
Asynchronous Master-Slave Parallelization of
Differential Evolution for Multiobjective

Optimization

Matjaž Depolli matjaz.depolli@ijs.si
Department of Communication Systems, Jožef Stefan Institute, Jamova cesta 39,
SI-1000, Ljubljana, Slovenia

Roman Trobec roman.trobec@ijs.si
Department of Communication Systems, Jožef Stefan Institute, Jamova cesta 39,
SI-1000, Ljubljana, Slovenia

Bogdan Filipič bogdan.filipic@ijs.si
Department of Intelligent Systems, Jožef Stefan Institute, Jamova cesta 39, SI-1000,
Ljubljana, Slovenia

Abstract
In this paper, we present AMS-DEMO, an asynchronous master-slave implementation
of DEMO, an evolutionary algorithm for multiobjective optimization. AMS-DEMO
was designed for solving time-demanding problems efficiently on both homogeneous
and heterogeneous parallel computer architectures. The algorithm is used as a test
case for the asynchronous master-slave parallelization of multiobjective optimization
that has not yet been thoroughly investigated. Selection lag is identified as the key
property of the parallelization method, which explains how its behavior depends on
the type of computer architecture and the number of processors. It is arrived at analyt-
ically and from the empirical results. AMS-DEMO is tested on a benchmark problem
and a time-demanding industrial optimization problem, on homogeneous and hetero-
geneous parallel setups, providing performance results for the algorithm and an in-
sight into the parallelization method. A comparison is also performed between AMS-
DEMO and generational master-slave DEMO to demonstrate how the asynchronous
parallelization method enhances the algorithm and what benefits it brings compared
to the synchronous method.

Keywords
multiobjective optimization, evolutionary algorithms, differential evolution, paral-
lelization, distributed computing, speedup, selection lag.

1 Introduction

Real-world optimization problems are often high-dimensional, requiring the use of
stochastic optimization techniques, such as evolutionary algorithms (EAs). Multiob-
jective optimization (MO) is the process of simultaneous optimization of two or more
conflicting objectives, resulting in a set of solutions that represent various tradeoffs be-
tween the objectives. As population-based methods, EAs can be extended to return
multiple solutions in a single run, which makes them suitable for multiobjective opti-
mization.

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

M. Depolli, R. Trobec, B. Filipič

In addition, real-world problems are frequently time demanding, requiring the use
of parallel computer architectures for the optimization to have any practical value. Be-
fore parallelizing an EA, properties of the parallel computer architecture should be con-
sidered, since the selection of the most appropriate parallelization method depends on
them. The most important is the distinction between homogeneous and heterogeneous
computer architectures; the components of the latter differ in their processing power
as well as communication speed, making them more difficult to use efficiently and nar-
rowing the choice of applicable parallelization methods. The goal of this paper is to
present the AMS-DEMO algorithm, a parallel evolutionary algorithm for solving time-
demanding multiobjective optimization problems, that is able to utilize various par-
allel computer architectures, both homogeneous and heterogeneous, regardless of the
properties of interconnections, and with no limits on the number of processors. The al-
gorithm is parallelized using an asynchronous master-slave method. Although similar
asynchronous master-slave methods have been used for parallelization of EAs (Stanley
and Mudge, 1995; Talbi and Meunier, 2006) and particle swarm optimization (Kennedy
and Eberhart, 1995), and displayed good performance on heterogeneous computer ar-
chitectures, no analysis of their asynchronism exists to our knowledge. This is possibly
due to EAs being experimentally evaluated, paired with the difficulty of generalizing
the experiments performed on heterogeneous computer architectures. We combine the
experimental evaluation of the algorithm on a homogeneous computer architecture and
heterogeneous grid architecture with a theoretical analysis of the algorithm behavior
that provides an insight into the parallelization method.

This paper is further organized as follows. Section 2 presents the background of
multiobjective optimization evolutionary algorithms, their representative used in this
paper – the Differential Evolution for Multiobjective Optimization (DEMO) – and a
review of the possible methods of parallelization. Section 3 presents the main contri-
bution of the paper, on both the conceptual and the implementation level, with all the
important details explained. Experiments with the proposed algorithm on a bench-
mark problem and a real-world industrial problem follow in Section 4. The paper con-
cludes with Section 5, where possible limitations of the algorithm and future work are
discussed.

2 Background

2.1 Multiobjective optimization

Multiobjective optimization problems are tasks that require optimizing (finding either
minimum or maximum of) a vector function:

y = f(x)

where x is a vector of n decision variables defined over R

x = (x1, x2, . . . , xn)

and y is a vector of m objectives

y = (y1, y2, . . . , ym).

Decision variable vectors x that satisfy inequality constraints

gi(x) ≥ 0, i = 1, 2, . . . , I

2 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

and equality constraints
hi(x) = 0, j = 1, 2, . . . , J

are called feasible solutions. There are two Euclidean spaces associated with multiob-
jective optimization. These are the n-dimensional decision variable space of solutions to
the problem, and the m-dimensional objective space of their images under f . The latter
is partially ordered according to the Pareto dominance relation. Given two objective vec-
tors, a and b; a is said to dominate b iff a is not worse than b in all objectives and is
better than b in at least one objective. Formally, assuming a minimization problem:

a ≺ b iff (1)
∀k ∈ {1, 2, . . . ,m} : ak ≤ bk and
∃l ∈ {1, 2, . . . ,m} : al < bl

The solution to a multiobjective optimization problem, called the Pareto optimal set, is
a set of feasible solutions in the decision variable space, whose images in the objective
space, called the Pareto front, are not comparable with each other and are not domi-
nated by any feasible solution. The Pareto optimal front forms a hypersurface in the
objective space. The task of multiobjective optimization is to find a nondominated set
of solutions, representing an approximation for the Pareto front. This is a preparatory
step to assist the user in deciding on the final solution, using additional preferences.

2.2 DE and DEMO

DE is an evolutionary algorithm for solving single-objective optimization problems
defined over continuous domains (Price and Storn, 1997; Storn and Price, 1997; Price
et al., 2005). Variation operators of DE are differential mutation and uniform crossover.
In every iteration, an individual, called a parent, is selected from the population
at random, but in such a way that every population member acts as a parent in
one generation. Differential mutation takes three or more members of the popula-
tion x1,x2,x3, [x4 . . .xm] ∈ P, to help construct a mutation vector v by vector addi-
tion and scalar multiplication. A simple way of calculating a mutation vector is by
v = x1 + F · (x2 − x3), where F ∈ R and is often from the interval (0, 1]. The mutation
vector is then recombined with the parent by uniform crossover, creating a trial solu-
tion. The trial solution and the parent then undergo selection, after which the better of
the two is selected for the next generation and the other discarded.

Robič and Filipič (2005) presented DEMO, which was devised from DE by imple-
mentation of the following changes:

• The algorithm was changed from generational to steady-state. Unlike generational
algorithms, steady-state algorithms (Eiben and Smith, 2003) immediately evaluate
the solutions they create – most often one or two new solutions are created by
variation operators – and replace their parents in the population, before variation
operators are applied again to the population. This change is straightforward to
implement in DEMO – after each selection, the surviving solutions (the trial or the
parent or both) immediately replace the parent solution in the current population
instead of placing them into a new population.

• When the parent is compared to the trial solution, the Pareto dominance is used,
resulting in three possible outcomes. The first two are that one solution dominates
the other, and is thus used for the next generation, while the other is discarded,

Evolutionary Computation Volume x, Number x 3

M. Depolli, R. Trobec, B. Filipič

like in DE. The third option is that no solution dominates the other, and in this
case both solutions are kept, increasing the population size by one.

• A mechanism was added to counterbalance the increases in population size. Every
n evaluations, where n is the starting population size, the population is truncated
using the nondominated sorting and the crowding distance metric known from
the NSGA-II algorithm by Deb et al. (2002).

DEMO has been extensively tested by Robič and Filipič (2005) on ZDT test problems
(Zitzler et al., 2000); and compared by Tušar and Filipič (2007) with IBEA (Zitzler and
Künzli, 2004), SPEA-2 (Zitzler et al., 2001), and NSGA-II on DTLZ test problems (Deb
et al., 2005) and WFG test problems (Huband et al., 2005). DEMO was found to out-
perform other algorithms on a large subset of these problems. A DEMO variant with a
mechanism for self-adaptation of DE parameters, DEMOwSA by Zamuda et al. (2007),
participated in CEC 2007 Competition on Performance Assessment of Multi-Objective
Optimization Algorithms (Suganthan, 2007). Based on the previous extensive compar-
isons, DEMO behavior is well known, and DEMO was therefore selected as the base
algorithm for the parallelization.

2.3 Parallelization of EAs

In solving real-life optimization problems, fitness evaluation is sometimes very com-
putationally expensive as, for example in microprocessor design (Stanley and Mudge,
1995) and airplane wing design (Quagliarella and Vicini, 1998; Sasaki et al., 2001). It is
therefore beneficial to parallelize the algorithm for use on multiple processors and thus
shorten the execution time. A two-level hierarchical parallelization first parallelizes fit-
ness evaluation on p1 processors, and then parallelizes optimization on p2 groups of
processors. A total of p1 * p2 processors can be used in this kind of highly efficient
parallelization. The problems of parallelizing fitness evaluation and optimization are
disjunct, and since the options for efficient parallelization of fitness evaluation are prob-
lem dependent, we only work on parallelization of the optimization algorithm in this
paper.

