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Abstract—Solving PDEs with Radial Basis Functions, espe-
cially using local approaches, has become a promising alterna-
tive to the Finite Element Method. This paper describes one
such approach, a local RBF-FD method, analogous to Finite
Difference Method, that can handle irregular geometries, varying
discretization densities and is easy to implement. RBF-FD method
is analysed by solving basic linear elasticity problems using
uniform and refined discretizations. Finally, a linear elasticity
problem arising from analysis of fretting fatigue is solved and
RBF-FD solution is compared to existing solutions, obtained using
commercial software.

I. INTRODUCTION

Radial basis functions (RBFs) arose in scattered data in-
terpolation and surface reconstruction in the 70s [1]. Their
wide acceptance followed as a consequence of important non-
singularity result by Micchelli [2]. Since then, the theoretical
foundations surrounding RBFs have matured and have been
summarized in various monographs, eg. by Buhmann [3].
Kansa was the first to suggest in 1990 [4], [5] that RBFs could
be used for derivative approximation and for development of
numerical methods for solving partial differential equations
(PDEs). First, global collocation methods involving RBFs
were developed [6], exhibiting good convergence properties.
However, since the cost of the global approach scales as
O(N3), where N represents the number of nodes, research
focus has shifted towards local approximations. Other local
approximations, generalizing Finite Difference (FD) approx-
imations to scattered and irregular node distributions, have
been developed in the meantime, most notably Finite Point
Method [7] and other Weighted or Moving Least Squares
approximations using monomials. Many of these types of
approximations however suffer from Mairhuber–Curtis the-
orem [8], [9], which states that there will inevitably ex-
ist infinitely many singular node configurations in two and
higher-dimensional domains. This increased the popularity of
RBF-based approximations even further, and local schemes
generalizing FD approach were developed among others by
Tolstykh [10]. Both global and local approaches have since
been successfully used for large scale simulations as described
by Fornberg and Flyer [11] in their review article. This paper
extends the range of examples to linear elasticity problems
arising from fretting fatigue, by using RBF-FD method to
solve the problem described and solved by Pereira et al. [12].

This paper also extends previous work [13] in this area that
dealt with extensively refined discretizations on cases with
known closed form solutions to more realistic cases.

The rest of the paper is organized as follows: in section II
RBF-FD methodology is explained, in section III the govern-
ing equations along with analyses of the standard cantilever
beam problem are presented, in section IV the case arising
from fretting fatigue is presented and finally, the paper offers
some conclusions and directions for future work in the last
section.

II. METHOD DESCRIPTION

A. Radial basis functions

Radial basis functions over a set of nodes X = {x1, . . . xn}
generated by a radial function φ : [0,∞)→ R are functions

{φi := φ(‖ · −xi‖), for xi ∈ X}. (1)

Common radial basis functions include (writing r = ‖x−xi‖))
Gaussians:

φi(x) = exp(−(εr)2), (2)

multiquadrics:
φi(x) =

√
1 + (εr)2, (3)

and polyharmonic splines:

φ(r) = rk, k odd, φ(r) = rk ln(r), k even. (4)

Many other types are known and used, with different recom-
mendations. The reader is referred to [3] for more information.
The parameter ε (where present) is called the shape parameter
and characterizes flatness of radial basis functions. In this
paper, Gaussian radial basis functions (Fig. 1) will be used.

B. Solution procedure

Consider an elliptic problem with Dirichlet boundary con-
ditions

Lu = f on Ω

u = u0 on ∂Ω,

where f and u0 are known functions. The domain Ω is
discretized using N nodes, Ni nodes in the interior and
Nb nodes on the boundary. Each node xi is assigned ni



Fig. 1: Gaussian radial basis functions with ε = 3 over a set
of randomly generated nodes.

neighbours, denoted N(xi), that constitute its stencil. The
word stencil is used to keep terminology similar to FD method,
but support domain or neighborhood are often used as well, as
the neighbours have potentially different arrangements at every
node and therefore have little similarities to actual stencils.

