
Parallel Coordinate Free Implementation of Local
Meshless Method

Jure Slak, Gregor Kosec
Jožef Stefan Insitute, Parallel and Distributed Systems Laboratory, Ljubljana, Slovenia

jure.slak@ijs.si, gregor.kosec@ijs.si

Abstract – This paper presents an implementation of a
Meshless Local Strong Form Method that allows users to
write elegant code expressed in terms of abstract mathemati-
cal objects, such as operators and fields, consequently avoid-
ing working directly with matrix and array indices, which
is tedious and error prone. This is achieved by using ob-
ject oriented programming techniques for definition of ab-
stract concepts and leveraging C++’s powerful templating
mechanism. It is demonstrated that code written this way
has little-to-no performance overhead compared to classi-
cal numerical code while being more expressive and read-
able, which gravely shortens model development and testing
phases. The overall functionality of presented implementa-
tion is illustrated on numerical examples from classical ther-
modynamics, linear elasticity and fluid dynamics in one, two
and three dimensions.

I. INTRODUCTION

The most cumbersome part of the implementation of
numerical methods for solving partial differential equa-
tions (PDEs) is working with array and matrix indices for
different differential operations, which is usually tedious,
error prone, and hard to debug; enough so, that this aspect
of programming numerical procedures has been studied
before, especially in the context of choosing an appro-
priate programming language [1]. Traditional program-
ming techniques require that the programmer keeps track
of the meaning of all details in the code, which can be very
hard to manage even for simple problems and becomes
unmanageable for more complex systems of PDEs and
constitutive relations. Another problem of such imple-
mentation is that it does not clearly reflect the problem at
hand, making it hard to understand, change, and, maintain,
when needed. Another problem is that in traditional im-
plementation code changes with dimensionality of consid-
ered space, i.e. a 2D PDE solver is substantially different
than a 3D solver. To wrestle this problem, a concept of co-
ordinate free numerics was introduced by Haveraaen and
Munthe-Kaas [2], postulating that software implementing
numerical algorithms should abstract implementation de-
tails away from the user, exposing only an external in-
terface that provides the necessary features. In such an
implementation the user can think in terms of fields and
differential operators instead of matrix indices and node
enumerations. The difference in these approaches is illus-
trated in Figure 1.

The abstract approach is used extensively in almost
all areas of mathematical programming, such as machine
learning, network analysis and graphics, but implementa-
tions of numerical methods seem to lag behind the capa-
bilities of modern programming languages.

Abstract PDE
description

fields, operators //

manual
discretization

��

coordinate free

""
conventional

..

Abstract
program

automatic
discretization

(library)
��

Discrete
description arrays, indexes

// Discrete
program

Figure 1. Comparison between coordinate free and conventional
programming.

One of the often cited reasons for this lag is that ab-
stractions make the code slower and cause unnecessary
bloat. It has been proven that this is not necessarily the
case when the library Eigen [3] for numerical linear alge-
bra appeared in 2010, offering expressive object oriented
syntax for matrix manipulation with speed comparable to
LAPACK and BLAS.

In this paper we present an abstract implementation
environment for solving systems of PDES with built-
in parallelism. We use a Meshless Local Strong Form
Method (MLSM) [4] as a numerical backbone, which
seems to be an ideal numerical method for a coordinate
free implementation due to its modular formulation. Sim-
ilar approaches are already well established for the fi-
nite element method [5, 6] and particle-particle simula-
tions [7], however no such implementations for meshless
methods exist to the best of authors’ knowledge.

The rest of the paper is organized as follows. In
section II the numerical method along with a coordinate
free parallel implementation concept is presented, in sec-
tion III the numerical examples are demonstrated, and the
conclusions are written in section IV.

II. LOCAL STRONG FORM MESHLESS METHOD

Consider a boundary value problem of form

Lu = f, in Ω (1)
Ru = g, on ∂Ω, (2)

where Ω ⊆ Rd is a domain u is an unknown scalar or
vector field, L and R are linear partial differential opera-
tors and f and g are known functions. To obtain a discrete
approximation of PDE, N points, also called nodes, are
chosen in the domain Ω, of which Ni are in the interior
andNb on the boundary. Every point is also assigned a set
of neighbors, called support domain.