There are several categorizations of parallel metaheuristics for multiobjective op-
timization (Nebro et al., 2005; Talbi et al., 2008). Here, we present one that is most
commonly used when dealing with EAs. There are four EA parallelization methods
(Cantú-Paz, 1997; Alba and Troya, 2002; van Veldhuizen et al., 2003; Luna et al., 2006)
– three basic, i.e. the master-slave (also called the global parallelization), the island model,
and the diffusion model (also known as the cellular model), and the hybrid model that en-
compasses combinations of the basic types, usually in a hierarchical structure.

Master-slave EAs are the most straightforward type of parallel EAs because they
build on the inherent parallelism of EAs. Consequently, they traverse the search space
identically to their serial counterparts. They can be visualized as a master node running
a serial EA, but with a modification in creation and evaluation of solutions, which hap-
pen on all available processors in parallel. This, however, does not apply to steady-state
algorithms, in which the creation and evaluation of a single solution depend on the pre-
viously generated solution and the result of its evaluation. Steady-state algorithms can
therefore not be parallelized using the master-slave type without prior modification.

The highest efficiency of the master-slave parallelization type can be achieved on
computers with homogeneous processors and in problem domains where the fitness
evaluation time is long, constant, and independent of the solution. When these cri-
teria are fulfilled, near-linear speedup (Akl, 1997) (speedup that is close to the upper

4 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

theoretical limit) is possible. The master-slave parallelization is popular with MOEAs,
ranging from simple implementations as in the case of Oliveira et al. (2003) where the
master runs on a separate processor, and the cases of Radtke et al. (2003) and Nebro
and Durillo (2010) where the master node also runs one slave.

There are also implementations for heterogeneous computer architectures where
load-balancing has to be implemented. Examples can be found in Eberhard et al. (2003)
with pool-of-tasks load balancing algorithm, Lim et al. (2007) where a grid-enabled
algorithm combines the island model with the master-slave model, Stanley and Mudge
(1995), and Talbi and Meunier (2006) with an asynchronous master-slave parallelization
of a steady-state algorithm where load balancing is implicit. Similar methods have
been used to parallelize particle swarm optimization (PSO) methods with good results.
Asynchronous master-slave model is compared to synchronous on various numbers of
processors and varying evaluation time in Koh et al. (2006). Multiobjective PSOs were
parallelized in Scriven et al. (2008), Mostaghim et al. (2008), and Lewis et al. (2009) with
mixed asynchronous and synchronous master-slave model, resulting in an algorithm
that works well on unreliable heterogeneous computer systems. Yet the connection
between the number of processors and the behavior of any of the asynchronous master-
slave algorithms has not been analyzed.

3 The AMS-DEMO algorithm

3.1 Parallelizing DEMO

By means of parallelization, the proposed asynchronous master-slave DEMO (AMS-
DEMO) attempts to speedup solving real-world optimization problems with expensive
evaluation functions. It is designed to be used on problems where evaluation of solu-
tions, including constraint checks, takes several orders of magnitude longer than other
parts of the algorithm, and to run efficiently on both homogeneous and heterogeneous
computer architectures. Because it is not designed to be efficient on computationally
inexpensive problems, its use in combination with surrogate models is not envisioned.
The parallelization seeks to modify the algorithm in a way that maximizes speedup
(Akl, 1997) – the factor of how much shorter the execution time is on multiple proces-
sors than on a single processor.

We used DEMO as a base algorithm (more specifically: the variant DEMO/parent
described in Robič and Filipič (2005), using DE/rand/1/bin scheme) because it already
proved successful in solving numerical multiobjective optimization problems (Tušar
and Filipič, 2007), outperforming other state-of-the-art algorithms. Its application in
the optimization of a real-world steel casting process (Filipič et al., 2007), however,
proved very time consuming, with a single run taking more than 3 days to complete on
an average PC. To speedup the DEMO algorithm, it was parallelized to run on a com-
puter cluster. Given the properties of the available cluster (32 identical processors with
fast interconnections) and problem properties (solution evaluation time is slightly vari-
able but input independent and orders of magnitude longer than variation operators of
DEMO), the master-slave parallelization model was selected as the most appropriate.

Initially, the DEMO algorithm was transformed into a generational algorithm and
parallelized with the standard master-slave model in Filipič and Depolli (2009), because
it offers reasonable speedups while being easy to implement. We call this algorithm
generational DEMO and use it as a baseline for comparison in Section 4 of this paper.
Once every generation, generational DEMO synchronizes all of the processors. This
happens when the master calculates the population of the next generation while the
slaves wait. In the best case scenario, all the slaves finish at the same time and only wait

Evolutionary Computation Volume x, Number x 5

M. Depolli, R. Trobec, B. Filipič

Figure 1: Schematic representation of AMS-DEMO on two levels. On the process level
(left), AMS-DEMO follows the standard master-slave division of operations between
the master and the slaves. On the conceptual level (right) it can be viewed as a num-
ber of original DEMO algorithms sharing a single population, but being otherwise in-
dependent, which differs greatly from the standard master-slave algorithms that are
equivalent to a serial algorithm.

for the master to calculate and distribute the next generation – a task that is negligible
in duration compared to a solution evaluation. This is, however, only possible if all the
slaves are load balanced, which in practice translates to all the slaves being equally fast,
performing the same number of evaluations per generation – requiring the population
size to be a multiple of the number of processors, and all evaluations being equally
time demanding. Although these conditions are often met to a high degree, greater
flexibility is desired and as we show next, can be achieved for the cost of a minor drop
in the algorithm convergence rate.

3.2 Asynchronous master-slave

By shifting the main task of the algorithm from traversing the search space in the
same way as on a single processor, towards keeping the slaves constantly occupied,
we created AMS-DEMO that greatly exceeds the flexibility of generational DEMO. The
master-slave model is used for parallelization, with the slaves running on all the p
processors and the master running as an additional process on one of the processors.
Conceptually, AMS-DEMO operates as p asynchronous and independent DEMO algo-
rithms processing a shared population, as shown on the right-hand side of Figure 1.
The population is stored on the master, where the variation operators and selection are
also applied, while the slaves only evaluate solutions supplied to them by the master,
as seen on the left-hand side of Figure 1. Input parameter bounds are checked and en-
forced on the master while all problem dependent constraint checks are performed on
the slaves, within the evaluation (evaluation time includes all the constraint checks).
Because the slaves are asynchronous, there is no need to explicitly load-balance them.
In practice this means AMS-DEMO is efficient in using heterogeneous computer archi-
tectures, computers with varying background load, dynamic numbers of processors,
and there are no performance based restrictions on the population size or the number
of processors.

The slaves only wait a minimum amount of time between evaluations, while the
master performs operations orders of magnitude shorter, and spends most of the time
waiting. This, however, does not decrease the efficiency of the algorithm because the
master shares a processor with one of the slaves, and both processes are implemented
with non-blocking wait. The shared processor is thus either executing the master or the
slave and is never idle.

The communication between the master and the slaves is in the form of asyn-
chronous message passing. Message passing means that communication consists of

6 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

a sender sending a message and a receiver receiving the message. The asynchronous
nature of the communication is manifested as the ability of the sender and the receiver
to handle messages independently of each other. In contrast, the synchronous message
passing used in generational DEMO requires the sender and the receiver to partici-
pate in the communication simultaneously, in effect synchronizing them. Generational
DEMO requires the processors to be synchronized at the time the messages are either
gathered from the slaves or sent to the slaves, making the synchronous message passing
perfect for the task. For AMS-DEMO, the asynchronous message passing is an advan-
tage because it requires no unnecessary synchronization or the wait times associated
with it.

To use asynchronous communication to its full extent, AMS-DEMO introduces
FIFO (first in, first out) queues of solutions pending evaluation on the slaves. A slave
with a local queue is able to start evaluation of a solution from the front of its queue
immediately after it completes its previous evaluation. It only briefly interrupts the
chain of continuous evaluations by sending the last evaluation results to the master,
and by checking for and processing any pending messages from the master. Both of
these operations are fast because of the asynchronous communication.

Note that the queue of length one is equivalent to no queue at all, because the so-
lution at the front of the queue is the one being evaluated – a slave only removes it after
it has evaluated it. In most cases, a queue of length two should suffice to eliminate all
the wait time for the slave, because the slave does not require more than one solution
waiting in the queue. There are exceptions, such as the cases where the communication
time is of the same order of magnitude as the evaluation time, and the cases where it is
beneficial to send more than one solution per message because of expensive communi-
cation.

3.3 Selection lag

We explore an important difference between AMS-DEMO and the original DEMO – the
difference in the way solutions are related to the population. The difference can easily
be demonstrated if we observe a typical solution from its creation to its selection. While
in the original DEMO, the population does not change in this observed time period, it
may change in AMS-DEMO. The change happens because, in AMS-DEMO, while the
observed solution is being evaluated on one processor, some number of other solutions
complete their evaluation on other processors, and are sent to the master, undergo se-
lection, and may thus change the population. This causes a lag in exploitation of good
solutions. We will call it selection lag, denote it with l, and define it, per solution, as
the number of solutions that undergo selection in the time between the observed solu-
tion’s creation and selection. The selection lag therefore counts the number of possible
changes to the population (the number of replaced solutions) that are not known to
AMS-DEMO when it creates the observed solution, but would be known to the origi-
nal DEMO. Because every selection is coupled with the creation of a new solution, the
selection lag can also be thought of as the number of solutions created while an ob-
served solution is being evaluated – in other words, as the number of solutions that
could be created differently in the original DEMO than they are in AMS-DEMO, be-
cause of the different processing of the observed solution. It should be stressed that the
changes to the population counted by the selection lag are possible, but not necessary.
Furthermore, although their probabilities depend linearly on the selection lag, they
also depend on the population size and on the probability of the offspring surviving
selection.

