
ADAPTIVE RBF-FD METHOD FOR POISSON'S 

EQUATION 

JURE SLAK1,2, GREGOR KOSEC1 
 

1 Parallel and Distributed Systems Laboratory 

“Jožef Stefan” Institute, Jamova 39 
SI-1000 Ljubljana, Slovenia 

 
2 Faculty of Mathematics and Physics 
University of Ljubljana, Jadranska 21, 

SI-1000 Ljubljana, Slovenia 

 

ABSTRACT 

Solutions to many physical problems governed by partial differential equations (PDE) often 

significantly vary in magnitude throughout the problem domain. Although in some special cases the 

areas with high error are known in advance, in general the error distribution is unknown beforehand. 

Adaptive techniques for solving PDEs are a standard way of dealing with this problem, where 

problematic regions are iteratively refined. A step further is automatic adaptivity, where problematic 

regions are chosen automatically using an error indicator and then refined, until certain error 

threshold is reached. In this paper we apply a recently published technique for automatic adaptivity 

for strong form meshless methods and solve the Poisson equation and its generalisations using the 

popular RBF-FD method. Both 2D and 3D cases are considered comparing uniform and adaptive 

refinement, illustrating the advantages of fully automatic adaptivity. 
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1  INTRODUCTION 

Adaptive modification of PDE discretizations is needed in problems with variable physical 

behaviour or precision requirements throughout the domain. The techniques used in 

traditional methods, such as the Finite Element Method (FEM), are well developed [1]. 

Besides the procedure for the solution of the PDE, two more parts are needed for fully 

automatic adaptivity: an indicator of the solution quality and a refinement strategy. In the 

following paragraphs we offer a brief review of all three elements in a strong form meshless 

method context. 

    Local strong form methods were developed as a cheaper alternative to global collocation 

methods and are usually presented as generalisations of Finite Difference Method to 

scattered grids. The most direct generalisation is the Finite Point Method, which uses 

monomials to compute the stencil weights [2]. Due to stability issues, Radial Basis 

Functions (RBFs) have been suggested and successfully used instead of monomials [3]. To 

ensure consistency of the approximations and eliminate the influence of the shape 

parameter, Polyharmonic splines, augmented with monomials were researched and 

successfully applied to various problems [12], which we will also use for our solution 

procedure.  

    Most widely used error indicator was developed by Zienkiewicz and Zhu [4] for FEM 

and has since been generalized to meshless methods. The main idea of the indicator is to 

approximate the error of the solution as the difference between the original solution and the 

so-called recovered solution, obtained by appropriate post-computation. In strong form 



meshless methods it has already been used with the Finite Point Method [5] and RBF-FD 

[11]. Different type of error indicators is available for least-squares based meshless 

methods, which use the residual of the least squares approximations to estimate the error 

[6]. Additionally, several ad-hoc error indicators have been used, mostly using the 

variability of the solution to determine refinement regions, such as [7] and [8]. This method 

will be used in the present work as well, for simplicity. 

     After the problematic regions have been identified, the (de)refinement can be done in 

multiple ways. Either we can modify the approximation, resulting in 𝑝-refinement schemes, 

or the discretization itself can be modified. This can be done either by moving the nodes (𝑟-

refinement), used in e.g. [6], or by placing more nodes in regions with high estimated error 

and removing nodes from low-error regions (ℎ-refinement), used in e.g. [8] and [11]. 

Another variation in ℎ-refinement strategies is whether the existing discretisation is only 

modified and partially reused, or generated completely anew. The former can cause 

problems with conditioning, causing the need for specially selected stencils [11], which is 

why we opted for the latter option. 

    Similar methodology to the one described above, has been recently used to solve linearly 

elastic contact problems [10]. In this work we apply it to the Poisson equation and its 

generalizations. The rest of the paper is organized as follows: in section 2 the RBF-FD 

method is presented, in section 3 the adaptive methodology is described and in section 4 the 

results of the numerical experiments are presented. 

2  RBF-GENERATED FINITE DIFFERENCES 

Consider an elliptic boundary value problem  

 ℒ𝑢 = 𝑓  in Ω, (1) 

       𝑢 = 𝑢0 on 𝜕Ω, (2) 

which will be used as a sample theoretical problem throughout this paper. Domain Ω is 

discretized by placing 𝑁 nodes 𝑝𝑖  in and on the boundary of the domain. Nodes are 

positioned by algorithm presented in [13], which can distribute nodes according to any 

continuous spacing function ℎ. Each node 𝑝𝑖  is assigned a stencil of 𝑛 nodes, 𝑆(𝑝𝑖) =

(𝑝𝑗1 , … , 𝑝𝑗𝑛). The operator ℒ is approximated for each point 𝑝𝑖  in the domain interior. This 

is done by assuming an approximation of form 

 (ℒ𝑢)(𝑝𝑖) ≈ ∑ 𝑤𝑖,𝑘𝑢(𝑝𝑗𝑘)
𝑛
𝑘=1 . (3) 

Equality in the above approximation is desired for a certain set of functions: if node 𝑝𝑖  are 

arranged in a grid and equality is enforced for monomials, standard finite difference 

approximation is obtained.  