For all Ni internal points p, the operator L at point p
is approximated over support domain of p as

(Lu)(p) ≈ χL(p) (3)

mailto:jure.slak@student.ijs.si
mailto:gregor.kosec@ijs.si

whereχL is called a shape function for operatorL at point
p and only depends on the local geometry of the domain.
For details on how to compute χL the reader is referred
to [4]. An important observation is that these shape func-
tions can be computed beforehand and stored. A similar
procedure is used to discretize any boundary conditions,
in case they contain differential operators.

After computing the shape functions, two main ap-
proaches to obtain a numerical solution exist. Steady state
problems will be solved implicitly, by approximating the
equation

Lu = f (4)

with a linear equation

χL(p) · u = f(p), (5)

where u is the vector of unknown function values in sup-
port domain of point p and · denotes the dot product.
Adding equations for boundary conditions in boundary
nodes, all equations can be gathered in a N × N sparse
system

χL(p1)
...

χL(pNi
)

χR(pNi+1)
...

χR(pNi+Nb
)

u1

...
uN

 =

 f(p1)
...

f(pN)

 . (6)

This system can be solved to obtain an approximation for
function u at points pi.

For transient problems, time derivative can be dis-
cretized using any standard procedure, such as explicit
or implicit Euler method or Runge-Kutta methods, while
spatial derivatives are again approximated using shape
functions.

The presented formulation is convenient for coordi-
nate free implementation, since in case of using RBFs
for construction of shape functions all involved building
blocks require only awareness of distances to surrounding
nodes, which can be implemented at the lowest level. The
reader is referred to [4] for more details.

A. Coordinate free implementation
The main purpose of coordinate free implementation

of numerical methods is to abstract as many parts of the
code as possible in order to present a flexible and read-
able interface between numerical operations and the user,
e.g. to present concepts such as fields and differential op-
erators. Naturally, the implementation of those concepts
is still done in coordinates, however, it is done only once
and only at the lowest level and it is not visible to the user,
who is dealing with a complex physical model.

In our implementation vector and scalar fields are im-
plemented as plain arrays using a well developed linear
algebra library [3]. Domains are discretized with a list of
points along with a list of neighbours for each point as
described in section II. For boundary nodes, outside unit
normals are stored, as well. The main concept that is usu-
ally problematic to abstract is the concept of a linear par-
tial differential operator. However, equation (3) offers a

way to compute and store different operators. Every lin-
ear partial differential operator L of order k at point p in
an arbitrary number of dimensions can be written in stan-
dard basis using multiindex notation as

L|p =
∑
|I|≤k

aI(p)
∂|I|

∂xI

∣∣∣∣
p

, (7)

and approximated as

L|p ≈
∑
|I|≤k

aI(p)χ ∂|I|
∂xI

∣∣∣
p

. (8)

This approach requires the computation of shape func-
tions to be done only for derivatives of form ∂|I|

∂xI to ap-
proximate any linear operator. Examples in this paper use
operators up to the second order and therefore one needs
to compute and store shape functions for first and second
derivatives over all combinations of coordinate directions
for every point in the domain. This enables us to construct
any operator of order two via (7), such as ∇2 or (~n · ∇).
For example, Laplacian in two dimensions is computed as

∇2|p =
∂2

∂x2

∣∣∣∣
p

+
∂2

∂y2

∣∣∣∣
p

≈ χ ∂2

∂x2
(p) + χ ∂2

∂y2
(p). (9)

The above expression can be easily generalized to a d di-
mensional space as

∇2|p =

d∑
i=1

∂2

∂x2
i

∣∣∣∣
p

≈
d∑
i=1

χ ∂2

∂x2
i

(p), (10)

where xi stands for i-th coordinate. The implementation
of the shape functions computation is independent of do-
main dimensionality, making approximations of type (8)
work seamlessly in all dimensions. The drawback of such
approach to solving PDEs is the cost of preparing the
shape functions, which has to be done every time nodal
positions changes. On stationary domains, which will
be considered in this paper, the shape functions need to
be computed only once. Furthermore, this computational
burden can be eased with parallel execution due to com-
plete independence between different shape function com-
putations.

Implementations of operators usually accept a matrix,
a point index i and a scalar value α, and write shape co-
efficients, multiplied by α in the i-th matrix row, to build
the system of equation described in (6). For explicit oper-
ators, they instead take a vector or scalar field and return
the result directly. For example, user can use op.lap,
representing the Laplacian operator, on a scalar field in 1,
2 or 3-dimensions with the same function name. The re-
turn value depends on the input parameters: if the input
field is a 3-dimensional scalar field, the explicit op.lap
will return a 3-dimensional scalar field, and an implicit
op.lap will fill appropriate elements of the given ma-
trix.