In one dimensional FD case, the well known stencil weights
for second derivative approximation on equispaced grid with
spacing h are [1/h2,−2/h2, 1/h2], giving the approximation

u′′(x) ≈ 1

h2
u(x− h)− 2

h2
u(x) +

1

h2
u(x+ h). (5)

These weights are known in advance and are assembled in
a global sparse system, which is then solved to obtain a
numerical approximation for values of u at points xi. RBF-
FD method uses the same technique, except that the stencil
weights cannot be known beforehand in general, but rather
need to be computed as part of the solution procedure.
Similarly to FD method, the operator L is approximated as
a weighted linear combination of function values at stencil
points

(Lu)(xi) ≈
∑

xj∈N(xi)

wiju(xj). (6)

To determine the weights wij , exactness of (6) is imposed for
a certain set of functions. In FD method, exactness is required
for monomials, in RBF-FD method, exactness for radial basis
functions is required, yielding equations

(Lφk)(xi) =
∑

xj∈N(xi)

wijφk(xj), (7)

for all xk ∈ N(xi). Rewriting (7) in matrix form, one obtains
φ(‖xj1 − xj1‖) · · · φ(‖xjni

− xj1‖)
...

. . .
...

φ(‖xj1 − xjni
‖)· · ·φ(‖xjni

− xjni
‖)



wi

j1
...

wi
jni

 =

 (Lφj1 )(xi)
...

(Lφjni
)(xi)

 ,
(8)

where jk are indices of nodes in N(xi). This is a system of
ni linear equations, compactly written as Aiwi = bi, where
matrix Ai is symmetric. Furthermore, when using Gaussian
basis functions, it can be proven [11] that Ai is positive definite

(and therefore nonsingular) as soon as all stencil nodes are
distinct.

After computing the weight vectors wi for all nodes, the
weights are assembled in a sparse matrix, right hand side is
computed from given f and u0 and the sparse system is solved
to obtain an approximation for u. Vector equations are treated
similarly, except that the final system is proportionally larger,
since a vector PDE is treated as a coupled system of scalar
PDEs. Boundary conditions that involve differential operators,
such as Neumann or traction boundary conditions, are also
discretized using RBF-FD procedure, analogously to operator
L above.

C. Remarks on weight computation

Often, the RBF-FD approximation is augmented with mono-
mials, to ensure consistency up to a certain order. These
consistency constraints are usually enforced using Lagrangian
multipliers. The effects of adding polynomial constraints to
RBF-FD approximations have been studied recently by Bay-
ona et al. [14]. In the cases discussed in this paper, additional
consistency constraints were not needed to obtain satisfying
results.

Another possible modification is to include more stencil
points then basis functions, putting basis functions only on
the closest mi nodes. This turns (8) into an underdetermined
system, however, it can be solved uniquely by imposing
additional condition of minimizing the norm ‖wi‖ of the
weights. This approach was tried by the authors, and the results
were very similar, to the ones presented later, so they are not
included.

As the shape parameter ε tends towards 0, the matrices Ai
become more and more ill conditioned. One solution is to scale
the shape parameter ε inversely proportionally to the internodal
distance. This however may cause stagnation errors and failure
of convergence [15]. Stable algorithms for computation of
stencil weights wi without scaling the shape parameter, such
as RBF-QR [16] have been developed to mitigate this issue,
however it turned out to not be necessary in this case, as shape
scaling performed well enough.

III. CAUCHY-NAVIER EQUATION AND THE CANTILEVER
BEAM PROBLEM

The theory of linear elasticity describes stresses and dis-
placement of elastic materials under appropriate loading con-
ditions. The governing equation for homogeneous isotropic
materials, suitable for strong form methods, is the Cauchy-
Navier equation

(λ+ µ)∇(∇ · ~u) + µ∇2~u = ~f, (9)

where ~u are unknown displacements, ~f is the loading body
force, and λ and µ are material constants, called Lamé
parameters. They are more often expressed in terms of Young’s
modulus E and Poisson’s ratio ν, and the conversion formulas
between these quantities (and many others) are well known



and stated in eg. [17, pp. 215]. Another important quantity of
interest is the stress tensor σ,

σ = λ tr(ε)I + 2µε, ε =
∇~u+ (∇~u)T

2
, (10)

where λ and µ are Lamé parameters from above and I is the
identity tensor.

Two types of boundary conditions are commonly used,
displacement boundary conditions ~u = ~u0, specifying fixed
displacement ~u0 along a boundary and traction boundary
conditions, σ~n = ~t0, specifying a known traction ~t0 on a
boundary surface.

