
ADAPTIVE RBF-FD METHOD FOR POISSON'S

EQUATION

JURE SLAK1,2, GREGOR KOSEC1

1 Parallel and Distributed Systems Laboratory

“Jožef Stefan” Institute, Jamova 39
SI-1000 Ljubljana, Slovenia

2 Faculty of Mathematics and Physics
University of Ljubljana, Jadranska 21,

SI-1000 Ljubljana, Slovenia

ABSTRACT

Solutions to many physical problems governed by partial differential equations (PDE) often

significantly vary in magnitude throughout the problem domain. Although in some special cases the

areas with high error are known in advance, in general the error distribution is unknown beforehand.

Adaptive techniques for solving PDEs are a standard way of dealing with this problem, where

problematic regions are iteratively refined. A step further is automatic adaptivity, where problematic

regions are chosen automatically using an error indicator and then refined, until certain error

threshold is reached. In this paper we apply a recently published technique for automatic adaptivity

for strong form meshless methods and solve the Poisson equation and its generalisations using the

popular RBF-FD method. Both 2D and 3D cases are considered comparing uniform and adaptive

refinement, illustrating the advantages of fully automatic adaptivity.

Keywords: adaptivity, mesh-free methods, RBF-FD, Poisson equation, Helmholtz equation, PDEs

1 INTRODUCTION

Adaptive modification of PDE discretizations is needed in problems with variable physical

behaviour or precision requirements throughout the domain. The techniques used in

traditional methods, such as the Finite Element Method (FEM), are well developed [1].

Besides the procedure for the solution of the PDE, two more parts are needed for fully

automatic adaptivity: an indicator of the solution quality and a refinement strategy. In the

following paragraphs we offer a brief review of all three elements in a strong form meshless

method context.

 Local strong form methods were developed as a cheaper alternative to global collocation

methods and are usually presented as generalisations of Finite Difference Method to

scattered grids. The most direct generalisation is the Finite Point Method, which uses

monomials to compute the stencil weights [2]. Due to stability issues, Radial Basis

Functions (RBFs) have been suggested and successfully used instead of monomials [3]. To

ensure consistency of the approximations and eliminate the influence of the shape

parameter, Polyharmonic splines, augmented with monomials were researched and

successfully applied to various problems [12], which we will also use for our solution

procedure.

 Most widely used error indicator was developed by Zienkiewicz and Zhu [4] for FEM

and has since been generalized to meshless methods. The main idea of the indicator is to

approximate the error of the solution as the difference between the original solution and the

so-called recovered solution, obtained by appropriate post-computation. In strong form

meshless methods it has already been used with the Finite Point Method [5] and RBF-FD

[11]. Different type of error indicators is available for least-squares based meshless

methods, which use the residual of the least squares approximations to estimate the error

[6]. Additionally, several ad-hoc error indicators have been used, mostly using the

variability of the solution to determine refinement regions, such as [7] and [8]. This method

will be used in the present work as well, for simplicity.

 After the problematic regions have been identified, the (de)refinement can be done in

multiple ways. Either we can modify the approximation, resulting in 𝑝-refinement schemes,

or the discretization itself can be modified. This can be done either by moving the nodes (𝑟-

refinement), used in e.g. [6], or by placing more nodes in regions with high estimated error

and removing nodes from low-error regions (ℎ-refinement), used in e.g. [8] and [11].

Another variation in ℎ-refinement strategies is whether the existing discretisation is only

modified and partially reused, or generated completely anew. The former can cause

problems with conditioning, causing the need for specially selected stencils [11], which is

why we opted for the latter option.

 Similar methodology to the one described above, has been recently used to solve linearly

elastic contact problems [10]. In this work we apply it to the Poisson equation and its

generalizations. The rest of the paper is organized as follows: in section 2 the RBF-FD

method is presented, in section 3 the adaptive methodology is described and in section 4 the

results of the numerical experiments are presented.