Evolutionary Computation Volume x, Number x 7

M. Depolli, R. Trobec, B. Filipič

Defined per solution, in a single run of AMS-DEMO, the selection lag becomes a
statistical variable which characterizes the behavior of AMS-DEMO. We can assume,
however, that as long as the selection lags of solutions deviate little from the mean,
the errors made by observing only the mean selection lag, which is easily calculated as
l = pq − 1, are negligible.

The proof for l = pq − 1 is given through the following example. In the simplest
case, with queue size 1 and equal evaluation times, slaves work as follows. They are
assigned solutions and start evaluating them in an orderly fashion. Slave 1 is assigned
solution 1, slave 2 is then assigned solution 2 and so on until the last slave p is assigned
solution p. Equally fast slaves finish evaluations and receive the next p solutions in the
same order as the first p solutions. Slave 1 evaluates solution 1 and is assigned solu-
tion p + 1. Therefore, the selection lag for solution 1, given as the number of solutions
created during its evaluation, equals p − 1, as does for all other solutions. The mean
selection lag is then also p− 1. In a more realistic case, where the evaluation times vary,
the selection lag may no longer equal to p− 1 for all solutions. Any increase in one so-
lution’s selection lag, however, must produce an equivalent decrease in selection lags
of other solutions. This can be demonstrated with an example of two solutions, a and
b, evaluated in parallel, with a undergoing selection just prior to b. If the evaluation
time of a were increased just enough for it to undergo selection just after b, its selection
lag la would increase by 1. But this would automatically decrease the selection lag of b
by 1, because a would no longer undergo selection, while b was being evaluated. Thus
any transposition of the evaluation order of two solutions changes their selection lags
symmetrically, so that their mean does not change. This rule can also be extended to
all possible permutations of the evaluation order, since any permutation can be repre-
sented as a composition of transpositions. With the introduction of queues, the time
between creation and selection of a solution lengthens by the time the solution waits
in the queue. The number of solutions generated in a certain period of time equals the
number of solutions already in the queue, q−1, plus the number of solutions generated
on the other processors, (q − 1)(p − 1). The selection lag of an average solution is the
total number of solutions generated while this solution is waiting or being evaluated:
(q − 1) + (q − 1)(p− 1) + (p− 1), which simplifies to pq − 1.

3.4 Implementation details

The AMS-DEMO algorithm consists of the master and slave processes. Both commu-
nicate with each other using the Message Passing Interface (MPI) (Snir et al., 1996)
communication standard. The algorithm however does not depend on this standard,
so any asynchronous communication protocol should be adequate.

The AMS-DEMO slave process is summarized in the pseudo code as follows:

AMS-DEMO – slave process
1: create empty FIFO queue Q
2: while termination not requested do
3: if Q empty then
4: if no pending messages from the master then
5: wait for a message
6: end if
7: push solutions from received messages into Q
8: else
9: evaluate the first element from Q

8 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

10: send the evaluation results to the master
11: remove the first element from Q
12: end if
13: end while

Although the AMS-DEMO master process mainly implements the functionality of
the original DEMO, the inclusion of communication and slave supervision complicates
it somewhat. The following pseudo code provides the details:

AMS-DEMO – master process
1: create p empty queues Q1 . . . Qp to serve as copies of the queues on the slaves
2: create empty population P
3: parent index← 1
4: num evaluated← 0
5: while stopping criterion not met do
6: while ∃k : |Qk| ≤ queue size do
7: c← Create(parent index)
8: select index j such that ∀k ∈ [1 . . . n] : |Qj | ≤ |Qk|
9: add c to Qj

10: send a message containing c to slave Sj

11: parent index← (parent index mod n) + 1
12: end while
13: wait for messages from the slaves
14: while pending messages do
15: extract solution c from the first pending message
16: j ← the number of slave that sent the message
17: remove c from Qj

18: Selection(c)
19: num evaluated← num evaluated+ 1
20: if num evaluated is a multiple of n then
21: if |P| > n then
22: truncate P
23: end if
24: randomly enumerate solutions from P
25: end if
26: end while
27: end while
28: send termination request to all slaves

While the original DEMO provides an initialization step, in which the initial pop-
ulation is generated and evaluated, AMS-DEMO does not, thus avoiding the required
synchronization of processes associated with such a step. AMS-DEMO rather starts
with an empty population P and modifies the way it creates solutions in its main loop,
as can be seen from the function Create:

Create(i)
1: if |P| < n then
2: randomly create a solution c
3: mark c as unevaluated
4: mark c as the parent of itself
5: append c to P

Evolutionary Computation Volume x, Number x 9

M. Depolli, R. Trobec, B. Filipič

6: else
7: randomly select three different solutions x1, x2, x3 from P
8: create a candidate solution c← x1+F·(x2 − x3)
9: select pi, the i-th element of P

10: alter c by crossover with pi

11: mark pi as the parent of c
12: end if
13: return c

Because the solutions of the initial population are now created in the main loop,
selection must be able to detect them and allow them to bypass it. This is done in
function Selection by testing the solution’s parent:

Selection(c)
1: locate parent p of c in P
2: if p not found in P then
3: select p as a random element of P
4: end if
5: if p is not evaluated then
6: replace p with c
7: else
8: compare c to p
9: if c dominates p then

10: replace p with c
11: else if p dominates c then
12: keep p
13: else
14: keep p and add c to P
15: end if
16: end if

If the parent is marked as unevaluated, then the offspring replaces it, bypassing
the selection. There are two possible scenarios resulting in the parent being marked as
unevaluated. The first, more common one, is that the solution is from the initial pop-
ulation, having no real parent, and is marked as the parent of itself (line 4 of function
Create). In the second, rarer scenario, the parent is a member of the initial population
and has not yet been evaluated. In such a case, the two related solutions (the parent and
the offspring) simply switch their roles. The offspring skips the selection and replaces
the parent in the population. Then, after the parent is evaluated, the parent under-
goes selection in which it competes against the offspring. Because of the asynchronous
nature of AMS-DEMO, the parent of an observed solution might not be found in the
population, because it was already replaced by some other solution or eliminated by
the population truncation. When this happens, a random solution from the population
is selected as the parent to compete against the observed solution.

4 Algorithm evaluation

The performance of the proposed algorithm was assessed on a benchmark problem and
a real-world multiobjective optimization problem. The benchmark problem is used to
discover the relation between the computational complexity of the evaluation func-
tion and the efficiency of AMS-DEMO. The real-world problem exercised for testing

10 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

the algorithm convergence, parallel speedup, and the ability to run on heterogeneous
systems with numbers of processors larger than the population size. Experiments on
both problems were performed on a cluster of 16 dual AMD Opteron 244 processor
computers, each with 1024 MB of memory, and six gigabit Ethernet ports, connected
with a gigabit Ethernet switch. The software used includes Fedora Core 2 Linux with
kernel 2.6.8-1.521smp, MPICH 1.2.7. communication library (Gropp et al., 1996) and
GCC 3.3.3 compiler.

4.1 Experiments with evaluation time

Because of its master-slave parallelization, the AMS-DEMO master process has to com-
municate twice with the slaves for every individual it creates. This limits the AMS-
DEMO usability on problems with computationally inexpensive evaluation functions.
If evaluation time is comparable to communication time, then there is no gain in send-
ing solutions into evaluation on other processors, since the parallel algorithm would
require a comparable amount of time communicating as the sequential algorithm for
the whole execution. Therefore, in the first set of experiments we explore how long the
evaluation of a solution should last for AMS-DEMO to be able to evaluate the same
number of solutions in less time than the original DEMO. For timing we use the Linux
high-precision timer function clock gettime with nanosecond resolution and mean re-
sponse time of 30 ns. We use the SYMPART benchmark function from the CEC 2007
Competition on Performance Assessment of Multi-Objective Optimization Algorithms
(Suganthan, 2007) and add a variable length delay to it. Because DEMO has already
proved successful in solving this function (Zamuda et al., 2007), we perform no addi-
tional experiments regarding the solution quality with AMS-DEMO. We merely use the
function to demonstrate how AMS-DEMO performs on problems with extremely inex-
pensive fitness evaluation functions. We set population size to 100, scaling factor F to
0.5, crossover probability to 0.1, DE scheme to rand/1/bin, and the stopping criterion
to 5000 evaluations. We perform tests on n = {1, 2, 4, 8, 16, 32} processors and vary the
evaluation function time te from the set of values {5.5 µs, 10 µs, 100 µs, 1 ms, 10 ms,
100 ms, 1 s, 10 s}. The lowest value for te is the evaluation time of the SYMPART fitness
function with no additional delay on the hardware used in experiments. In each test,
we measure AMS-DEMO execution time t(n). We take the definition for weak speedup
(type II.B speedup as defined in Alba (2002)) Se(n), as how much faster the parallel
algorithm on n processors performs a fixed number of evaluations than the original
sequential algorithm, and calculate it as:

Se(n) =
t(1)

t(n)
(2)

