Parallel RBF-FD solution of the Boussinesq's problem

Jure Slak, Gregor Kosec

"Jožef Stefan" Institute, Parallel and Distributed Systems Laboratory

5. 6. 2019, Pareng 2019

1. Problem definition

- 2. Solution procedure
- 3. Results

Cauchy-Navier equation

$$(\lambda+\mu)\nabla(\nabla\cdot\vec{u})+\mu\nabla^2\vec{u}=\vec{f}$$

in domain $\Omega = [-1,-\gamma]^3$ with Dirichlet boundary conditions.

Problem definition

Closed form solution in cylindrical coordinates (r, ϑ and z):

$$\begin{aligned} u_r &= \frac{Pr}{4\pi\mu} \left(\frac{z}{R^3} - \frac{1-2\nu}{R(z+R)} \right), \qquad u_\vartheta = 0, \qquad u_z = \frac{P}{4\pi\mu} \left(\frac{2(1-\nu)}{R} + \frac{z^2}{R^3} \right), \\ \sigma_{rr} &= \frac{P}{2\pi} \left(\frac{1-2\nu}{R(z+R)} - \frac{3r^2z}{R^5} \right), \qquad \sigma_{\vartheta\vartheta} = \frac{P(1-2\nu)}{2\pi} \left(\frac{z}{R^3} - \frac{1}{R(z+R)} \right), \\ \sigma_{zz} &= -\frac{3Pz^3}{2\pi R^5}, \qquad \sigma_{rz} = -\frac{3Prz^2}{2\pi R^5}, \qquad \sigma_{r\vartheta} = 0, \qquad \sigma_{\vartheta z} = 0. \end{aligned}$$

Domain discretization:

- Points x_i on the boundary and in the interior
- Point neighborhoods $N(x_i)$
- Classical Finite Differences:

$$u''(x_i) \approx \frac{1}{h^2}u(x_{i-1}) - \frac{2}{h^2}u(x_i) + \frac{1}{h^2}u(x_{i+1})$$

Generalized Finite Differences:

$$(\mathcal{L}u)(x_i) \approx \sum_{x_j \in N(x_i)} w_j^i u(x_j)$$

+ exactness for a certain set of functions (e.g. monomials)

RBF-FD

Exactness is imposed for Radial Basis Functions

- Given nodes $X = \{x_1, \ldots, x_n\}$ and a radial function $\varphi = \varphi(r)$
- Generate $\{\varphi_i := \varphi(\|\cdot x_i\|), x_i \in X\}$

Imposing exactness of

$$(\mathcal{L}u)(x_i) \approx \sum_{x_j \in N(x_i)} w_j^i u(x_j)$$

for each φ_j for $x_j \in N(x_i)$, we get

$$\begin{bmatrix} \varphi(\|x_{j_1} - x_{j_1}\|) & \cdots & \varphi(\|x_{j_{n_i}} - x_{j_1}\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|x_{j_1} - x_{j_{n_i}}\|) & \cdots & \varphi(\|x_{j_{n_i}} - x_{j_{n_i}}\|) \end{bmatrix} \begin{bmatrix} w_{j_1}^i \\ \vdots \\ w_{j_{n_i}}^i \end{bmatrix} = \begin{bmatrix} (\mathcal{L}\varphi_{j_1})(x_i) \\ \vdots \\ (\mathcal{L}\varphi_{j_{n_i}})(x_i) \end{bmatrix}$$

6

Problem:

$$\mathcal{L}u = f \quad \text{on } \Omega,$$

- $u = u_0 \quad \text{ on } \partial\Omega,$
- 1. Discretize domain $\boldsymbol{\Omega}$
- 2. Find neighborhoods $N(x_i)$

- 4. Assemble weights in a sparse system Wu = f
- 5. Solve the sparse system Wu = f
- 6. Approximate/interpolate the solution

All computations were done using open source Medusa library.

Medusa

Coordinate Free Meshless Method implementation http://e6.ijs.si/medusa/

```
for (int i : domain.interior()) {
    (lam+mu)*op.graddiv(i) + mu*op.lap(i) = 0.0;
}
for (int i : domain.boundary()) {
    op.value(i) = analytical(domain.pos(i));
}
solver.compute(M);
VectorField3d u = solver.solve(rhs);
```

Pardiso sparse solver was used for parallel system solution.

Solution

Solution for $\gamma = 0.01$.

Measuring stress and displacement errors for various N.

Execution time

Shared memory parallelization of shape computation and sparse system solution.

Speedup of shape function computation (left) and speedup of system solution (right)

Total speedup (left) and efficiency (right)

Medusa

Coordinate Free Meshless Method implementation http://e6.ijs.si/medusa/

Thank you for your attention!

Acknowledgments: FWO Lead Agency project: G018916N Multi-analysis of fretting fatigue using physical and virtual experiments and the ARRS research core funding No. P2-0095.