
Technical Teport

Matjaž Depolli

first version 2013/11/11
additional results 2014/1/8

1 Introduction

Source code used as the method of the article Exact Parallel Maximum Clique
Algorithm for General and Protein Graph[1] from the Journal of Chemical In-
formation and Modeling (JCIM) was made available on-line1. A bug in the code
was discovered by Ciaran McCreesh and reported to me on 2013/10/13. The
bug was in the code for initial vertex sorting, which appeared different than the
pseudo-code of the article. This was the code for the algorithm, developed by
Tomita et al. and published in their article[2]. The algorithm was supposed
to be used without modifications, and pseudo-code was written appropriately.
Source code, however, performed an additional iteration within the sorting,
which did not altered the order of several vertices after the sorting operation,
and prevented the execution of the initial-clique checking after the sorting. This
procedure checks for a clique within the sorting process, and stores the clique as
the initial guess for the maximum clique, thus making the main search for the
maximum clique a little bit faster. The source code was lacking this procedure,
as the the condition for it would always fail. The correctness of the results was
however not effected by the bug, since the initial order of vertices only influences
search speed.

2 Solution

The bug was eliminated and the initial-clique checking procedure was added
to the source. This procedure is not very compute intensive; it includes one
comparison, and optional assignment of one vector of vertices (a clique). On
itself, it should not influence the run times of the program in any significant
way. It could, in theory, reduce the search time for maximum clique significantly
when providing a good initial guess. How often a good initial guess is provided,
however, is difficult if not impossible to determine analytically. Also the bug-free
initial ordering should provide a boos in speed, but again, the speedup cannot
be analytically estimated. Therefore a series of tests was performed to evaluate
the performance difference caused by the bug. The tests were performed on a
machine from the local computer cluster (CPU: Intel Xeon E5520 @ 2.27GHz).

1http://www-e6.ijs.si/ matjaz/maxclique/

1



3 Experiments and Results

First the source code was modified only to output whether the algorithm finds an
initial guess for maximum clique or not and used to determine on which graphs
the algorithm was more influenced by the bug. Then the version of algorithm
with the bug and the version without were run on all the input graphs from the
experiments published in the before-mentioned article. Both algorithms were
executed in single-threaded mode, to isolate the effects of the bug from the
effects of the parallelization. The results are summarized in Table 3. Since the
computer used for the new experiments differs from the computer used in the
experiments for the article, absolute times are not used, instead the speedup
measured as the ratio of the number of iterations performed and the speedup
of the execution time are shown, both for the new version, relative to the old
version with the bug. Only one run was performed for both algorithm versions,
therefore there is some variation in run times even in cases when the number of
iterations performed is the same.

The bug in the source code increased the mean execution time of the al-
gorithm on DIMACS benchmark graphs by roughly 6%. For most of the
graphs, the difference is negligible and within the normal variation of run times.
A few graphs stands out though, namely gen200 p0.9 44, p hat300-2, p

hat500-2, and san400 0.7 1, where the performance is significantly improved
- by more than 20%. Weather the clique is found or not in the phase of order-
ing vertices (preprocessing) does not seem important for DIMACS graphs. The
largest speedup occurs on the Graph “san400 0.7 1”, where the clique is not
found in the preprocessing and the only difference is the order of vertices.

On the protein product graphs, however, the difference is far from negligible
and the bug fix produces significant improvements, as shown in Table 3. The
clique is found in preprocessing in 90 % cases on these graphs, and this seems
to speedup the bug-free algorithm enormously.

Parallel speedups on Protein product graphs are greatly reduced, since the
sequential algorithm times decreased by such large factors. The execution times
are shown in Figure 3, while the renewed speedup measurements are shown in
Figure 3. These measurements are done against the sequential algorithm, there-
fore also the speedup of the parallel algorithm on a single thread is shown, which
experiences slowdown purely due to parallelization overhead. The computer
used for measurements is not the same as in the JCIM article, and comprises
only 4 cores with hyperthreading technology. Therefore, although plotted on
the same graph, the experiments on 5 or more cores are not directly comparable,
since they are running partly on virtual cores, which achieve up to 30 % of the
performance of sibling physical cores.