We call it weak speedup, because it is based on the execution time of an algo-
rithm with the number of evaluations set as the stopping condition. True speedup, in
contrast, would have solution quality as the stopping condition, but that would make
it more problem dependent. In this analysis we are interested solely in the response
of AMS-DEMO to various evaluation time lengths and therefore we chose the weak
speedup over the true speedup to make the results as widely applicable as possible.
We develop a simple model for estimating the weak speedup of AMS-DEMO on p
processors. We examine the time required for p evaluations and all the algorithm over-
head. For simplicity, we intentionally leave out some factors that are hard to determine
in advance for any given computer system. Nevertheless, we need to introduce three
specific times. ta is the algorithm overhead time, defined per evaluation. The algorithm

Evolutionary Computation Volume x, Number x 11

M. Depolli, R. Trobec, B. Filipič

Figure 2: Weak speedup Se as the function of evaluation time te for various p. Also
plotted is the modeled Se for p = 32 that matches the measured values well in all
points but te = 10 ms. Se = 1 is drawn with a thick line for reference.

overhead includes all algorithm tasks but evaluation, e.g., application of variation op-
erators and selection, output of solutions and evaluation results to a file, etc. tn is the
network latency – the time it takes for one processor to fully transfer a message to a
remote processor, or to fully receive a message from the remote processor. During the
network latency, the processor may perform other tasks, because all of the work is done
by either networking hardware or the remote processor. There is however an overhead
for the processor, associated with the communication – the time required to prepare
data and pack it into a message or to unpack the data from the message and copy it to
local variables (depending at which side of communication the said processor is). We
refer to this time as communication overhead time, tc.

Our model calculates the weak speedup as the ratio of the time DEMO performs
p evaluations and the time AMS-DEMO on p processors performs the same number of
evaluations. DEMO has no communication overhead and performs all its tasks sequen-
tially, therefore it completes p evaluations in time pte+ pta. AMS-DEMO must perform
all tasks that deal with any particular slave sequentially, that is, communicate with the
slave (send a solution), wait for the slave to evaluate the solution, communicate with
the slave again (receive the evaluation results), and then perform one set of algorithm
overhead tasks. With the exception of communication overhead, communicating with
one slave can overlap with all other tasks associated with the other slaves, because the
network hardware works independently of the processor. Because of the overlap, AMS-
DEMO on p processors performs p evaluations in time max(pta + 2ptc, 2tc + 2tn + te).
For simplicity, we ignore that the master process must execute on the same processor
as one slave process. Our model can be thus described as:

Se ≈
pte + pta

max(pta + 2ptc, 2tc + 2tn + te)
(3)

In Figure 2 we plot the the experimentally measured Se (mean of 25 runs) for vari-

12 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

ous p. Interestingly, weak speedups are less than 1 for te < 0.1 and all p. We can see that
for te ≥ 0.1 ms, AMS-DEMO weak speedup rises above 1. At te = 10 ms, AMS-DEMO
already reaches nearly full speedup (Se ≈ n) at low numbers of processors (n ≤ 4). For
higher numbers of processors, evaluation time must be even higher for AMS-DEMO
to achieve full speedup. We also modeled and plotted Se for 32 processors in the same
figure (labeled as p = 32, modeled) using values for tn = 0.22 ms, tc = 0.03 ms, and
ta = 0.20 ms, measured during the experiments. The simple model is accurate on most
of the values for te, and only fails to predict the weak speedup at te = 10 ms. Even with
one inaccurate prediction, the simple model should be useful for deciding on when to
use AMS-DEMO.

4.2 The real-life optimization problem

Next, AMS-DEMO was tested on a real-world multiobjective optimization problem of
tuning coolant flows in industrial continuous casting of steel. Continuous casting is
widely used at steel plants to produce semi-products of various shapes and dimen-
sions. The process starts by pouring liquid steel, melted in a furnace, into the mold, a
bottomless vessel cooled by water flow in its walls. Cooling in the mold, also referred
to as primary cooling, extracts heat from the steel and initiates the formation of a solid
shell on its surface. The shell formation is crucial for the support of the steel slab after
it exits the mold and enters into the secondary cooling area where it is cooled by water
sprays. Led through the secondary cooling area by support rolls, the slab progressively
solidifies and finally exits the casting machine. At its outlet it is cut into pieces of pre-
determined length.

Cooling of the steel during continuous casting affects the safety and productivity
of the casting process, as well as the quality of the cast steel. Tuning of the water spray
flows in the secondary cooling zone is, in particular, a demanding task, since the sec-
ondary cooling region is divided into a number of cooling zones where the amounts of
the cooling water can be set separately. The casting machine considered in our exper-
iments involves a secondary cooling area divided into nine zones. In every zone, the
cooling water is dispersed to the slab at the center and corner positions, which results
in 18 water flows that need to be appropriately tuned. Based on empirical knowledge,
target temperatures are specified for the slab center and corner in each zone. Tuning has
to be carried out in such a way that the resulting slab surface temperatures match the
target temperatures. This goal is formally defined by an objective function measuring
the differences between the actual and target temperatures:

f1 =

NZ∑
i=1

|T center
i − T center∗

i |+
NZ∑
i=1

|T corner
i − T corner∗

i |, (4)

where NZ is the number of zones, T center
i and T corner

i are the slab surface temperatures
at the center and the corner positions in zone i, and T center∗

i and T corner∗
i the target

temperatures in zone i. This objective function has to be minimized in order for the
casting process to result in high-quality steel.

An additional objective in this process refers to the core length, lcore, which is the
distance from the mold exit to the point of complete solidification of the slab. This is
also affected by the coolant flow setting. Its target value, lcore∗, is prespecified, and the
actual core length should be as close to it as possible. Shorter core length may result
in unwanted deformation of the slab, while longer core length has to be avoided for

Evolutionary Computation Volume x, Number x 13

M. Depolli, R. Trobec, B. Filipič

safety reasons. This gives the second objective function to be minimized:

f2 = |lcore − lcore∗|. (5)

Water flows cannot be set arbitrarily, but according to the technological constraints.
For each water flow, minimum and maximum values are prescribed. Table 1 shows an
example of the prescribed target temperatures and maximum water flows for continu-
ous casting of the steel grade analyzed in this study. Minimum water flows are 0 for all
zones and both center and corner positions.

Table 1: Target temperatures and water flow constraints for continuous casting of steel
considered in numerical experiments

Center positions Corner positions
Zone Target Max flow Target Max flow

number [◦C] [m3/h] [◦C] [m3/h]
1 1050 50 880 50
2 1040 50 870 50
3 980 50 810 50
4 970 10 800 10
5 960 10 790 10
6 950 10 780 10
7 940 10 770 10
8 930 10 760 10
9 920 10 750 10

As we can see, coolant flow tuning in continuous casting of steel is a constrained
two-objective optimization problem. To solve it by means of parallel multiobjective op-
timization, we integrated the optimization algorithm with a numerical simulator of the
casting process. Given the coolant flow values, the simulator calculates the tempera-
ture field in the slab and extracts the values of objectives f1 and f2. For this purpose we
use a numerical model of the process with Finite Element Method (FEM) discretization
of the temperature field, and the corresponding nonlinear equations are solved with
relaxation iterative methods. The model has previously been used in a single-objective
optimization study of the casting process (Filipič and Laitinen, 2005), and in prelimi-
nary multiobjective optimization studies with the serial variant of the DEMO algorithm
(Filipič et al., 2007).

Optimization calculations were performed for a selected steel grade with the slab
cross-section of 1.70 m × 0.21 m. The assumed casting speed was 1.6 m/min, and the
target core length, lcore∗, 27 m.

4.3 Initial experiments and results

Initial parallel optimization experiments were performed to compare generational
DEMO and AMS-DEMO. As shown in previous work (Filipič et al., 2007), solving the
continuous casting optimization problem, DEMO appears to work best with popula-
tion sizes between 20 and 40, which coincides well with the 32 processors available in
the cluster. Therefore, a population size of 32 was chosen for the initial experiments.
The remaining parameters for both parallel algorithms were set as follows: scaling fac-
tor F to 0.5, crossover probability to 0.1, DE scheme to rand/1/bin, and the stopping
criterion to 9600 evaluations.

14 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

Figure 3: Example nondominated fronts after 9600 evaluations. Two fronts for separate
runs are plotted to show the difference between typical final values of the hypervolume
indicator IH . Hypervolume indicator is explained in Subsection 4.4.

Figure 4: Resulting temperatures for three hand-picked solutions from the front with
IH = 3.878 in Figure 3, illustrating different tradeoffs between the two criteria. The
leftmost chart presents the solution with the highest value of the first objective (512 K)
and the lowest value of the second objective (0.0 m); the rightmost chart presents the
solution with the lowest value of the first objective (41 K) and the highest of the second
objective (2.7 m); and the chart in the middle presents the solution from the center of
the front (first objective 257 K, second objective 1.3 m).

It turned out that both parallel algorithms were able to discover the solutions
known from previous applications of the original DEMO (Filipič et al., 2007) demon-
strating conformance with it. All nondominated fronts reached the size equal to the
population size (set to 32). To illustrate the results, Figure 3 shows the resulting
nondominated front (approximating the Pareto optimal front) found by generational
DEMO. The conflicting nature of the two objectives – improving the coolant flow set-
tings with respect to one objective makes them worse with respect to the other – is evi-
dent from the presented nondominated front. In addition, a systematic analysis of the
solutions confirms that the actual slab surface temperatures are, in most cases, higher
than the target temperatures, while the core length is shorter than or equal to the target
core length. For example, the temperature difference for three solutions from the front
displayed in Figure 3, two at the boundaries of the front and one from the middle of
the front, are shown in Figure 4.

