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Abstract—A recently suggested technique for high order mesh-
less approximations is described and analyzed in this paper. It
involves constructing ordinary Radial Basis Function-generated
finite difference approximations augmented with monomials up
to a given order to ensure higher convergence rates. These
approximations are used to solve the Poisson’s equation on an
annulus to demonstrate the predicted convergence rates. The
presented methodology is then applied to a scattering problem,
which is described by a coupled system of two complex-valued
PDEs on two domains, sharing a common boundary.

Index Terms—meshless, RBF-FD, polyharmonic splines, high
order approximation, scattering

I. INTRODUCTION

Radial basis function-generated finite differences (RBF-FD)
were suggested among others by Tolstykh and Shirobokov [1].
They combine good approximation properties of radial basis
functions (RBFs) with their ability to adapt to scattered grids,
as the Lagrange interpolation problem can be shown to be
nonsingular for many commonly used RBFs [2]. This comes
contrary to other suggested generalizations of finite differences
to scattered grids, such as the Finite Point method [3], where
no such guarantee is given.

Most RBFs, such as the often used Gaussian, multiquadric
or inverse multiquadric functions, depend on a so-called shape
parameter ε, which governs their flatness. This parameter
primarily impacts the quality of and the conditioning of the
approximation [4]. Extensive research was conducted on se-
lecting the optimal shape parameter [5] and on circumventing
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the bad conditioning as ε → 0 with specialized algorithms,
such as RBF-QR [6].

To avoid these problems altogether, use of polyharmonic
splines (PHS) has been suggested, since they do not depend
on the shape parameter and do not share the conditioning
problems of other RBFs. As PHS themselves do not provide
convergent approximations, they mush be augmented with
polynomials, and effects of such augmentation have been
studied extensively in recent papers [7]–[9].

RBF-FD has since its introduction been widely used in a
number of different areas, such as simulation of natural con-
vection around electrical power lines [10], geosciences [11],
contact problems [12], option pricing [13] and PDEs on
surfaces [14]. Besides those applications, meshless and other
mesh-reduction methods have emerged as an attractive al-
ternative to classical methods for a variety of electromag-
netic problems [15]–[17]. Specifically, the electromagnetic
scattering problem by anisotropic cylinders has been solved
using global strong form approaches, such as the method of
approximate particular solution (MAPS) [18] and a local weak
form approaches, such as the meshfree local Petrov-Galerkin
method (MLPG) [19].

The rest of the paper is organized as follows: high order
RBF-FD discretizations are described in section II and nu-
merical examples are presented in section III, including the
Poisson equation in section III-A and a scattering problem in
section III-B. Finally, conclusions are presented in section IV.



II. METHOD DESCRIPTION

A. RBF-FD approximations

The core of strong form meshless discretization procedures
is the approximation of partial differential operators. Consider
a partial differential operator L at a point x∗. We seek an
approximation of L at x∗ as a linear combination of function
values in neighboring nodes:

(Lu)(x∗) ≈
n∑
i=1

wiu(xi). (1)

Here xi represent the stencil or support at x∗, wi are called
stencil weights, n is the stencil size and u is an arbitrary
function. If the weights and function values are assembled
into vectors of length n, the approximation is written simply
as

(Lu)(x∗) ≈ wL(x∗)Tu, (2)

where the dependence of w on L and x∗ has been written
explicitly. To determine the weights, equality of (1) is enforced
for a given set of functions, often monomials [3]. In the RBF-
FD discretization, the equality is enforced for radial basis
functions, i.e. functions of form

φ(r), r = ‖x− xi‖, (3)

which are radially symmetric and centered at stencil nodes xi.
Each RBF corresponds to one linear equation for unknowns wi
by enforcing exactness of (1). Assembling these n equations
for into matrix form, we obtain the following linear system:φ(‖x1 − x1‖) · · · φ(‖xn − x1‖)

...
. . .

...
φ(‖x1 − xn‖) · · · φ(‖xn − xn‖)


w1

...
wn

 =

`φ,1...
`φ,n

 , (4)

`φ,j = (Lφ(‖x− xj‖))|x=x∗ , (5)

or, written more compactly,

Aw = `φ. (6)

This system is symmetric, and for some φ even positive def-
inite [2]. Weights obtained by solving (4) are not necessarily
a good approximation of L|x∗ and can be augmented with
monomials to improve accuracy.