2 RBF-GENERATED FINITE DIFFERENCES

Consider an elliptic boundary value problem

 ℒ𝑢 = 𝑓 in Ω, (1)

 𝑢 = 𝑢0 on 𝜕Ω, (2)

which will be used as a sample theoretical problem throughout this paper. Domain Ω is

discretized by placing 𝑁 nodes 𝑝𝑖 in and on the boundary of the domain. Nodes are

positioned by algorithm presented in [13], which can distribute nodes according to any

continuous spacing function ℎ. Each node 𝑝𝑖 is assigned a stencil of 𝑛 nodes, 𝑆(𝑝𝑖) =

(𝑝𝑗1 , … , 𝑝𝑗𝑛). The operator ℒ is approximated for each point 𝑝𝑖 in the domain interior. This

is done by assuming an approximation of form

 (ℒ𝑢)(𝑝𝑖) ≈ ∑ 𝑤𝑖,𝑘𝑢(𝑝𝑗𝑘)
𝑛
𝑘=1 . (3)

Equality in the above approximation is desired for a certain set of functions: if node 𝑝𝑖 are

arranged in a grid and equality is enforced for monomials, standard finite difference

approximation is obtained.

 To derive the “RBF-generated finite differences”, RBFs are used to compute the weights

𝑤𝑖,𝑘. Polyharmonic splines will be used in this work, which are radial functions of form

𝜙(𝑟) = 𝑟𝑘, for an odd integer 𝑘. Radial basis functions are often thought of as being

centred in one node, denoting 𝜙𝑗(𝑝) = 𝜙(‖𝑝 − 𝑝𝑗‖). To obtain RBF-FD weights, radial

functions centred on the stencil nodes are used as the basis. Substituting 𝜙𝑗ℓ for 𝑢 in (3) and

enforcing equality, we arrive at the following linear system:

 [

𝜙(‖𝑝𝑗1 − 𝑝𝑗1‖) ⋯ 𝜙(‖𝑝𝑗𝑛 − 𝑝𝑗1‖)

⋮ ⋱ ⋮
𝜙(‖𝑝𝑗1 − 𝑝𝑗𝑛‖) ⋯ 𝜙(‖𝑝𝑗𝑛 − 𝑝𝑗𝑛‖)

] [

𝑤𝑖,1
⋮
𝑤𝑖,𝑛

] = [

(ℒ𝜙(‖⋅ −𝑝𝑗1‖)) (𝑝𝑖)

⋮

(ℒ𝜙(‖⋅ −𝑝𝑗𝑛‖)) (𝑝𝑖)

], (4)

written compactly as 𝐴𝑤 = 𝑏. Additional consistency constraints can be enforced to ensure

convergence [12], augmenting the above matrix into

 [
𝐴 𝑄𝑇

𝑄 0
] [
𝑤
𝜆
] = [

𝑏
𝑐
], (5)

where the second equation 𝑄𝜆 = 𝑐 is expanded as

 [

𝑞1(𝑝𝑗1) ⋯ 𝑞1(𝑝𝑗𝑛)

⋮ ⋱ ⋮
𝑞ℓ(𝑝𝑗1) ⋯ 𝑞ℓ(𝑝𝑗𝑛)

] [
𝜆1
⋮
𝜆ℓ

] = [
(ℒ𝑞1)(𝑝𝑖)

⋮
(ℒ𝑞ℓ)(𝑝𝑖)

], (6)

with 𝑞𝑙 representing monomials up to and including some order 𝑚. Values 𝜆 are discarded

after computation.

 With the stencil weights 𝑤𝑖,𝑘 computed for each node 𝑝𝑖 the PDE (ℒ𝑢)(𝑝𝑖) = 𝑓(𝑝𝑖) can

be approximated with a linear algebraic equation ∑ 𝑤𝑖,𝑘𝑢(𝑝𝑗𝑘)
𝑛
𝑘=1 = 𝑓(𝑝𝑖). These

equations can be assembled in a sparse matrix and after including the boundary conditions,

can be solved for unknowns 𝑢(𝑝𝑖) to obtain the numerical solution.

3 ADAPTIVE METHODOLOGY

The adaptive methodology in this paper behaves similarly to “remeshing” used commonly

in FEM and has been successfully used to solve contact problems from linear elasticity [7].