Implementations of described concepts are done using
templated C++ classes, which are loosely coupled only by
a mutual agreement to expose and expect the same inter-
face. This is similar to duck typing in e.g. Python, but
with the benefit of static type checking.

III. NUMERICAL EXAMPLES

A. Heat equation
First case stems from classical thermodynamics and

asks for a steady state heat distribution in a homogeneous
heated medium. It is governed by the equation

−α∇2u = q, (11)

where q is the volumetric heat source and α is thermal
diffusivity. Dirichlet boundary conditions u|∂Ω = u0 and
Neumann boundary conditions ∂u

∂~n = j will be consid-
ered.

First, a simple one dimensional case is tackled to as-
sess basic properties of presented solution method. Con-
sider the problem

u′′(x) = sin(x), x ∈ (0, 1)

u(0) = 0, u′(1) = 0 (12)

with analytical solution

u(x) = x cos 1− sinx. (13)

We solve the problem with MLSM using 3 support nodes
and 3 monomials {1, x, x2} as basis functions on a regu-
larly distributed nodes. This setup of MLSM is theoret-
ically equivalent to the Finite Difference Method (FDM)
and therefore it is worth implementing also standard FDM
to compare results and execution times. The error between
the actual solution u and the approximate solution û is
measured in `∞ norm,

‖u− û‖`∞ = max
x∈X
|u(x)− û(x)|, (14)

where X is the set of all points in the domain.

Coordinate free code for solving this problem is shown
in listing 1, compared to classical code shown in listing 2.
Both listings use variables M and rhs for the matrix and
right hand side, respectively. The difference in readabil-
ity is very pronounced. The user does not need to know
almost anything about the method to understand the code
in listing 1, while full working knowledge of FDM is re-
quired to understand code in listing 2.
for (int i : domain.internal()) {

op.lap(M, i, 1.0);
double x = domain.positions[i][0];
rhs(i) = std::sin(x);

}
op.value(M, left, 1.0);
rhs(i) = 0;
op.neumann(M, right, {1}, 1.0);
rhs(i) = 0;
VectorXd solution = M.lu().solve(rhs);

Listing 1: Coordinate free code for solving problem (12) with MLSM.

The error analysis of MLSM and FDM methods with
respect to number of nodes N is shown in Figure 2. Both
methods converge regularly with order 2 as predicted by
the theory. The error stops decreasing when the theoretical
limit

√
ε for second derivative approximation is reached,

where ε represents the machine precision. Slightly lower
final precision of MLSM is attributed to numerical errors
during calculations of the shape functions.

vector<Triplet<scalar_t>> ts;
for (int i = 1; i < N-1; ++i) {

ts.emplace_back(i, i, -2/h/h);
ts.emplace_back(i, i-1, 1/h/h);
ts.emplace_back(i, i+1, 1/h/h);
rhs(i) = std::sin(i*h);

}
rhs(0) = 0;
ts.emplace_back(0, 0, 1);
ts.emplace_back(N-1, N-3, -1./2/h);
ts.emplace_back(N-1, N-2, 2/h);
ts.emplace_back(N-1, N-1, -3./2/h);
rhs(N-1) = 0;
M.setFromTriplets(ts.begin(), ts.end());
VectorXd solution = M.lu().solve(rhs);

Listing 2: Classical code for solving problem (12) with FDM.

Figure 2. Convergence comparison of MLSM and FDM method.

Figure 3 represents the time spent by both methods.

Figure 3. Comaprison of execution time of MLSM and FDM method.

As expected, MLSM is slower due to computation of
shape functions, which are known in advance in FDM.
However, counting that as part of the preprocessing and
measuring only the part equivalent to FDM, it can be seen
that the execution times for FDM and MLSM are the same
for all practical purposes. This means that the abstractions
discussed in section II.A and shown in listing 1 exhibit no
measurable slowdown.

