Refined RBF-FD Solution of Linear Elasticity Problem

Jure Slak, Gregor Kosec

"Jožef Stefan" Institute, Parallel and Distributed Systems Laboratory

27. 6. 2018, Splitech 2018

- Classical approaches:
 - Finite Difference Method, Finite Element Method

- Problems: inflexible geometry, mesh generation
- Response: mesh-free methods (EFG, MLPG, FPM)

JSI 🕄

Domain discretization:

- Points x_i on the boundary and in the interior
- Point neighborhoods $N(x_i)$
- Classical Finite Differences:

$$u''(x_i) \approx \frac{1}{h^2}u(x_{i-1}) - \frac{2}{h^2}u(x_i) + \frac{1}{h^2}u(x_{i+1})$$

Generalized Finite Differences:

$$(\mathcal{L}u)(x_i) \approx \sum_{x_j \in N(x_i)} w_j^i u(x_j)$$

+ exactness for a certain set of functions (e.g. monomials)

RBF-FD

Exactness is imposed for Radial Basis Functions

- Given nodes $X = \{x_1, \ldots, x_n\}$ and a radial function $\varphi = \varphi(r)$
- Generate $\{\varphi_i := \varphi(\|\cdot x_i\|), x_i \in X\}$

Imposing exactness of

$$(\mathcal{L}u)(x_i) \approx \sum_{x_j \in N(x_i)} w_j^i u(x_j)$$

for each φ_j for $x_j \in N(x_i)$, we get

$$\begin{bmatrix} \varphi(\|x_{j_1} - x_{j_1}\|) & \cdots & \varphi(\|x_{j_{n_i}} - x_{j_1}\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|x_{j_1} - x_{j_{n_i}}\|) & \cdots & \varphi(\|x_{j_{n_i}} - x_{j_{n_i}}\|) \end{bmatrix} \begin{bmatrix} w_{j_1}^i \\ \vdots \\ w_{j_{n_i}}^i \end{bmatrix} = \begin{bmatrix} (\mathcal{L}\varphi_{j_1})(x_i) \\ \vdots \\ (\mathcal{L}\varphi_{j_{n_i}})(x_i) \end{bmatrix}$$

Problem:

$$\mathcal{L}u = f$$
 on Ω ,
 $u = u_0$ on $\partial \Omega$.

- 1. Discretize domain $\boldsymbol{\Omega}$
- 2. Find neighborhoods $N(x_i)$
- 3. Compute weights $oldsymbol{w}^i$ for approximation of $\mathcal L$ over $N(x_i)$
- 4. Assemble weights in a sparse system Wu = f
- 5. Solve the sparse system Wu = f
- 6. Approximate/interpolate the solution

Cauchy-Navier equation

$$(\lambda + \mu)\nabla(\nabla \cdot \vec{u}) + \mu\nabla^2 \vec{u} = \vec{f}$$

with stresses given as

$$\sigma = \lambda \operatorname{tr}(\varepsilon)I + 2\mu\varepsilon, \quad \varepsilon = \frac{\nabla \vec{u} + (\nabla \vec{u})^{\mathsf{T}}}{2}.$$

Standard test case: cantilever beam

JSI

A thin specimen is axially stretched and compressed in another axis by two oscillating pads.

During simulation of a loading cycle, stresses need to be compute to apply material wear or initiate crack propagation.

Fretting fatigue: simulation

Taking into account the symmetry and imposing analytical BCs:

Top traction profile:

8

Fretting fatigue: numerical results

The contact area is 200 times smaller than domain width.

9

Comparison of stress profiles under contact:

Final remarks

All computations were done using open source Medusa library.

Medusa

Coordinate Free Mehless Method implementation http://e6.ijs.si/medusa/

Thank you for your attention!

Acknowledgments: FWO Lead Agency project: G018916N Multi-analysis of fretting fatigue using physical and virtual experiments and the ARRS research core funding No. P2-0095.