Some initial (possibly variable) nodal spacing ℎ0(𝑝) is chosen, as well as its lower and

upper bounds ℎ𝐿(𝑝) and ℎ𝑈(𝑝), respectively. Domain Ω is filled with nodes, conforming to

ℎ0 and the solution 𝑢0 is obtained. An error indicator is employed to determine which

nodes should be (de)refined and the nodal density ℎ0 is altered appropriately. This adaptive

cycle below is repeated until the convergence criterion is met. The procedure on 𝑗-th

iteration is written in more detail below:

1. Fill Ω with nodes conforming to ℎ𝑗.
2. Solve the problem to obtain 𝑢𝑗.

3. Compute the error indicator values 𝜀𝑖
𝑗
 for each node 𝑝𝑖 .

4. If the mean of 𝜀𝑖
𝑗
 is below some tolerance 𝜀 return 𝑢𝑗 as the solution and stop.

5. Adapt ℎ𝑗 to obtain ℎ𝑗+1.

More details on the steps 3 and 5 above are given in the next two sections.

3.1 Error indicator

The error indicator used in this paper is designed to detect the variability of the solution

around node 𝑝𝑖 . First, the recovered solution �̃�𝑖 is computed as �̃�𝑖 =
1

𝑛
∑ 𝑢𝑘
𝑛
𝑘=1 and then the

indicator 𝜀𝑖 is computed as 𝜀𝑖 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑘=1 , where local errors 𝑒𝑖 are computed as

𝑒𝑖 = |𝑢𝑖 − �̃�𝑖|. Despite its simplicity, this error indicator turned out to work well enough

for our purposes.

3.2 Nodal spacing adaptation

The existing nodal spacing function ℎ𝑗 is evaluated at nodes 𝑝𝑖 to obtain values ℎ𝑖,𝑗 =

ℎ𝑗(𝑝𝑖). These values ℎ𝑖,𝑗 are modified by a density factor 𝑓𝑖 as

 ℎ𝑖,𝑗+1 = min (𝑚𝑎𝑥 (ℎ𝑖,𝑗/𝑓𝑖 , ℎ𝐿(𝑝𝑖)) , ℎ𝑈(𝑝𝑖)) (7)

where factor 𝑓𝑖 is computed as

 𝑓𝑖 =

{

 1 +
𝜂− 𝜀𝑖

𝜂−𝑚
(
1

𝛽
− 1) ; 𝜀𝑖 ≤ 𝜂

1; 𝜂 ≤ 𝜀𝑖 ≤ 𝜀

1 +
𝜀𝑖−𝜀

𝑀−𝜀
(𝛼 − 1); 𝜀𝑖 ≥ 𝜀

 (8)

and 𝛼 represents the refine aggressiveness, 𝛽 the derefine aggressiveness, 𝜀 the refinement

threshold, 𝜂 the derenfinement threshold, and 𝑚 = min𝑖 𝜀𝑖 is the minimal and 𝑀 = max𝑖 𝜀𝑖
is the maximal value of the error indicator. Note that setting 𝛼 = 1 or 𝛽 = 1 disables

refinement and derefinement, respectively. Lower refinement bound ℎ𝐿 is often not

necessary and can be set to ∞, while upper bound ℎ𝑈 is often set to the initial density ℎ0.

Unless otherwise stated this will be the case in this paper as well.

 After the values ℎ𝑖,𝑗+1 have been computed, the function ℎ𝑗+1 is obtained using modified

Shepard’s scattered interpolation of pairs (𝑝𝑖 , ℎ𝑖,𝑗+1). The 15 closest neighbouring nodes

were used in this paper.

4 RESULTS

We test the fully adaptive solution procedure described in the previous section on some

standard test problems, taken from [9].

4.1 L-shaped domain

The first test case is the “L domain” test case. Laplace equation

 ∇2𝑢 = 0 (9)

is solved on domain Ω = [−1, 1]2 ∖ ([0, 1] × [−1,0]) with a known solution 𝑢 given in

polar coordinates as 𝑢 = 𝑟
2

3 sin
2

3
𝜃 and Dirichlet boundary conditions obtained from 𝑢.

 RBF-FD method with Polyharmonic splines augmented with monomials up to and

including 2
nd

 order was used to approximate the differential operators. The stencils for each

node were chosen by simply selecting the closest 𝑛 = 15 nodes. The resulting sparse

system was solved using the Intel ® MKL Pardiso sparse solver. Both uniform and fully

adaptive refinement was tested. The adaptive procedure was run with 𝛼 = 3, 𝜀 = 10−2,

𝛽 = 1 and 𝜂 = 0.