Only two dimensional problems will be considered in this
work, using either plane stress or plane strain to reduce
the problem to two dimensions. Additional componentwise
notations

~u = (u, v) and σ =

[
σxx σxy
σxy σyy

]
(11)

will be used below for simplicity.

A. Cantilever beam problem

The cantilever beam problem is a standard test case from
linear elasticity. An ideal thin beam of length L and height D
is bent at one end with force P and kept fixed at the other
end. A closed form solution for displacements and stresses
under plane stress conditions and a parabolic load on the left
side is well known and derived in eg. [17, pp. 284–289]. The
beam occupies the region [0, L]×[−D/2, D/2] and its internal
stresses are given as

σxx =
Pxy

I
, σyy = 0, σxy =

P

2I

(
D2

4
− y2

)
, (12)

and displacements as

u =
Py(3D2(ν+1)−4(3L2+(ν+2)y2−3x2))

24EI , (13)

v = −P(3D2(ν+1)(L−x)+4(L−x)2(2L+x)+12νxy2)
24EI ,

where I = 1
12D

3 is the moment of inertia around the
horizontal axis, E is Young’s modulus, ν is the Poisson’s ratio
and P is the total load force.

The problem is solved numerically using RBF-FD and tradi-
tional FD methods with traction boundary conditions σ~n = ~t0
given by (12) prescribed on the top, left and bottom boundary,
while displacements ~u = ~u0 given by (13) are prescribed on
the right boundary. The discretization was regular with equal
spacing in both dimensions to enable fair comparison with FD
method.

Observed errors of displacements and stresses are measured
in relative max-norm

e(~u) =
maxx∈X{max |~u(x)− ~̂u(x)|}

maxx∈X{max |~u(x)|}
, (14)

e(σ) =
maxx∈X{max |σ(x)− σ̂(x)|}

maxx∈X{max |σ(x)|}
, (15)

where max |σ(x)| and max |~u| represent the largest element
in σ and ~u by absolute value, respectively.

Fig. 2: Von Mises stress σv in a deformed cantilever beam.
The displacements are magnified by a factor of 105 for the
sake of visibility.

Fig. 3: Errors of RBF-FD and FDM when solving the can-
tilever beam problem.

The problem was solved with Gaussian RBFs in two differ-
ent setups. Both setups use Gaussian basis functions with fixed
stencil size ni = 9 and one basis function for each stencil
node, ie. mi = ni. First setup uses fixed shape ε = 0.01
and the second uses spatially variable shape ε = 0.0025/δ,
where δ is the distance the closest neighboring node. The most
precise numerical solution is shown in Fig. 2 and the errors
with respect to the number of nodes is shown in Fig. 3.

The FD method converges regularly with order 2, coin-
ciding with theoretical predictions. The behavior of RBF-
FD method also coincides with remarks from section II-C.
Using a spatially variable shape parameter ε that is scaled
to internodal distance results in a stable method that initially
obtains good results, but suffers from stagnation errors later.
Using a fixed shape parameter initially produces similar results
to the method using variable shape parameter. The errors
of both approaches are similar because the shape parame-
ters were chosen in a such a way, that they coincide on
initial discretization densities. However, as the node density
increases, fixed shape parameter method becomes unstable if
naive computation of weights is used, as demonstrated by
observed erratic error behavior.



IV. CASE ARISING FROM FRETTING FATIGUE SIMULATIONS

The fretting fatigue of material is a phenomenon, in which
two contact surfaces undergo a small relative oscillatory
motion due to cyclic loading. During the simulation of a
loading cycle, the stresses in material need to be known, to
test for material failure, apply wear damage or initiate crack
propagation. One such case, modeling an commonly used
experiment in fretting fatigue, is described in [12]. A small thin
rectangular specimen of width W , length L and thickness t is
stretched in one axis with axial traction σax and compressed
in another by two oscillating cylindrical pads. The pad’s radius
of curvature is denoted by R, applied normal force by F and
tangential force by Q. The setup is shown in Fig. 4a.

The contact surface is modeled analytically by using an
extension of Hertzian contact theory. The theory predicts the
contact half-width

a = 2

√
FR

tπE∗
, (16)

where E∗ is the combined Young’s modulus, given by 1
E∗ =

1−ν2
1

E1
+

1−ν2
2

E2
, with Ei and νi representing the Young’s moduli

and Poisson’s ratios of the specimen and the pad, respectively.
The contact surface is split into stick and slip zones, based on
parameters c and e, representing stick zone half-width and
eccentricity due to axial loading, respectively, computed as

c = a

√
1− Q

µf
, e = sgn(Q)

aσax
4µp0

, (17)

where µ is the coefficient of friction and p0 maximal normal
traction, defined below.