Let p1, . . . , ps be polynomials for which exactness of (1) is
desired. These are often monomials up to a chosen order m,
resulting in s =

(
m+2
m

)
additional monomials in 2 dimensions.

These additional constraints are enforced by extending (6) as[
A P
PT 0

] [
w
λ

]
=

[
`φ
`p

]
, (7)

where

P =

p1(x1) · · · ps(x1)
...

. . .
...

p1(xn) · · · ps(xn)

 (8)

is a n × s matrix of polynomials evaluated at stencil nodes
and

`p =

(Lp1)|x=x∗

...
(Lps)|x=x∗

 (9)

is the vector of values, given by applying considered operator
L to the polynomials at x∗. Weights obtained by solving (7)
are taken as approximations of L at x∗. Additional unknowns
λ play the role of Lagrange multipliers and are discarded.

B. Polyharmonic splines with high order augmentation

Common choices for RBFs include Gaussian,

φ(r) = exp(−(εr)2), (10)

or multiquadric,

φ(r) =
√

1 + (εr)2. (11)

Both of these, along with many other types of RBFs, depend
on a shape parameter ε, which represents a trade-off between
accuracy and stability. Another class of RBFs are the polyhar-
monic splines, defined as

φ(r) = rk, k odd, (12)

which do not depend on a shape parameter and the condition
number of matrix A (6) remains constant under refinement.
PHS should be augmented with monomials of at least second
order to obtain convergent results, but can be augmented with
much higher orders to achieve higher convergence rates and
orders of accuracy.

C. PDE discretization

Consider a boundary value problem

Lu = f in Ω, (13)
u = g on ∂Ω.

Domain Ω is discretize by placing N nodes in the domain,
Ni in the interior and Nb on the boundary. Then, stencils Nxi

are selected for each node xi, usually by taking n closest
nodes. For PHS RBFs augmented with s monomials it has
been recommended taking at least n = 2s nodes [8]. Each
operator L is approximated at every point where it needs to
be evaluated using the procedure described in section II-A. For
problem (13) we would approximate L at all interior nodes.

This approximation replaces the equation (Lu)(xi) = f(xi)
with a linear equation

wL(xi)
Tu = f , (14)

where vectors u and f represent values of functions f and u
in stencil nodes of xi. The Ni equations (14) can be assembled
into a system of equations, along with Nb equations for
boundary conditions, to obtain a N ×N sparse linear system
with approximately Nn nonzero elements. The solution of this
system is a numerical approximation of u and its values are
known only at nodes xi and are denoted ui.



Fig. 1. One of the scattered node distributions when solving (15), showing
boundary and internal nodes. The total number of nodes is N = 1709.

III. NUMERICAL EXAMPLES

A. Poisson equation

First we consider Poisson’s equation

∇2u = f in Ω, (15)
u = g on ∂Ω

on an annulus domain, centered at the origin with radii r1 and
r2, i.e.

Ω = {(x, y); r2
1 < x2 + y2 < r2

2}. (16)

We choose u(x, y) = sin(πx) sin(πy) as the test function
and compute f and g accordingly. Additionally, we choose
r1 = 1 and r2 = 2.

Problem, given by (15), was solved using RBF-FD with
polyharmonic splines as basis functions. The function were
augmented with monomials up to order m, with m = −1
representing no monomial augmentation. The nodes were
placed in the domain using a node positioning algorithm
suitable for mesh-free discretizations [20], which results in
scattered node distributions, as shown in Fig. 1. The number
of nodes varied from 1000 to 180 000 and the stencil for each
node was comprised of n = 65 closest nodes. The error was
measured in relative discrete infinity norm as

`∞ =
maxi |u(xi)− ui|

maxi |u(xi)|
. (17)

The measured errors for various m with respect to N are
shown in Fig. 2.

If can be seen that PHS approximations diverge, if computed
without augmentation or augmented only with a constant. For
augmentation of higher order, convergence rates correspond
to the order of the added monomials. The convergence is also
surprisingly smooth for a meshless method on scattered node
sets. The method at m = 8 loses a bit of its robustness,
partially due to high order of monomials, but also due to

Fig. 2. Convergence of the RBF-FD method using PHS with various orders of
monomial augmentation. Values of k represent line slopes for the preceding
data series. Measuring in other error norms, such as `1 or `2 gave similar
results.

the number of monomials s =
(

8+2
2

)
= 45 being relatively

large compared to the stencil size n = 65. The stagnation of
error for

√
N ≥ 200 in m = 8 case is due to finite precision

arithmetic.