4.4 Convergence of AMS-DEMO

Convergence of AMS-DEMO was tested experimentally on 1, 2, 4, 8, 16, and 32 proces-
sors, where for each number of processors p, the algorithm was run 25 times. Genera-
tional DEMO was tested under the same conditions as AMS-DEMO, with the difference
that each experiment was a batch of only 5 runs. Lower number of runs was used, in
contrast to the 25 runs per AMS-DEMO experiment, because the number of processors
p does not influence the way in which the algorithm works. Because the difference in
the generational DEMO run times is always below one percent, 5 runs per each p were
sufficient to calculate mean run times as a function of p. To compare the convergence
rates of generational DEMO and the original DEMO, an additional batch of 25 runs of
generational DEMO was performed on 32 processors. The presented comparisons of
algorithms and of various numbers of processors were all performed using the mean

Evolutionary Computation Volume x, Number x 15

M. Depolli, R. Trobec, B. Filipič

2.8

3

3.2

3.4

3.6

3.8

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

H
y
p
e
rv

o
lu

m
e

in
d
ic

a
to

r
I
H

Number of evaluations N

individual runs
mean of all runs

Figure 5: Algorithm convergence, indicated by the hypervolume indicator of individ-
ual runs, along with its mean value.

number of evaluations required to reach the same solution quality.
The convergence of the tested DEMO variants was evaluated using the hypervol-

ume indicator IH (Zitzler et al., 2002), also called the S metric (Zitzler and Thiele, 1998),
which is a measure of the hypervolume of objective space that is dominated by a set
of solutions. The properties of the hypervolume indicator (Knowles and Corne, 2002)
enable observation of the convergence of solutions towards the optimum within a sin-
gle run, and the comparisons of achieved solutions between two or more runs. On the
other hand, the hypervolume indicator is sensitive to the properties of the nondomi-
nated front (Auger et al., 2009), such as the evenness of the distribution of solutions
along the front, which makes comparison between different algorithms less reliable.
The differences between the DEMO variants that we compare, however, are not in the
variation operators, the truncation of solutions, or related functions of the algorithm,
and therefore have no influence on the properties of the nondominated front, making
comparison between the algorithms possible.

First, AMS-DEMO is evaluated against the original DEMO, with regards to the
convergence of the algorithm, characterized by the convergence of the IH . It should be
noted that when the number of processors drops to one, AMS-DEMO reverts to orig-
inal DEMO – given the same random generator and seed, the AMS-DEMO algorithm
traverses the same path through the search space as the original DEMO, with no cal-
culation overhead. Therefore, experiments with AMS-DEMO on a single processor are
taken also as the experiments of the original DEMO. With the exception of the number
of processors, no other algorithm parameter varied between the experiments. Popu-
lation size was set to 32 and runs were terminated after 9600 (population size times
300) evaluations. Each run was carefully timed and the hypervolume indicator of the
nondominated set of solutions was measured every 32 evaluations – after every popu-
lation truncation. Values of the hypervolume indicator for the experiment on a single
processor are shown in Figure 5.

Due to the changes in the algorithm required by the parallelization, the conver-

16 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

1

2

4

8

16

32

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
u
m

b
er

o
f
p
ro

ce
ss

o
rs

p

Number of evaluations N

3.50

3.65

3.75

3.82 (estimated)

Figure 6: Mean numbers of evaluations required by AMS-DEMO for the population to
reach a predefined IH value. Best estimates for means are marked with x and connected
with solid line, their 95% confidence intervals are marked with +, and connected with
dashed lines. Predefined IH values are shown with labels. Values for IH = 3.82 are
estimated from only 143 out of total 150 runs, because the other 7 runs did not reach
this value in 9600 evaluations.

gence rate of AMS-DEMO is expected to slow down when the number of processors
increases. The number of evaluations required to reach specific IH values were exam-
ined and compared between the experiments. Mean values in Figure 6 indicate that in-
creasing the number of processors does slow down the convergence. Their confidence
intervals, which were calculated using the basic percentile bootstrap method (Efron,
1982), are quite large though, denoting low statistical confidence of such conclusions.

The statistical significance of the differences in number of evaluations per-
formed by AMS-DEMO for relevant values of IH is determined using the two-sample
Kolmogorov–Smirnov test. As can be seen from Figure 7, the differences are sta-
tistically significant (P -value < 0.05) only for p = {16, 32} and approximately for
IH ∈ [3.26 . . . 3.77]. This is consistent with our expectations. The difference between
DEMO and AMS-DEMO increases with increasing number of processors and is more
important in the early stage of search when the convergence is faster, and less impor-
tant in the later stage of search when the convergence is slower. The difference is also
not detected immediately but rather after the initial random population is significantly
improved.

The convergence rate of generational DEMO is also compared against the con-
vergence rate of the original DEMO and the differences are found to be insignificant.
Because generational DEMO runs equivalently on any number of processors p, we can
conclude that it has an advantage over AMS-DEMO for larger numbers of p, where the
convergence of AMS-DEMO is noticeably slower.

We finally analyze the selection lag. Figure 8 shows the distributions of selection
lag on performed experiments. Means of distributions equal pq−1, as expected. Modes
(peaks in distributions) also equal pq − 1 and distributions appear only slightly asym-
metric. Although the total range of measured values is wide, e.g. from 6 to 58 for

Evolutionary Computation Volume x, Number x 17

M. Depolli, R. Trobec, B. Filipič

Figure 7: A significance test is performed for IH ∈ [3.1 . . . 3.85]. The null hypothesis is
that using p ∈ {2, 4, 8, 16, 32} processors does not require more evaluations than using
only one processor. Graphs are filtered with Gauss filter with σ = 0.02 to reduce the
noise in P -value and thus make individual curves more clearly visible.

p = 32, standard deviations are small, e.g. 2.2 for p = 32. Therefore, mean selection
lag seems adequate to explain the difference in convergence between AMS-DEMO and
DEMO.

Convergence tests can be summarized as follows. A bit surprisingly, generational
DEMO converges at the same rate as the original DEMO, which should result in good
parallel speedups. AMS-DEMO convergence slows down, as expected, as the number
of processors increases. The change is only statistically significant at 16 and 32 pro-
cessors however, and on less than the whole range of target solution qualities. Given
much more than 25 runs per test, the change in AMS-DEMO convergence might be
significant at other numbers of processors, but we are limited in the number of tests
we make by the long execution times of tests, particularly those on smaller numbers
of processors. Because selection lag is the driver of changes in convergence rate, we
measure it on the performed tests. Its mean equals pq−1 and its variability is low, both
as expected. Because variability is low, the mean selection lag adequately explains the
difference in convergence between AMS-DEMO and DEMO.

4.5 Speedup

In parallel computing, speedup S is a measure of how much faster a certain parallel
algorithm is than the best sequential counterpart, or formally:

S(p) =
t(1)

t(p)
, (6)

where t(1) and t(p) are the serial and parallel execution times, respectively. A measure
related to speedup is efficiency, which is the speedup normalized with the number of
processors:

E(p) =
S(p)

p
, (7)

18 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

Figure 8: Probability distribution of the selection lag as a function of the number of
processors p.

Efficiency is a measure of the level of utilization of computing resources for problem
related tasks opposed to resources lost in parallelization overhead. Using speedup
and efficiency, we address the relations between AMS-DEMO and the original DEMO,
and between generational and the original DEMO, to get some deeper insight into the
properties of the asynchronous versus synchronous parallelization.

When the tested algorithms are not equivalent, in the sense that they do not pro-
duce the same results, the execution times should be measured with care. The weak
speedup presented in Subsection 4.1 is no longer appropriate to use, instead we use
the speedup defined as type II.A speedup in Alba (2002), in which the execution times
are the times spent by the compared algorithms to reach the same result quality, and
we refer to it as speedup. We measure the result quality as IH of the nondominated set
of solutions and we therefore define the execution time of the algorithm running on
p processors as t(p, IH). The speedup S of AMS-DEMO thus becomes the function of
both p and IH , and is formally writen as:

S(p, IH) =
t(1, IH)

t(p, IH)
. (8)

Figure 9 shows speedup on the range IH ∈ [3.10, 3.83].
To aid the analysis, the speedup was split to two factors:

S(p, IH) = Sc(p, IH) Sp(p) . (9)

Sp is the speedup due to the increased computational resources provided by multiple
processors, and Sc is the speedup due to the changes in the algorithm required by
the parallelization. The former tells us how many times more computation is done
per time unit on p processors in comparison to one processor, and the latter how many
times less computational effort is required by the algorithm to reach solutions of similar
quality on p processors than on one processor. It is evident from the experiments of
algorithm convergence that increasing p increases the computational effort required by

Evolutionary Computation Volume x, Number x 19

M. Depolli, R. Trobec, B. Filipič

Figure 9: Speedup S relative to the target hypervolume indicator IH value.

