive three-point aver-
aging filter for the single-bin DFT to improve the accuracy
of power system’s phasor measurements in static conditions.
The errors of a classical DFT-based algorithm are a conse-
quence of the well-known spectral leakage in the DFT when
the sampling rate is matched to the rated frequency while
measured frequency is allowed to drift within a narrow band.
The choice of the particular phasor estimator was driven
by the algorithm’s low complexity and fast response. The
F3P takes advantage of an independent frequency tracker
in order to compensate for the leakage errors, including the
effect of negative frequency infiltration, without the need
of data resampling. The proposed correction establishes the
ideal three-point spacing for the removal of the oscillating
component. The performance is largely independent of the
actual frequency deviation, at least in the frequency range
expected in power systems. We quantified the impact of
sampling rate and demonstrated the estimator’s performance
in a suite of steady- and dynamic-state tests defined by the
relevant Standard. The simulation results prove the algo-
rithm’s superior performance in off-nominal frequency tests
with and without the noise, good out-of-band interference
results and some weakness in the harmonic distortion test
when compared to the reference IPDFT based on the maxi-
mum sidelobe decay window. Less attractive is the multicycle
dynamic performance, which can be significantly improved
by the use of a single-cycle observation window, an option
that is unavailable for the reference IPDFT.

APPENDIX A
The analytical expression for a phasor estimate based on the
plain single-bin DFT and three-point filtering (3P) at off-
nominal frequency f while the sampling clock is being locked
to the rated frequency f0 follows from (4) and (5)
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by using r1t = t , N1t = T0 and T0 = 2π/ω0. In order to
evaluate X3P

r , N/6 needs to be a whole number.

APPENDIX B
Applying the same substitutions as in Appendix A, a closed-
form alternative to (4) for a DFTwith the frequency-corrected
three-point filter (F3P) is
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Because kN/6 is generally a real number, the F3P estimate
comes close to the closed-form expression as the sampling
rate tends to infinity.
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