    To derive the “RBF-generated finite differences”, RBFs are used to compute the weights 

𝑤𝑖,𝑘. Polyharmonic splines will be used in this work, which are radial functions of form 

𝜙(𝑟) = 𝑟𝑘, for an odd integer 𝑘. Radial basis functions are often thought of as being 

centred in one node, denoting 𝜙𝑗(𝑝) = 𝜙(‖𝑝 − 𝑝𝑗‖). To obtain RBF-FD weights, radial 

functions centred on the stencil nodes are used as the basis. Substituting 𝜙𝑗ℓ for 𝑢 in (3) and 

enforcing equality, we arrive at the following linear system: 

 [

𝜙(‖𝑝𝑗1 − 𝑝𝑗1‖) ⋯ 𝜙(‖𝑝𝑗𝑛 − 𝑝𝑗1‖)

⋮ ⋱ ⋮
𝜙(‖𝑝𝑗1 − 𝑝𝑗𝑛‖) ⋯ 𝜙(‖𝑝𝑗𝑛 − 𝑝𝑗𝑛‖)

] [

𝑤𝑖,1
⋮
𝑤𝑖,𝑛

] = [

(ℒ𝜙(‖⋅ −𝑝𝑗1‖)) (𝑝𝑖)

⋮

(ℒ𝜙(‖⋅ −𝑝𝑗𝑛‖)) (𝑝𝑖)

], (4) 

written compactly as 𝐴𝑤 = 𝑏. Additional consistency constraints can be enforced to ensure 

convergence [12], augmenting the above matrix into 



 [
𝐴 𝑄𝑇

𝑄 0
] [
𝑤
𝜆
] = [

𝑏
𝑐
], (5) 

where the second equation 𝑄𝜆 = 𝑐 is expanded as  

 [

𝑞1(𝑝𝑗1) ⋯ 𝑞1(𝑝𝑗𝑛)

⋮ ⋱ ⋮
𝑞ℓ(𝑝𝑗1) ⋯ 𝑞ℓ(𝑝𝑗𝑛)

] [
𝜆1
⋮
𝜆ℓ

] = [
(ℒ𝑞1)(𝑝𝑖)

⋮
(ℒ𝑞ℓ)(𝑝𝑖)

], (6) 

with 𝑞𝑙 representing monomials up to and including some order 𝑚. Values 𝜆 are discarded 

after computation.  

    With the stencil weights 𝑤𝑖,𝑘 computed for each node 𝑝𝑖  the PDE (ℒ𝑢)(𝑝𝑖) = 𝑓(𝑝𝑖) can 

be approximated with a linear algebraic equation ∑ 𝑤𝑖,𝑘𝑢(𝑝𝑗𝑘)
𝑛
𝑘=1 = 𝑓(𝑝𝑖). These 

equations can be assembled in a sparse matrix and after including the boundary conditions, 

can be solved for unknowns 𝑢(𝑝𝑖) to obtain the numerical solution. 

3  ADAPTIVE METHODOLOGY 

The adaptive methodology in this paper behaves similarly to “remeshing” used commonly 

in FEM and has been successfully used to solve contact problems from linear elasticity [7]. 

Some initial (possibly variable) nodal spacing ℎ0(𝑝) is chosen, as well as its lower and 

upper bounds ℎ𝐿(𝑝) and ℎ𝑈(𝑝), respectively. Domain Ω is filled with nodes, conforming to 

ℎ0 and the solution 𝑢0 is obtained. An error indicator is employed to determine which 

nodes should be (de)refined and the nodal density ℎ0 is altered appropriately. This adaptive 

cycle below is repeated until the convergence criterion is met. The procedure on 𝑗-th 

iteration is written in more detail below: 

1. Fill Ω with nodes conforming to ℎ𝑗. 
2. Solve the problem to obtain 𝑢𝑗. 

3. Compute the error indicator values 𝜀𝑖
𝑗
 for each node 𝑝𝑖 . 

4. If the mean of 𝜀𝑖
𝑗
 is below some tolerance 𝜀 return 𝑢𝑗 as the solution and stop. 

5. Adapt ℎ𝑗 to obtain ℎ𝑗+1. 

More details on the steps 3 and 5 above are given in the next two sections. 