AMS-DEMO, so that Sc is expected to be less than 1. Computational effort is measured
as the number of evaluations Nq required by the algorithm running on p processors to
reach a predefined solution quality IH ; thus Sc can be calculated as:

Sc(p, IH) =
Nq(p, IH)

Nq(1, IH)
. (10)

Finally, the speedup arising from the use of multiple processors, Sp, can be calculated
as the ratio of the number of performed evaluations per time unit Nt on p processors to
that on one processor:

Sp(p) =
Nt(p)

Nt(1)
. (11)

From Table 2 the average difference between AMS-DEMO and generational DEMO
can be observed for IH ∈ [3.1 . . . 3.85]. The expected decrease in AMS-DEMO efficiency
as a result of increasing number of processors is quantified in a column for Sc under
AMS-DEMO. AMS-DEMO therefore becomes progressively less efficient than the orig-
inal DEMO with every additional processor. On the other hand, high Sp – nearly equal
to the number of processors on all the experiments – implies very good utilization of
the available processors. The opposite holds for generational DEMO. While it is as effi-
cient as the original DEMO at using evaluations, it is less efficient at utilizing additional
processors, which is reflected in smaller Sp.

Looking at the speedups calculated from the performed experiments, an initial
conclusion could be that the algorithms are closely matched, with generational DEMO
having a slight advantage. The presented experiments, however, are biased, since they
encompass only scenarios that particularly suit generational DEMO. Therefore we pre-
pare two additional scenarios and analyze them both analytically and through addi-
tional experiments.

20 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

Table 2: Comparison of AMS-DEMO and generational DEMO in terms of speedups
AMS-DEMO Generational DEMO

p Sc(p) Sp(p) S(p) E(p) Sc(p) Sp(p) S(p) E(p)

1 1 1 1 1 1 1 1 1

2 0.97 2.02 1.95 0.98 1 1.9 1.91 0.96

4 0.98 3.86 3.77 0.94 1 3.74 3.75 0.94

8 0.93 8.01 7.42 0.93 1 7.26 7.27 0.91

16 0.78 15.4 12 0.75 1 13.9 13.9 0.87

32 0.80 30.6 24.4 0.76 1 27.1 27.1 0.87

4.6 Analytical comparison

AMS-DEMO would exhibit a clear advantage over generational DEMO if the popula-
tion size were not a multiple of the number of processors. Generational evolutionary
algorithms, implementing the basic master-slave parallelization, evaluate one popula-
tion at a time in parallel. But they cannot proceed to the next generation until the whole
population is evaluated. Consequently, assuming that the evaluation of a single solu-
tion requires one processor, the number of processors used cannot exceed the size of
the population. Furthermore, it is inefficient to use a number of processors that does
not divide the size of the population. Consider the worst case scenario in which the
population size n is larger than the number of processors by one: n = p + 1. Evalu-
ating such a population would require p − 1 processors to each evaluate one solution
and one processor to evaluate two solutions, resulting in considerable idle time of the
processors. They would also be idle if equal numbers of solutions for evaluation were
assigned to them, but the evaluation times of these solutions were not equal. Two possi-
ble (non-exclusive) causes of differences in evaluation times are a heterogeneous set of
processors and an evaluation function with non-constant run time – dependent on the
solution or simply random. The noted caveats of the master-slave parallelization ap-
ply to generational DEMO without exception. AMS-DEMO circumvents both of those
caveats, with an important and rather surprising consequence – AMS-DEMO is able to
utilize more processors than is the size of the population. We will explore how effective
it is in this respect in Subsection 4.7.

To estimate the behavior of AMS-DEMO and (for reference) generational DEMO,
equations for the execution time have been devised for both algorithms.

The generational DEMO execution time tgen equals the number of generations N/n
times single generation processing time. The single generation processing time is dom-
inated by the evaluation of the population, which is a parallel evaluation of p solu-
tions on p processors, repeated bn/pc times, plus a parallel evaluation of the remaining
n mod p solutions on p processors:

tgen =
N

n

(
tpar(p)

⌊
n

p

⌋
+ tpar(n mod p)

)
. (12)

The parallel evaluation time of m solutions is the expected value of the maximum of m
evaluation times te:

tpar(m) = E
(

m
max
i=1
{te,i}

)
. (13)

Evolutionary Computation Volume x, Number x 21

M. Depolli, R. Trobec, B. Filipič

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

R
u
n

ti
m

e
[h

]

Number of processors p

AMS-DEMO
Generational DEMO

Figure 10: Estimated execution times for generational and AMS-DEMO, both set to
terminate after 9600 evaluations.

It is approximated as the mean of the cumulative distribution function (CDF) of the
maximum time of m evaluations, which equals the CDF of the solution evaluation time,
raised to the power of m.

AMS-DEMO execution time is calculated as the sum of execution times of indi-
vidual processors divided by the number of processors p. The sum of execution times
of individual processors equals the sum of all evaluation times (approximately te N)
plus the sum of all idle times. Processors are only idle at the end of the optimization,
from the time at which the first processor has finished its last evaluation, until the time
when the last processor has finished its last evaluation. It can then be reasoned that one
processor has 0 idle time (the one that is the last to finish) and the other p−1 processors
experience average idle time of 0.5 te.

tAMS =
teN + 0.5(p− 1)te

p
. (14)

The computed execution times were tested against the experimentally measured
execution times and were found to be within the experimental confidence intervals.
Using the given equations for the execution time of generational DEMO and AMS-
DEMO and the measured evaluation times, the execution times were estimated for the
number of processors on interval [1, 100] and are shown in Figure 10.

From the execution times, speedups can be derived accurately for generational
DEMO, and less accurately for AMS-DEMO, because the latter behaves differently for
the different numbers of processors. Nevertheless, it can be argued that, for example,
increasing the number of processors from 16 to 30, the execution time and the behavior
of generational DEMO would not change, causing the speedup to drop significantly.
AMS-DEMO, on the other hand, would experience two counteracting effects – the abil-
ity to run the same number of evaluations in less time, balanced out to some extent
by the requirement for more evaluations to reach the same solution quality. As the
experiments show, when increasing the number of processors the first effect always
outweighs the second, yielding an increase in speedup. Therefore, increasing the num-

22 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

ber of processors is always beneficial for the performance of AMS-DEMO, while it often
degrades the performance of generational DEMO.

4.7 Varying the queue size

Although queues have been implemented to reduce the slave idle time to a minimum,
they also allow simulating more processors than are available on the experimental ar-
chitecture. This allows for a simulation of an interesting algorithm property – the abil-
ity to run on a number of processors that is larger than the population size. Although
there are other possibilities of simulating additional processors, e.g. running multiple
processes on a single processor, using the queues is chosen because it simultaneously
provides an example of the drawback of queues.

The algorithm running on p slaves, each having a queue of size q, explores the
objective space in a similar fashion as if it were running on p times q slaves, each having
a queue of size 1. This is because the algorithm behavior changes with the selection lag,
for which was shown that its mean equals pq − 1. The same mean selection lag may be
obtained through different values of p and q, therefore, increasing queue size emulates
the use of additional processors. Although settings of the algorithm that produce the
same mean selection lag produce a very similar behavior, running the algorithm on
fewer processors with longer queues differs from running it on more processors with
shorter queues. If a number of solutions are inserted into a single queue, they undergo
selection in the order of insertion. On the other hand, if the same number of solutions
are distributed between different processors and the evaluation time varies, they are
likely to undergo selection in a different order. The additional out-of-order selection
manifests as an increase in the selection lag variance, and, although difficult to quantify,
has some influence on the algorithm behavior. In our experiments, for example on 32
processors, the mean selection lag is 31, while its standard deviation is 2.65, which we
believe is small enough to be negligible.

Queue sizes of 10 and 20 are used on 32 processors, simulating 320 and 640 pro-
cessors respectively, and the results are compared to the original DEMO. All the ex-
periments are performed using the same algorithm parameters as before, including the
population size of 32. The Speedup calculated from (8) and (14) is plotted in Figure 11.

First, we see from Figure 11 that the speedup grows much more slowly than the
number of processors, but it grows nevertheless. Because the number of processors
is not limited by the population size, the algorithm is able to produce speedups far
greater than the population size. The drop in efficiency, however, should be taken into
consideration when this property of the algorithm is used. The second observation is,
that the speedup improves as the target IH value rises. This follows from the property
of AMS-DEMO that its traversal through the search space deviates the most from the
original DEMO traversal when the convergence is fastest. Because the convergence of
the algorithm slows at higher IH , AMS-DEMO behaves more like the original DEMO
and thus becomes more efficient, causing the speedup to increase.

4.8 Experiments on Grid’5000

To demonstrate the flexibility of AMS-DEMO, we performed additional experiments
on the Grid’5000 (Bolze et al., 2006) computer setup. Grid’5000 is a research tool for
studying large-scale distributed systems and high-performance scientific computing. It
is distributed between nine sites, with each site hosting one or more clusters comprising
several hundred processors. We used clusters Bordereau and Bordeplage, located at the
Bordeaux site to perform four experiments with varying p ∈ {100, 200, 300, 400}, each

Evolutionary Computation Volume x, Number x 23

M. Depolli, R. Trobec, B. Filipič

Figure 11: Simulated speedup relative to the target hypervolume indicator IH value.
Graphs are plotted up to the minimal hypervolume indicator value reached by at least
20 out of 25 runs, which lowers with higher p. Measured speedup on p = 32 is added
for reference.

Figure 12: Hypervolume indicator IH as a function of number of evaluations N , for
varying number of processors p on Grid’5000.

repeated 25 times. Queue length was set to 1 and other algorithm settings were set as
for the previous experiments.