B. Scattering problem

Consider an infinitely long anisotropic dielectric cylindrical
scatterer surrounded by free space and let D ⊂ R2 be its
cross section, with an outward normal ~n on boundary ∂D. A
2× 2 symmetric positive definite matrix of relative magnetic
permeabilities Aµ is used to describe the anisotropy.

The scatterer is excited by an eiωt time-harmonic plane
wave with TMz polarization, with ω standing for its angular
frequency. Let v denote the complex-valued field inside the
scatterer and u the field outside of the scatterer. Field u
can be further decomposed into the known incident ui and
the unknown scattered field us. The scattering of ui can be
described as a system of complex PDEs for v and us:

∇ ·Aµ∇v + εrk
2 v = 0 in D, (18)

∇2us + k2 us = 0 in R2 \D, (19)

with boundary conditions

v − us = ui on ∂D (20)
∂v

∂~nAµ
− ∂us

∂~n
=
∂ui

∂~n
on ∂D, (21)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (22)

where k = ω
√
µ0ε0 = 2π

λ is the wave number of free space,
µ0 and ε0 are magnetic permeability and electric permittivity
of free space, and εr is the relative electric permittivity of the



scatterer. Relative magnetic permeability matrix Aµ is written
as

Aµ =
1

µxxµyy − µ2
xy

[
µxx µxy
µxy µyy

]
(23)

and the anisotropic normal derivative is defined as

∂v

∂~nAµ
= ~n ·Aµ∇v. (24)

The condition (22) is the so called Sommerfield boundary
condition.

To solve the described problem numerically, a finite annulus
Ω is constructed around D, as seen in Figure 3. This bounds
the free space R2 by outer boundary of Ω, which implies (19)
is now only solved in Ω and the outer boundary condition (22)
changes to:

∂us

∂~n
+

(
ik +

1

2r2

)
us = 0 on ∂Ω. (25)

Fig. 3. Computational domain Ω with a cylindrical scatterer cross-section in
the middle.

The numerical problem is a coupled system of complex-
valued PDEs on two domains Ω and D with a common
boundary ∂D. The RBF-FD method with PHS, augmented
with monomials up to order m = 4, is used to obtain
the discrete formulation. Each of the domains Ω and D is
discretized separately. The total number of nodes used was
ND = 10 872 for discretization of D and NΩ = 86 116
for discretization of Ω. Certain care needs to be taken when
constructing the discretization along the boundary of D, as we
need to make sure that the nodes correspond exactly with the
nodes on the interior boundary of Ω. When constructing the
final (NΩ +ND)×(NΩ +ND) matrix, the equations (18), (19)
and (25) are enforced as usual. The conditions (20) and (21)
are the ones that couple the fields together and must be
enforced so that the nodes on the boundary of D are used when
discretizing v and the corresponding nodes on the boundary
of Ω are used when discretizing us.

Values r1 = 0.25, r2 = 0.75, εr = 0.5, µxx = 2, µxy = 0.5,
µyy = 1 were used for the undetermined physical constants.

The computed field v inside the scatterer is shown in Fig. 4
and field us is shown in Fig. 4. The error evaluated against

an analytical solution [21] is of order 10−2 for both computed
fields.

Fig. 4. Magnitude of v inside the scatterer.

Fig. 5. Magnitude of us around the scatterer.

IV. CONCLUSIONS

We have presented a RBF-FD discretization technique using
polyharmonic splines with polynomial augmentation. It was
shown that up to 8th order convergence can be achieved
on scattered node sets relatively simply by augmenting with
monomials of appropriate order and taking large enough
stencils. This technique was applied to solve a scattering
problem, which involved solving a coupled system of two
complex-valued PDEs on two domains, sharing a common
boundary.

All computations were performed using the in house
Medusa library [22] for meshless PDE discretizations. Future
work will focus on developing adaptive techniques and error
indicators for RBF-FD, to aid in solving real world engineering
problems.
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