4 Summary and Commentary

While the bug is mostly harmless in 90 % of DIMACS graphs it slows down the
algorithm significantly in the other 10 % of the cases; that is by 20-60 %. The
effects are very similar in proportion both on the number of performed iterations
and on the total execution time. On protein product graphs, on the other hand,
the effects of the algorithm are negligible in only 1 case, while they are very
large in the other 9 cases. For 8 of those cases, the number of recursions the

2



graph name initial clique speedup (iterations) speedup (time)
C125.9 x 1.052 1.024
C250.9 x 0.999 1.009
MANN a27 1.000 1.019
MANN a45 1.000 1.007
brock200 1 x 1.000 1.025
brock200 2 x 1.011 1.024
brock200 3 x 1.005 1.090
brock200 4 x 1.002 1.036
brock400 1 1.000 0.991
brock400 2 x 1.034 1.021
brock400 3 1.001 0.999
brock400 4 1.000 0.992
gen200 p0.9 44 x 1.216 1.201
gen200 p0.9 55 x 1.018 1.013
hamming10-2 1.000 0.974
hamming8-2 1.000 0.985
hamming8-4 1.000 1.009
johnson16-2-4 1.000 0.993
keller4 1.000 0.967
p hat1000-1 1.000 0.964
p hat1000-2 1.023 0.978
p hat1500-1 1.000 0.936
p hat300-2 x 1.713 1.262
p hat300-3 x 1.008 1.027
p hat500-1 x 0.998 1.008
p hat500-2 x 1.487 1.455
p hat500-3 x 1.029 1.026
p hat700-1 1.000 0.995
p hat700-2 x 1.038 1.021
p hat700-3 x 1.052 1.037
san1000 1.000 0.998
san200 0.9 1 1.038 1.045
san200 0.9 2 0.990 0.961
san200 0.9 3 1.026 1.032
san400 0.5 1 1.001 1.012
san400 0.7 1 1.690 1.690
san400 0.7 2 1.000 0.984
san400 0.7 3 1.000 0.992
san400 0.9 1 1.000 0.993
sanr200 0.7 x 1.083 1.068
sanr200 0.9 x 1.025 1.032
sanr400 0.5 x 1.001 1.021
sanr400 0.7 x 1.000 1.009

3



graph name initial clique speedup (iterations) speedup (time)
1KZKA 3KT2A x 142.160 10.967
1allA 3dbjC x 82.530 18.882
1f82A 1zb7A x 18.296 8.649
2FDVC 1PO5A x 116.262 23.385
2UV8I 2J6IA 0.997 1.027
2W00B 3H1TA x 21.652 12.982
2W4JA 2A2AD x 17.060 8.265
3HRZA 2HR0A x 304.418 186.698
3P0KA 3GWLB x 2.382 1.577
3ZY0D 3ZY1A x 20.400 2.206

Figure 1: Execution times of the sequential and algorithms before and after the
bug fix. Protein product graphs are used, that were also experimented with in
the JCIM article

4



Figure 2: Parallel speedups of the parallel algorithm on protein product graphs,
that were also experimented with in the JCIM article

algorithm does is reduced by a factor of 20 or more, in 3 cases even by a factor
of 100 or more. These factors are smaller when execution times are considered,
but they are still greater than 10 in half the cases.

Whether a clique is found within the initial sorting does not seem to play
a role in bug induced slowdown in the case of DIMACS. There are cases where
the bug fix increases and cases where it decreases the number of iterations of
the algorithm. This holds for cases when initial sorting finds and does not find
a clique. The results therefore suggest that both, the improved initial sorting
and the initial clique guess improve the search speed. This hypothesis seems
reasonable, since it is known that there is no known sorting that would work
best in all cases, and that the initial clique guess is very likely not maximal. In
contrast, the results on the protein product graphs suggest that when the initial
clique guess is obtained, the number of iterations is greatly reduced. There is
only one case, where no initial clique guess was made, and that example executes
in larger number of iterations after than before the bug fix. It is nevertheless
reasonable to believe that both, the initial clique guess and the different order
of vertices play an important role in the speedup brought by the bug fix.

These experiments further support the notion that initial sorting is one of
the most important factors of the maximum clique search, and that the initial
sorting suggested by Tomita et al.[2] works especially great on the Protein prod-
uct graphs. The number of graphs tested is too small to support this claim with
great confidence and caution should be taken, but with more tests, this claim is
very likely to be confirmed. Please note that the reviewed results introduce great

5



changes in the Protein Product Graphs subsection of the section Results of the
original article. With the new results, the MaxCliqueSeq algorithm steals the
lead in three additional cases (2w4jA-2a2aD, 1kzkA-3kt2A, and 3hrzA-2hr0A),
making it the fastest in 9 of 10 cases. In addition, the speedups shown here
make it by far the fastest of the tested algorithms in several cases.

On the other hand, the new results bring into question the usefulness of the
parallelization for the use on protein product graphs. These graphs are now
solvable sequentially in such short times, that the parallelization cannot reduce
the execution time much further. The bar is therefore raised for the complexity
of the protein product graphs on which the maximum clique algorithm will
benefit from the parallelism.

References

[1] Matjaž Depolli, Janez Konc, Kati Rozman, Roman Trobec, and Dušanka
Janežič. Exact parallel maximum clique algorithm for general and protein
graphs. Journal of chemical Information and Modeling, 53(9):2217–2228,
2013.

[2] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound algo-
rithm for finding a maximum clique with computational experiments. Jour-
nal of Global Optimization, 37(1):95–111, 2007.

6