The convergence of AMS-DEMO on Grid’5000 is compared to AMS-DEMO run-
ning on a single processor. The results are shown in Figure 12 . While the convergence
rate gets slower with increasing p, the solutions reach about the same average IH both
on p = 100 and p = 1 within the performed number of evaluations. For p > 100, this
does not happen, which confirms the results of the experiments with emulated proces-
sors.

24 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

Figure 13: Probability distribution of the evaluation time te on the two clusters from
Grid’5000 used in the experiments.

Clusters used in the experiments are comprised of various hardware and perform
differently on the evaluation function. As seen from Figure 13, where the distribution
of evaluation time te is plotted for all evaluations performed during experiments, Bor-
deplage performs evaluations faster than Bordereau. Its mean te is 21.8 s, compared to
Bordereau’s 27.9 s – it is faster by 22 % on average. If generational DEMO were con-
sidered, the difference in mean performance alone would cause poor utilization of the
faster processors. Observing both clusters together, there is also the wide spread of te,
between 16 s and 40 s, that would further lower processor utilization on generational
DEMO. Another obstacle to the generational DEMO efficiency is a relatively small pop-
ulation size n, compared to the number of available processors. If n were fixed to 32,
then generational DEMO would not be able to use additional processors of Grid’5000
at all, but if n was equal to p, its convergence would slow down, and more importantly,
because of different population sizes, the results of generational DEMO could not be
compared to the results of AMS-DEMO using hypervolume indicator. Therefore we do
not experiment with generational DEMO on Grid’5000.

We calculate speedups according to (8), using the runs of AMS-DEMO running
on one processor of the faster Bordeplage cluster and plot them in Figure 14. The re-
sults are similar to the results obtained by emulating processors, which were shown in
Figure 11. Speedups are larger than n, and increase with IH . We also observe that at
p = 400, AMS-DEMO produces speedup larger than at p = 300 only for IH ' 3.25.
This happens because the additional processors at p = 400 compared to p = 300 are
mostly those from the slower cluster. Numbers of processors from each cluster, mean
efficiencies E(p) and mean speedups S, Sc, and Sp for each tested p are summarized in
Table 3. Weighted speedup Sw is also given, which is the speedup of the algorithm per-
formance on a set of p processors relative to the algorithm performance on an average
processor from the same set, calculated as:

Sw(p) =
tBordeplage(1)pBordeplage + tBordereau(1)pBordereau

t(p)(pBordeplage + pBordereau)
. (15)

Weighted speedup is used in place of speedup to calculate efficiency E(p) using (7). As

Evolutionary Computation Volume x, Number x 25

M. Depolli, R. Trobec, B. Filipič

Figure 14: Speedup S as a function of hypervolume indicator IH on Grid’5000.

Table 3: Comparison of speedups and efficiencies on Grid’5000
p

Total Bordeplage Bordereau Sc(p) Sp(p) S(p) Sw(p) E(p)

100 24 76 0.62 73.69 45.58 52.62 0.53

200 40 160 0.44 145.95 64.75 74.90 0.37

300 60 240 0.38 214.67 82.39 95.57 0.32

400 63 337 0.35 252.33 87.30 102.54 0.26

a result, E(p) can be interpreted in the same way as in experiments on homogeneous
parallel computer architecture, that is, as the ratio of the computational resources used
in problem-related computation to the total computational resources used. Comparing
Tables 2 and 3 we see that efficiency drops with larger numbers of processors. The main
reasons are increased ratio of idle time to total execution time on the slaves because of
the smaller number of evaluations each slave performs (also noticeable as a drop in
Sp), and increased computational effort of the algorithm because of the larger number
of slaves (indicated by a low Sp compared to p).

Using the data from all performed AMS-DEMO runs, we also analyzed the selec-
tion lag on a heterogeneous computer architecture of Grid’5000. We show the distri-
bution of selection lag for tested values of p in Figure 15 and the relevant statistics in
Table 4. Typical of the measured selection lag distributions is that they have a two-
peak shape and are skewed to the right – distribution means are to the right of both
peaks. The two peaks correspond to the two types of processors in the used portion of
Grid’5000. The smaller peak at lower selection lags is produced by the lower number
of Bordeplage processors, while the larger peak at higher selection lags is produced on
the higher number of Bordereau processors. The most likely reason for skewness is the
similarly skewed distribution of te on the Bordereau cluster (see Figure 13). Distribu-
tions are also very wide, as seen from their ranges and standard deviations compared

26 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

Figure 15: Selection lag l distribution for tested values of p on Grid’5000. Although
selection lag values span between 23 and 1083, they are plotted between 0 and 600 for
clarity.

Table 4: Selection lag statistics on Grid’5000
p Range Mean Std. dev. Peaks

100 22 – 148 99 15 84 98

200 90 – 382 199 27 166 196

300 59 – 938 299 44 251 294

400 88 – 1082 399 91 316 372

to their means. Therefore, the mean selection lag may no longer provide enough in-
formation to fully understand the changes in AMS-DEMO convergence rate; further
experiments are required to determine the effects that large variations in selection lag
have on the AMS-DEMO convergence.

5 Conclusion

The steady-state Differential Evolution for Multiobjective Optimization (DEMO) al-
gorithm was parallelized using an asynchronous master-slave parallelization type,
creating the Asynchronous Master-Slave DEMO (AMS-DEMO). AMS-DEMO utilizes
queues for each slave, which reduce the slave idle time to a negligible amount. Be-
cause of its asynchronous nature, the algorithm is able to fully utilize heterogeneous
computer architectures and is not slowed down, even if the evaluation times are not
constant.

Unlike the more common synchronous master-slave parallelization of generational
algorithms, which traverse the decision space identically on any number of processors,
the asynchronous master-slave parallelization changes the trajectory in which the al-
gorithm traverses the decision space. Selection lag – a property that fully characterizes
this change – was identified. Selection lag depends directly on the number of proces-

Evolutionary Computation Volume x, Number x 27

M. Depolli, R. Trobec, B. Filipič

sors and queue sizes, and has an adverse effect on the algorithm, increasing the number
of evaluations required to find optimal solutions. Experiments on a real-world prob-
lem indicate that the effect of selection lag is negligible for a number of processors lower
than about half the population size. Although AMS-DEMO convergence rate appears
to deteriorate slightly on such numbers of processors, we did not find this deteriora-
tion statistically significant. Only for larger numbers of processors does the increase in
the number of evaluations become statistically significant. Nevertheless, we find that,
when increasing the number of processors, the requirement for additional evaluations
caused by the increased selection lag is outweighed by the additional computational re-
sources provided by the processors, resulting in shorter optimization times and larger
speedups. This finding is robust, and holds for all the performed experiments, even
with numbers of processors up to several times the population size.

The constraints for the number of processors were also reduced, compared to the
constraints imposed by the synchronous master-slave parallelization. The number of
processors is not required to divide the population size and may even exceed it. Ex-
periments on the computers of Grid’5000 showed that on such numbers of processors,
AMS-DEMO achieves speedups larger than population size and therefore larger than
theoretical limit for generational algorithms. Although we used no grid-computing
middleware for our tests on Grid’5000, extending AMS-DEMO to use it should be pos-
sible. Asynchronous nature makes AMS-DEMO robust to communication failures and
able to handle dynamic allocation of processing resources, and thus suitable for grid
computing. However, additional work is needed to explore the behavior of AMS-
DEMO in the presence of failures and on the grid.

We tested the AMS-DEMO algorithm on a benchmark problem and a real-life prob-
lem. On the benchmark problem SYMPART, the evaluation function is simple to com-
pute, and we inserted a variable delay, to observe how the weak speedup changes with
evaluation time. As expected, AMS-DEMO was slower than the original DEMO in
tests with extremely short evaluation time. If the evaluation time was comparable to
communication time, AMS-DEMO performance improved while in tests with evalua-
tion time several orders of magnitude longer than communication time, AMS-DEMO
performed at near-linear weak speedup. We also devised a simplified model of weak
speedup for approximate performance of AMS-DEMO.

The majority of the experiments was done on the real-life multiobjective optimiza-
tion problem of continuous steel casting, which requires the optimization of parameters
of the industrial procedure according to two objectives. As a result of a computationally
demanding and time consuming evaluation function, which is based on a computer
simulation, this problem is difficult to solve. Therefore, the parallelization of the opti-
mization algorithm was used to make solving more manageable. The efficiency of the
proposed AMS-DEMO algorithm was contrasted with the simpler and more straight-
forward synchronous master-slave parallelization method. The experiments reveal that
the synchronous master-slave parallelism can be equally fast or slightly faster on a ho-
mogeneous architecture, even when the evaluation times are not constant. When condi-
tions unfavorable to synchronous parallelism accumulate, however, AMS-DEMO gains
advantage, as the experiments on a heterogeneous Grid’5000 architecture show.

Although the predictions based on the analysis and the experimental results so far
agree, AMS-DEMO should be further tested on other problems before making firm con-
clusions. Since the parallel properties of AMS-DEMO depend largely on the proposed
asynchronous master-slave parallelization method and less so on the original DEMO
algorithm, a sensible next step would be to investigate the proposed parallelization

28 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

type independently. Its applicability to other algorithms, both single- and multiobjec-
tive, would be of special interest. Finally a more in-depth understanding of the selec-
tion lag and new ways to minimize its negative effects remain topics for further work.
The ways in which the selection lag distribution influences the algorithm convergence
would be of most interest.