3.1  Error indicator 

The error indicator used in this paper is designed to detect the variability of the solution 

around node 𝑝𝑖 . First, the recovered solution �̃�𝑖 is computed as �̃�𝑖 =
1

𝑛
∑ 𝑢𝑘
𝑛
𝑘=1  and then the 

indicator 𝜀𝑖 is computed as 𝜀𝑖 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑘=1 , where local errors 𝑒𝑖 are computed as 

𝑒𝑖 = |𝑢𝑖 − �̃�𝑖|. Despite its simplicity, this error indicator turned out to work well enough 

for our purposes.  

3.2  Nodal spacing adaptation 

The existing nodal spacing function ℎ𝑗 is evaluated at nodes 𝑝𝑖  to obtain values ℎ𝑖,𝑗 =

ℎ𝑗(𝑝𝑖). These values ℎ𝑖,𝑗 are modified by a density factor 𝑓𝑖 as 

 ℎ𝑖,𝑗+1 = min (𝑚𝑎𝑥 (ℎ𝑖,𝑗/𝑓𝑖 , ℎ𝐿(𝑝𝑖)) , ℎ𝑈(𝑝𝑖)) (7) 

where factor 𝑓𝑖 is computed as 



 𝑓𝑖 =

{
 

 1 +
𝜂− 𝜀𝑖

𝜂−𝑚 
(
1

𝛽
− 1) ; 𝜀𝑖 ≤ 𝜂

1; 𝜂 ≤ 𝜀𝑖 ≤ 𝜀

1 +
𝜀𝑖−𝜀

𝑀−𝜀
(𝛼 − 1); 𝜀𝑖 ≥ 𝜀

 (8) 

and 𝛼 represents the refine aggressiveness, 𝛽 the derefine aggressiveness, 𝜀 the refinement 

threshold, 𝜂 the derenfinement threshold, and 𝑚 = min𝑖 𝜀𝑖 is the minimal and 𝑀 = max𝑖 𝜀𝑖 
is the maximal value of the error indicator. Note that setting 𝛼 = 1 or 𝛽 = 1 disables 

refinement and derefinement, respectively. Lower refinement bound ℎ𝐿 is often not 

necessary and can be set to ∞, while upper bound ℎ𝑈 is often set to the initial density ℎ0. 

Unless otherwise stated this will be the case in this paper as well. 

    After the values ℎ𝑖,𝑗+1 have been computed, the function ℎ𝑗+1 is obtained using modified 

Shepard’s scattered interpolation of pairs (𝑝𝑖 , ℎ𝑖,𝑗+1). The 15 closest neighbouring nodes 

were used in this paper. 

4  RESULTS 

We test the fully adaptive solution procedure described in the previous section on some 

standard test problems, taken from [9].  

4.1  L-shaped domain 

The first test case is the “L domain” test case. Laplace equation 

 ∇2𝑢 = 0 (9) 

is solved on domain Ω = [−1, 1]2 ∖ ([0, 1] × [−1,0]) with a known solution 𝑢 given in 

polar coordinates as 𝑢 = 𝑟
2

3 sin
2

3
𝜃 and Dirichlet boundary conditions obtained from 𝑢.  

     RBF-FD method with Polyharmonic splines augmented with monomials up to and 

including 2
nd

 order was used to approximate the differential operators. The stencils for each 

node were chosen by simply selecting the closest 𝑛 = 15 nodes. The resulting sparse 

system was solved using the Intel ® MKL Pardiso sparse solver. Both uniform and fully 

adaptive refinement was tested. The adaptive procedure was run with 𝛼 = 3, 𝜀 = 10−2, 

𝛽 = 1 and 𝜂 = 0. 

    The error was between the exact solution 𝑢 and numerical solution �̂� was measured in 

three different norms 

 𝑒1 =
‖𝑢−𝑢‖1

‖𝑢‖1
, ‖𝑢‖1 =

1

𝑁
∑ |𝑢(𝑝)|𝑝∈𝐺 , (10) 

 𝑒2 =
‖𝑢−𝑢‖2

‖𝑢‖2
, ‖𝑢‖2 = √

1

𝑁
∑ |𝑢(𝑝)|2𝑝∈𝐺 ,  (11) 

 𝑒∞ =
‖𝑢−𝑢‖∞

‖𝑢‖∞
, ‖𝑢‖∞ = max𝑝∈𝐺|𝑢(𝑝)|,  (12) 

where 𝐺 is a set of independent points arranged in a dense uniform grid over the whole 

domain. 