Next, a 2-dimensional case is considered with α = 1
and q = −2π2 sin(πx) sin(πy) on a square domain Ω =
[0, 1]×[0, 1] with Dirichlet boundary conditions u|∂Ω = 0.
The analytical solution is given by

u(x, y) = sin(πx) sin(πy), (15)

and error is again measured in `∞ norm given by (14).
The problem was solved using MLSM in two setups: first,
using monomial {1, x, y, x2, y2} and 5 support nodes and
second, using monomials {1, x, y, x2, y2, xy} with 9 sup-
port nodes and Gaussian weight with σ = 1. These two
setups are commonly used, because they mimic FDM and
shall be referred to as MON5/5 and MON6/9, respectively.
The code, describing the problem in shown as listing 3.

for (int i : domain.internal()) {
op.lap(M, i, 1.0);
double x = domain.positions[i][0];
double y = domain.positions[i][1];
rhs(i) = -2*pi*pi*std::sin(pi*x)

*std::sin(pi*y);
}
for (int i : domain.boundary()) {

op.value(M, i, 1.0);
rhs(i) = 0;

}
VectorXd solution = M.lu().solve(rhs);

Listing 3: Code for solving two dimensional heat equation.

Plots of error of the method are shown in Figure 4. The
order of convergence matches the theoretically predicted
order 2.

Figure 4. Error measured in `∞ norm of MLSM solving two
dimensional heat eqation using MON5/5 and MON6/9 setups.

Finally, a 3-dimensional case is solved with α = 1 and
with heat source q = −3π2 sin(πx) sin(πy) sin(πz). The
analytical solution is

u(x, y) = sin(πx) sin(πy) sin(πz). (16)

The code needed to solve this problem is very
similar to listing 3, with only right hand side be-
ing altered to reflect the new heat source. To
solve the problem numerically, MLSM with basis
{1, x, y, z, x2, y2, z2} and 7 support nodes and with basis
{1, x, y, z, x2, y2, z2, xy, xz, yz} with 19 support nodes
was used. These two setups are referred to as MON7/7
and MON10/19, respectively. The convergence in `∞
norm is shown in Figure 5. Once again the order of con-
vergence matches the theoretical predictions.

The main benefit of using MLSM is, however, rel-
atively simple consideration of complex geometries.
Therefore, in a next example we present a more interest-
ing 3-dimensional example, where a CAD model for alu-
minium heatsink (see Figure 6 left) is discretized to obtain
the domain description.

Figure 5. Error in `∞ norm of MLSM solving two dimensional heat
eqation using MON7/7 and MON10/19 setups.

Heat equation (11) with α = 9.7 · 10−5 m2
/s, with no

heat generation, i.e. q = 0 W/m3, with Dirichlet bound-
ary conditions u = 100 ◦C on the bottom surface and
u = 20 ◦C everywhere else.

Figure 6. The CAD model for common aluminum heatsink (left),
obtained from GrabCAD [8] and its steady heat distribution (right).

The solution is shown in Figure 6 (right), with a cen-
tral cross section shown in Figure 7.

Figure 7. Contours of heat distribution in a crossection of considered
heat sink.

B. Cantilever beam
The second problem arises from the theory of linear

elasticity, dealing with deformations of solids under load-
ing. The governing equation for elastic homogeneous
isotropic materials is the Navier equation

(λ+ µ)∇(∇ · ~u) + µ∇2~u = ~f (17)

describing displacements ~u = (u, v) and stresses σ, com-
puted from ~u as

σ = λ(tr ε)I + 2µε, ε =
∇~u+ (∇~u)T

2
. (18)

Constants λ and µ are called Lamé parameters, I is the
identity tensor and tr denotes the trace operator. Lamé pa-
rameters are usually expressed in terms of Young’s mod-
ulus E and Poisson’s ratio ν as

λ = Eν
(1+ν)(1−2ν) , µ = E

2(1+ν) . (19)

A standard example from solid mechanics is the can-
tilever beam problem, where an ideal thin beam of length
L and height D covering the area [0, L] × [−D/2, D/2]
is bent with a force applied at one end while fixed at the
other. Timoshenko beam theory offers a closed form so-
lution for displacements and stresses in such a beam un-
der plane stress conditions and a parabolic load on the left
side. The solution is widely known and derived in e.g. [9],
giving stresses in the beam as

σxx =
Pxy

I
, σyy = 0, σxy =

P

2I

(
D2

4
− y2

)
, (20)

and displacements as

u =
Py(3D2(ν+1)−4(3L2+(ν+2)y2−3x2))

24EI , (21)

v = −P(3D2(ν+1)(L−x)+4(L−x)2(2L+x)+12νxy2)
24EI ,

where I = 1
12D

3 is the moment of inertia around the hori-
zontal axis, E is Young’s modulus, ν is the Poisson’s ratio
and P is the total load force.