Normal traction p is semi-elliptical, defined as

p(x) =

{
p0

√
1− x2

a2 , |x| ≤ a
0, |x| > a

, p0 =

√
FE∗

tπR
, (18)

and tangential traction q(x) is defined as

q(x) =


−µp(x) + µp0c

a

√
1− (x−e)2

c2 , |x− e| < c,

−µp(x), c ≤ |x− e|, |x| ≤ a,
0, |x| > a.

(19)
Some additional inequalities between above quantities must
hold in order for p and q to be well defined, all of which are
satisfied in our case.

Because of high stresses present, plane strain is used to
reduce the problem to two dimensions. Furthermore, symmetry
along the horizontal axis is used to halve the problem size.
Domain Ω = [−L/2, L/2] × [−W/2, 0] therefore has height
equal to half the specimen height and is used for numerical
simulations in this section. The boundary conditions used
are illustrated in Figure 4b. Note that symmetry boundary
conditions are used on the bottom boundary.

To ensure comparability with results from [12], matching
same parameters values were used. Values of E1 = E2 =
72.1 GPa, ν1 = ν2 = 0.33 were taken for the material

(a) Schema of the experiment.

(b) Numerical domain and boundary conditions.

Fig. 4: Case description. Ratios in drawings are not to scale.

parameters, coinciding with aluminum 2420-T3 used in the
experiment. Dimensions of the specimen were L = 40 mm,
W = 10 mm and t = 4 mm. The forces in a state of maximal
oscillation were F = 543 N, Q = 155 N, σax = 100 MPa.
Two different pad sizes, R = 10 mm and R = 50 mm were
used, and two different coefficients of friction, µ = 0.3 and
µ = 2 are chosen for model parameters.

This means that half-contact width a in R = 10 mm case
equals 0.2067 mm, which is approximately 200 times smaller
than domain length L, making it unfeasible to solve without
refinement.

The results of the RBF-FD method were compared to
a Finite Element Method (FEM) solution, obtained from a
commercially available finite element analysis (FEA) software
ABAQUS R© on four combinations of pad radii and coefficients
of frictions specified above. The boundary tractions p and q
for all 4 cases are shown in Fig. 5. The cases exhibit different
behavior, especially with respect to the coefficient of friction
µ, which greatly influences the stick zone size.

The meshes used for FEM solving were refined manually,
specifying smaller element size around the contact area with
linearly increasing sizes towards the outer edges. A sample
mesh is shown in Fig. 6, along with a zommed-in portion,
where extensive refinement under contact can be observed.
The nodes for RBF-FD discretization were taken from the
FEM mesh. The closest 25 nodes were used for stencils and
25 Gaussian basis functions with a varying shape parameter
ε = 0.0066δ were used for all simulations.

One quantity of interest is the surface stress σxx, as it has
been reported that the peak surface stress is potential point of
failure where cracks start to form [12]. The surface stresses
for all four cases are shown in Fig. 7. Subsurface von Mises
stress for R = 10 mm and µ = 0.3 case is shown in Fig. 8.



Fig. 5: Tractions p and q on the top boundary for four different
cases.

Fig. 6: A sample mesh on N = 144938 nodes.

Fig. 7: Surface tractions σxx computed by FEM and RBF-FD.

Fig. 8: Subsurface von Mises stress computed by RBF-FD.

V. CONCLUSION

The paper presents a RBF-FD solution of a linear elastic
case arising from fretting fatigue simulations on a refined
domain, extending the present use cases of RBF-FD. It is
demonstrated that the RBF-FD method gives satisfying results
when compared to a commercial FEA software, even when the
shape parameter is scaled with internodal distance. Therefore,
this stabilization option should be the first to try, as it is
the cheapest and easiest, and often results in an adequate
numerical solution. Along with ease of implementation, this
makes RBF-FD an attractive alternative for solving problems
where high variations in node densities are present.

Future work includes extending the method to three-
dimensional cases and investigating the benefits of using more
stable algorithms for computation of stencil weights.
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