    The errors 𝑒1, 𝑒2 and 𝑒∞ for uniform refinement are shown in Figure 1. 

 



 

Figure 1: Errors when solving the “L domain” problem using uniform refinement 

Figure 2 shows the errors under adaptive refinement. The adaptive refinement finished in 6 

iterations. We can see that better rates and lower errors are obtained using this technique.  

 

 

Figure 2: Errors when solving the “L domain” problem using adaptive refinement. 

Additionally, local node errors and nodal densities were observed during the course of the 

adaptive iteration. The local errors on each iteration are computed for each node as 

𝜖𝑖 = |�̂�(𝑝𝑖) − 𝑢(𝑝𝑖)|. The local nodal separation distance is computed as the average 

distance �̅�𝑖 from each node to its closest neighbours, �̅�𝑖 =
1

3
(𝑑𝑖,1 + 𝑑𝑖,2 + 𝑑𝑖,3). From �̅�𝑖 

we can compute the relative node density 𝜌𝑖 as 



 𝜌𝑖 = − log2 (
�̅�𝑖

max𝑗 �̅�𝑗
). (13) 

Value 𝜌𝑖 = 0 means that node 𝑝𝑖  has maximal separation distance (least dense) while e.g. 

𝜌𝑖 = 3 means that nodes around 𝑝𝑖  are 8 times as dense as in the coarsest part. Values 𝜖𝑖 
and 𝜌𝑖 corresponding to the solutions, whose errors were computed in Figure 2, are shown 

in Figure 3. It can be seen that the node density adapts according to the error and begins to 

concentrate in the inner corner. 

 

 

Figure 3: Plots of logarithms of errors (log 𝜖𝑖, left column) and nodal densities (𝜌𝑖, right 

column) over the course of the adaptive iteration.  



4.2  2D Helmholtz equation 

Next, we investigate the behaviour of the method on a Helmholtz equation 

 −∇2𝑢 −
1

(𝛼+𝑟)4
𝑢 = 𝑓 (14) 

with an oscillatory solution 𝑢(𝑟) = sin (
1

𝛼+𝑟
) , where the right hand side 𝑓 is computed 

from the solution 𝑢.Value 𝛼 =
1

5𝜋
 was used in all computations. Same numerical setup as in 

section 4.1  was used to obtain the numerical results, except that the tolerance 𝜖 was set to 

10−3.  

    Figure 4 shows the errors during uniform and adaptive refinement. We can see that no 

satisfactory solution can be obtained using uniform refinement and that there is no 

indication of convergence. The adaptive solution procedure manages to find a satisfactory 

solution and exhibits better convergence properties.  

 

         

Figure 4:  Errors during uniform refinement (left) and adaptive refinement (right) when 

solving the 2D Helmholtz equation. 

       

Figure 5: Solution 𝑢𝑖 of the 2D Helmholtz equation (left) and the nodal density 𝜌𝑖 (right) 



The initial jump in error has been observed before [10][11] and is usually caused by too 

small initial node density. The solution in the last iteration is shown in Figure 5, along with 

the obtained nodal density function. Node separation distance in the densest part was 

around 400-times smaller than in the coarsest part. 

4.3  3D Helmholtz equation 

The same problem as in the section 4.2  is used to assess the behaviour of the method in 3D 

as well. The same numerical setup as in 2D was used, except that the number of nearest 

neighbours used to the stencil increased to 𝑛 = 25. Uniform refinement behaves similarly 

to its 2D counterpart. The errors during the adaptive iteration are shown in Figure 6. The 

obtained solution and nodal density in the last iteration are shown in Figure 7. 

 

 

Figure 6: Errors during adaptive solution of the 3D Helmholtz equation. 

 

      

Figure 7: Solution 𝑢𝑖 of the 3D Helmholtz equation (left) and the nodal density 𝜌𝑖 (right) 



5  CONCLUSIONS 

We presented a fully automatic adaptive procedure for elliptic problems. RBF-FD method 

along with a node positioning algorithm and an ad-hoc error indicator was used to 

iteratively refine initially uniform discretizations to obtain solution to Poisson’s and 

Helmholtz equations in 2D and 3D, which would not have been feasible using only uniform 

discretizations. 

   All computations were done using the Medusa library [14] for meshless solutions of 

PDEs. Future work will be focused on the development of better error indicators and more 

efficient refinement strategies. 
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