The problem is solved numerically using MLSM with
traction boundary conditions σ~n = ~t0 given by (20) pre-
scribed on the top, left and bottom boundary, while dis-
placements ~u = ~u0 given by (21) are prescribed on the
right boundary. Code for solution of this problem is shown
as listing 4.
for (int i : domain.internal()) {

op.graddiv(M, i, lam + mu);
op.lapvec(M, i, mu);
rhs(i) = 0; }

for (int i : domain.bottom()) {
op.traction(M, i, lam, mu, {0, -1});
rhs(i) = 0; }

for (int i : domain.top()) {
op.traction(M, i, lam, mu, {0, 1});
rhs(i) = 0; }

for (int i : domain.left()) {
double y = domain.positions[i][1];
op.traction(M, i, lam, mu, {-1, 0});
rhs(i) = Vec2d(0,

-P*(D*D - 4*y*y)/(8*I)); }
for (int i : domain.right()) {

double y = domain.positions[i][1];
op.valuevec(M, i, 1.0);
rhs(i) = Vec2d((P*y*(3*D*D*(1+v)-

4*(2+v)*y*y))/ 24.*E*I),
-(L*v*P*y*y) / (2.*E*I)); }

VectorXd solution = M.lu().solve(rhs);

Listing 4: Code for solving the cantilever beam problem.

Errors of displacements and stresses are measured us-
ing analogues of the `∞ norms

e(~u) = maxx∈X{max{|u(x)−û(x)|,|v(x)−v̂(x)|}}
maxx∈X{max{|u(x)|,|v(x)|}} , (22)

e(σ) = maxx∈X{max |σ(x)−σ̂(x)|
maxx∈X{max |σ(x)|} , (23)

where max |σ(x)| represents the largest element in σ by
absolute value. The convergence of MLSM in MON9/9
and MON9/13 setups is shown in Figure 8.

Figure 8. Error of MLSM solving cantilever beam problem using
MON9/9 and MON9/13 setups.

To further demonstrate the generality of the method,
a domain with arbitrarily positioned holes is considered,
subjected to the same boundary conditions as a cantilever
beam with traction free conditions on the inside of the
holes. A comparison of von Mises stresses (a commonly
used yield criterion) in ordinary cantilever beam and a
cantilever beam with holes is presented in Figure 9.

Figure 9. Comparison between solutions of ordinary and drilled
cantilever beam problems, colored by von Mises stress.

C. Lid-driven cavity
The last example comes from the Computational fluid

dynamics (CFD), where the core of the problem lies
in solving the Navier-Stokes equations or its variants,
e.g. Darcy or Brinkman equation for flow in porous me-
dia. The Navier-Stokes equations for incompressible flow
are

∂~u

∂t
+ (~u · ∇)~u = −∇p+

1

Re
∇2~u (24)

∇ · ~u = 0 (25)

where ~u = (u, v) is the flow velocity, Re is the Reynolds
number and p is the pressure. A standard test for as-
sessment of numerical methods attempting to solve the
Navier-Stokes equations is the lid driven cavity problem.
It has been proposed in 1982 [10] and since then solved by
many researchers with wide spectra of different numerical

methods. The test is still widely studied and used for val-
idation of novel methods and numerical principles. In lid
driven cavity test a 2-dimensional domain is considered,
where all boundaries except for the top boundary are of no
slip type, while the top boundary is set to the constant ve-
locity. More details on the case can be found in many pa-
pers, recently also in meshless context in [11]. There are
different algorithms for addressing the pressure-velocity
coupling. Here, we will use a pressure correction itera-
tion [12], where a Poisson pressure correction equation

∇2pcorr =
ρ

∆t
∇ · ~u iter (26)

with normal boundary conditions

∆t

ρ

∂p

∂~n

corr

= 0 (27)

and regularization that ensures a unique solution∫
Ω

pdΩ = 0 (28)

is used to project velocity towards solenoidal field to en-
sure mass continuity.