 The error was between the exact solution 𝑢 and numerical solution �̂� was measured in

three different norms

 𝑒1 =
‖𝑢−𝑢‖1

‖𝑢‖1
, ‖𝑢‖1 =

1

𝑁
∑ |𝑢(𝑝)|𝑝∈𝐺 , (10)

 𝑒2 =
‖𝑢−𝑢‖2

‖𝑢‖2
, ‖𝑢‖2 = √

1

𝑁
∑ |𝑢(𝑝)|2𝑝∈𝐺 , (11)

 𝑒∞ =
‖𝑢−𝑢‖∞

‖𝑢‖∞
, ‖𝑢‖∞ = max𝑝∈𝐺|𝑢(𝑝)|, (12)

where 𝐺 is a set of independent points arranged in a dense uniform grid over the whole

domain.

 The errors 𝑒1, 𝑒2 and 𝑒∞ for uniform refinement are shown in Figure 1.

Figure 1: Errors when solving the “L domain” problem using uniform refinement

Figure 2 shows the errors under adaptive refinement. The adaptive refinement finished in 6

iterations. We can see that better rates and lower errors are obtained using this technique.

Figure 2: Errors when solving the “L domain” problem using adaptive refinement.

Additionally, local node errors and nodal densities were observed during the course of the

adaptive iteration. The local errors on each iteration are computed for each node as

𝜖𝑖 = |�̂�(𝑝𝑖) − 𝑢(𝑝𝑖)|. The local nodal separation distance is computed as the average

distance �̅�𝑖 from each node to its closest neighbours, �̅�𝑖 =
1

3
(𝑑𝑖,1 + 𝑑𝑖,2 + 𝑑𝑖,3). From �̅�𝑖

we can compute the relative node density 𝜌𝑖 as

 𝜌𝑖 = − log2 (
�̅�𝑖

max𝑗 �̅�𝑗
). (13)

Value 𝜌𝑖 = 0 means that node 𝑝𝑖 has maximal separation distance (least dense) while e.g.

𝜌𝑖 = 3 means that nodes around 𝑝𝑖 are 8 times as dense as in the coarsest part. Values 𝜖𝑖
and 𝜌𝑖 corresponding to the solutions, whose errors were computed in Figure 2, are shown

in Figure 3. It can be seen that the node density adapts according to the error and begins to

concentrate in the inner corner.

Figure 3: Plots of logarithms of errors (log 𝜖𝑖, left column) and nodal densities (𝜌𝑖, right

column) over the course of the adaptive iteration.

4.2 2D Helmholtz equation

Next, we investigate the behaviour of the method on a Helmholtz equation

 −∇2𝑢 −
1

(𝛼+𝑟)4
𝑢 = 𝑓 (14)

with an oscillatory solution 𝑢(𝑟) = sin (
1

𝛼+𝑟
) , where the right hand side 𝑓 is computed

from the solution 𝑢.Value 𝛼 =
1

5𝜋
 was used in all computations. Same numerical setup as in

section 4.1 was used to obtain the numerical results, except that the tolerance 𝜖 was set to

10−3.

 Figure 4 shows the errors during uniform and adaptive refinement. We can see that no

satisfactory solution can be obtained using uniform refinement and that there is no

indication of convergence. The adaptive solution procedure manages to find a satisfactory

solution and exhibits better convergence properties.

Figure 4: Errors during uniform refinement (left) and adaptive refinement (right) when

solving the 2D Helmholtz equation.

Figure 5: Solution 𝑢𝑖 of the 2D Helmholtz equation (left) and the nodal density 𝜌𝑖 (right)

The initial jump in error has been observed before [10][11] and is usually caused by too

small initial node density. The solution in the last iteration is shown in Figure 5, along with

the obtained nodal density function. Node separation distance in the densest part was

around 400-times smaller than in the coarsest part.