Evolutionary Computation Volume x, Number x 29

M. Depolli, R. Trobec, B. Filipič

References
Akl, S. G. (1997). Parallel Computation: Models and Methods. Prentice Hall, Upper Saddle River.

Alba, E. (2002). Parallel evolutionary algorithms can achieve super-linear performance. Informa-
tion Processing Letters, 82:7–13.

Alba, E. and Troya, J. M. (2002). Improving flexibility and efficiency by adding parallelism to
genetic algorithms. Statistics and Computing, 12(2):91–114.

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2009). Theory of the hypervolume indica-
tor: Optimal µ-distributions and the choice of the reference point. In Proceedings of the 10th
Foundations of Genetic Algorithms Workshop – FOGA 2009, pages 87–102, New York, NY, USA.
ACM.

Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lantéri, S., Leduc,
J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.-G., and
Touche, I. (2006). Grid’5000: a large scale and highly reconfigurable experimental grid testbed.
International Journal of High Performance Computing Applications, 20(4):481–494.

Cantú-Paz, E. (1997). A survey of parallel genetic algorithms. Technical report, University of
Illinois at Urbana-Champaign.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable test problems for evolutionary
multi-objective optimization. In Abraham, A., Jain, R., and Goldberg, R., editors, Evolution-
ary Multiobjective Optimization: Theoretical Advances and Applications, pages 105–145. Springer-
Verlag, New York.

Eberhard, P., Dignath, F., and Kübler, L. (2003). Parallel evolutionary optimization of multibody
systems with application to railway dynamics. Multibody System Dynamics, 9(2):143–164.

Efron, B. (1982). The Jackknife, the bootstrap and other resampling plans. Regional Conference Series
in applied mathematics. Society for Industrial and applied mathematics, Philadelphia.

Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer-Verlag,
Berlin, Heidelberg.

Filipič, B. and Depolli, M. (2009). Parallel evolutionary computation framework for single- and
multiobjective optimization. In Trobec, R., Vajteršic, M., and Zinterhof, P., editors, Parallel
Computing – Numerics, Applications, and Trends, pages 217–240. Springer, Dordrecht.

Filipič, B. and Laitinen, E. (2005). Model-based tuning of process parameters for steady-state
steel casting. Informatica, 29(4):491–496.

Filipič, B., Tušar, T., and Laitinen, E. (2007). Preliminary numerical experiments in multiobjective
optimization of a metallurgical production process. Informatica, 31(2):233–240.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). High-performance, portable implementa-
tion of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828.

Huband, S., Barone, L., While, R. L., and Hingston, P. (2005). A scalable multi-objective test
problem toolkit. In Coello, C. A. C., Aguirre, A. H., and Zitzler, E., editors, Proceedings of the
Third International Conference on Evolutionary Multi-Criterion Optimization – EMO 2005, pages
280–295.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE Interna-
tional Conference on Neural Networks, pages 1942–1948.

Knowles, J. and Corne, D. (2002). On metrics for comparing non-dominated sets. In Proceedings of
the 2002 Congress on Evolutionary Computation Conference – CEC’02, pages 711–716. IEEE Press.

30 Evolutionary Computation Volume x, Number x

AMS Parallelization of DEMO

Koh, B.-I., George, A. D., Haftka, R. T., and Fregly, B. J. (2006). Parallel asynchronous particle
swarm optimization. International Journal for Numerical Methods in Engineering, 67(4):578–595.

Lewis, A., Mostaghim, S., and Scriven, I. (2009). Asynchronous multi-objective optimisation in
unreliable distributed environments. In Lewis, A., Mostaghim, S., and Randall, M., editors,
Biologically-inspired Optimisation Methods: Parallel Algorithms, Systems and Applications, pages
51–78. Springer, Berlin.

Lim, D., Soon Ong, Y., Jin, Y., Sendhoff, B., and Sung Lee, B. (2007). Efficient hierarchical parallel
genetic algorithms using grid computing. Future Generation Computer Systems, 23(4):658–670.

Luna, F., Nebro, A. J., and Alba, E. (2006). Parallel Evolutionary Computations, chapter Parallel Evo-
lutionary Multiobjective Optimization, pages 33–56. Studies in Computational Intelligence,
Parallel Evolutionary Computations. Springer-Verlag, Berlin Heidelberg.

Mostaghim, S., Branke, J., Lewis, A., and Schmeck, H. (2008). Parallel multi-objective optimiza-
tion using master-slave model on heterogeneous resources. In Proceedings of the 2008 Congress
on Evolutionary Computation – CEC’08, pages 1981–1987.

Nebro, A. J. and Durillo, J. J. (2010). A study of the parallelization of the multi-objective meta-
heuristic MOEA/D. In Proceedings of the 4th international conference on Learning and intelligent
optimization, LION’10, pages 303–317, Berlin, Heidelberg. Springer-Verlag.

Nebro, A. J., Luna, F., Talbi, E.-G., and Alba, E. (2005). Parallel multiobjective optimization. In
Alba, E., editor, Parallel Metaheuristics, pages 371–394. John Wiley & Sons, New Jersey.

Oliveira, L. S., R.Sabourin, Bortolozzi, F., and Suen, C. (2003). A methodology for feature selec-
tion using multi-objective genetic algorithms for handwritten digit string recognition. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 17:2003.

Price, K., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to
Global Optimization. Natural Computing Series. Springer-Verlag, Berlin, Heidelberg.

Price, K. V. and Storn, R. (1997). Differential evolution: A simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, 22(4):18–24.

Quagliarella, D. and Vicini, A. (1998). Sub-population policies for a parallel multiobjective ge-
netic algorithm with applications to wing design. In Proceedings of the 1998 IEEE International
Conference On Systems, Man, and Cybernetics – SMC 1998, pages 3142–3147, San Diego, Califor-
nia.

Radtke, P. V. W., Oliveira, L. S., Sabourin, R., and Wong, T. (2003). Intelligent zoning design
using multi-objective evolutionary algorithms. In Proceedings of the 7th International Conference
on Document Analysis and Recognition – ICDAR 2003, pages 824–828.

Robič, T. and Filipič, B. (2005). DEMO: Differential evolution for multiobjective optimization.
In Proceedings of the Third Conference on Evolutionary Multi-Criterion Optimization – EMO 2005,
volume 3410 of Lecture Notes in Computer Science, pages 520–533.

Sasaki, D., Morikawa, M., Obayashi, S., and Nakahashi, K. (2001). Aerodynamic shape optimiza-
tion of supersonic wings by adaptive range multiobjective genetic algorithms. In Proceedings
of the First International Conference on Evolutionary Multi-Criterion Optimization – EMO’01, pages
639–652.

Scriven, I., Irel, D., Lewis, A., Mostaghim, S., and Branke, J. (2008). Asynchronous multiple
objective particle swarm optimisation in unreliable distributed environments. In Proceedings
of the 2008 Congress on Evolutionary Computation – CEC’08, pages 2481–2486.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1996). MPI – The Complete
Reference. The MIT Press, Cambridge.

Evolutionary Computation Volume x, Number x 31

M. Depolli, R. Trobec, B. Filipič

Stanley, T. J. and Mudge, T. (1995). A parallel genetic algorithm for multiobjective microprocessor
design. In Proceedings of the Sixth International Conference on Genetic Algorithms – ICGA 1995,
pages 597–604. Morgan Kaufmann Publishers.

Storn, R. and Price, K. V. (1997). Differential evolution: A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359.

Suganthan, P. N. (2007). Performance assessment on multi-objective optimization algorithms.
http://www3.ntu.edu.sg/home/epnsugan/.

Talbi, E.-G. and Meunier, H. (2006). Hierarchical parallel approach for GSM mobile network
design. Journal of Parallel and Distributed Computing, 66(2):274–290.

Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., and Coello Coello, C. A. (2008).
Parallel approaches for multiobjective optimization. In Branke, J., Deb, K., Miettinen, K., and
Slowinski, R., editors, Multiobjective Optimization, pages 349–372. Springer-Verlag, Berlin, Hei-
delberg.

Tušar, T. and Filipič, B. (2007). Differential evolution versus genetic algorithms in multiobjec-
tive optimization. In Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., and Murata, T., editors,
Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization –
EMO 2007, Lecture Notes in Computer Science, pages 257–271, Matsushima, Japan. Springer,
Berlin. LNCS, Vol. 4403.

van Veldhuizen, D. A., Zydallis, J. B., and Lamont, G. B. (2003). Considerations in engineering
parallel multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
7(2):144–173.

Zamuda, A., Brest, J., Bošković, B., and Žumer, V. (2007). Differential Evolution for Multiob-
jective Optimization with Self Adaptation. In Proceedings of the 2007 Congress on Evolutionary
Computation – CEC’07, pages 3617–3624.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation, 8(2):173–195.

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search. In Proceedings
of the Eight Conference on Parallel Problem Solving from Nature – PPSN VIII, pages 832–842.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength pareto evolu-
tionary algorithm. Technical Report 103, Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, Switzerland.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms – a
comparative case study. In Proceedings of the Fifth Conference on Parallel Problem Solving from
Nature – PPSN V, pages 292–301, Berling Heidelberg. Springer-Verlag.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2002). Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolu-
tionary Computation, 7(2):117–132.

32 Evolutionary Computation Volume x, Number x