4.3 3D Helmholtz equation

The same problem as in the section 4.2 is used to assess the behaviour of the method in 3D

as well. The same numerical setup as in 2D was used, except that the number of nearest

neighbours used to the stencil increased to 𝑛 = 25. Uniform refinement behaves similarly

to its 2D counterpart. The errors during the adaptive iteration are shown in Figure 6. The

obtained solution and nodal density in the last iteration are shown in Figure 7.

Figure 6: Errors during adaptive solution of the 3D Helmholtz equation.

Figure 7: Solution 𝑢𝑖 of the 3D Helmholtz equation (left) and the nodal density 𝜌𝑖 (right)

5 CONCLUSIONS

We presented a fully automatic adaptive procedure for elliptic problems. RBF-FD method

along with a node positioning algorithm and an ad-hoc error indicator was used to

iteratively refine initially uniform discretizations to obtain solution to Poisson’s and

Helmholtz equations in 2D and 3D, which would not have been feasible using only uniform

discretizations.

 All computations were done using the Medusa library [14] for meshless solutions of

PDEs. Future work will be focused on the development of better error indicators and more

efficient refinement strategies.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support of the Research Foundation

Flanders (FWO), The Luxembourg National Research Fund (FNR) and Slovenian Research

Agency (ARRS) in the framework of the FWO Lead Agency project: G018916N Multi-

analysis of fretting fatigue using physical and virtual experiments, the ARRS research core

funding No. P2-0095 and the Young Researcher program PR-08346.

REFERENCES

[1] Bangerth, W., & Rannacher, R., Adaptive finite element methods for differential

equations, Birkhäuser, 2013.

[2] Oñate, E., Perazzo, F., & Miquel, J., A finite point method for elasticity problems.

Computers & Structures, 79(22-25), pp. 2151–2163, 2001.

[3] Tolstykh, A. I., & Shirobokov, D. A., On using radial basis functions in a “finite

difference mode” with applications to elasticity problems. Computational Mechanics,

33(1), pp. 68–79, 2003.

[4] Zienkiewicz, O. C., & Zhu, J. Z., A simple error estimator and adaptive procedure for

practical engineerng analysis. International journal for numerical methods in

engineering, 24(2), pp. 337–357, 1987.

[5] Angulo, A., Pozo, L. P., & Perazzo, F., A posteriori error estimator and an adaptive

technique in meshless finite points method. Engineering Analysis with Boundary

Elements, 33(11), 1322-1338, 2009.

[6] Afshar, M. H., Naisipour, M., & Amani, J., Node moving adaptive refinement strategy

for planar elasticity problems using discrete least squares meshless method. Finite

Elements in Analysis and Design, 47(12), pp. 1315–1325, 2011.

[7] Davydov, O., & Oanh, D. T., Adaptive meshless centres and RBF stencils for Poisson

equation. Journal of Computational Physics, 230(2), pp. 287–304, 2011.

[8] Kosec, G., & Šarler, B., H-adaptive local radial basis function collocation meshless

method. Computers Materials and Continua, 26(3), p. 227, 2011.

[9] Mitchell, W. F., A collection of 2D elliptic problems for testing adaptive grid

refinement algorithms. Applied mathematics and computation, 220, pp. 350–364,

2013.

[10] Slak, J., & Kosec, G., Adaptive radial basis function‐generated finite differences

method for contact problems. International Journal for Numerical Methods in

Engineering, 2019. https://doi.org/10.1002/nme.6067.

[11] Oanh, D. T., Davydov, O., & Phu, H. X., Adaptive RBF-FD method for elliptic

problems with point singularities in 2D. Applied Mathematics and Computation, 313,

pp. 474–497, 2017.

https://doi.org/10.1002/nme.6067

[12] Bayona, V., Flyer, N., Fornberg, B., & Barnett, G. A., On the role of polynomials in

RBF-FD approximations: II. Numerical solution of elliptic PDEs. Journal of

Computational Physics, 332, pp. 257–273, 2017.

[13] Slak, J., & Kosec, G., On generation of node distributions for meshless PDE

discretizations. arXiv preprint arXiv:1812.03160, 2018.

[14] Medusa: coordinate free implementation of meshless methods. http://e6.ijs.si/medusa/,

Accessed 10 Jun. 2019.

http://e6.ijs.si/medusa/