The intermediate velocity is, with present MLSM co-
ordinate free implementation, computed as
for (int i : domain.internal()) {

op.valuevec(M, i, 1 / O.dt);
op.lapvec(M, i, -O.mu / O.rho);
op.gradvec(M, i, v1[i]);
rhs[i] = -1 / O.rho * op.grad(p, i)

+ v1[i] / O.dt;
}
for (int i : domain.boundary()) {

op.valuevec(M, i, 1);
}
rhs[domain.boundary()]= Vec2d(0, 0);
rhs[domain.top()] = Vec2d(1, 0);
v_iter = solver.solveWithGuess(rhs, v_1);

In a next step a pressure correction Poisson equation
is solved
for (int i : domain.internal()) {

op.lap(M, i, 1.0);
rhs_p(i) = O.rho/O.dt*op.div(v_iter, c);

}
for (int i : domain.boundary()) {

op.neumann(M, i, domain.normal(i), 1.0);
rhs_p(i) = 0;

}
for (int i = 0; i < N; ++i) {

M.coeffRef(N, i) = 1; // Regularization.
M.coeffRef(i, N) = 1;
rhs_p(N) = 0

}
P_c = M.lu().solve(rhs_p);

Finally, the velocity is corrected to fulfill the diver-
gence free criterion.
for (int i : domain.internal()) {

v[i] -= O.dl*O.dt/O.rho*op.grad(p_c,);
}

The example velocity magnitude contour plot of Re =
3200 case is presented in Figure 10. The comparison
against reference solution [13, 10] along with convergence
information is presented in Figure 11. MLSM solution

converges regularly to the same values as the reference
solutions for all cases.

Figure 10. Velocity magnitude contour plot for Re = 3200 case.

10
2

10
3

10
4

10
5

N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m
a
x

(u
y
)

MLSM Re=100

MLSM Re=1000

MLSM Re=3200

Sahin Re=100

Sahin Re=1000

Sahin Re=3200

Ghia Re=100

Ghia Re=1000

Ghia Re=3200

Figure 11. Comparison of present MLSM solution against reference
data.

IV. CONCLUSIONS

In this paper we presented a concept of Coordinate
Free software implementation of numerical solver based
on the Meshless Local Strong Form Method. It is demon-
strated that after the implementation of mathematical con-
cepts, such as domains, scalar and vector fields, and differ-
ential operators, one can numerically solve a wide variety
of PDEs with elegant and readable code. It is also demon-
strated that coordinate free interfaces bring no observable
overhead in execution time.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial
support of the Research Foundation Flanders (FWO), The
Luxembourg National Research Fund (FNR) and Slove-
nian Research Agency (ARRS) in the framework of the
FWO Lead Agency project: G018916N Multi-analysis of
fretting fatigue using physical and virtual experiments and
the ARRS research core funding No. P2-0095.

REFERENCES

[1] Sylwester Arabas, Dorota Jarecka, Anna Jaruga, and
Maciej Fijałkowski. Formula translation in Blitz++,
NumPy and modern Fortran: A case study of the
language choice tradeoffs. Scientific Programming,
22(3):201–222, 2014.

[2] H Munthe-Kaas and M Haveraaen. Coordinate free
numerics – closing the gap between ’pure’ and ’ap-
plied’ mathematics? ZAMM Z. angew. Math. Mech,
76(S1):487–488, 1996.

[3] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3,
2010. URL: http://eigen.tuxfamily.org,
accessed 2018-01-12.

[4] J Slak and G Kosec. Refined Meshless Local Strong
Form solution of Cauchy–Navier equation on an ir-
regular domain. Engineering Analysis with Bound-
ary Elements, 2018.

[5] Frédéric Hecht. New development in freefem++.
Journal of numerical mathematics, 20(3-4):251–
266, 2012.

[6] Anders Logg, Kent-Andre Mardal, and Garth Wells.
Automated solution of differential equations by the
finite element method: The FEniCS book, vol-
ume 84. Springer Science & Business Media, 2012.

[7] Roman Trobec, Marjan Šterk, Matej Praprotnik, and
D Janežič. Implementation and evaluation of mpi-
based parallel md program. International Journal of
Quantum Chemistry, 84(1):23–31, 2001.

[8] Common Aluminum Heatsink, GrabCAD.
URL: https://grabcad.com/library/
tiger-heatsink-mesh-1, accessed 2018-02-
13.

[9] William S Slaughter. The linearized theory of elas-
ticity. Springer Science & Business Media, 2012.

[10] U. Ghia, K. Ghia, and C. Shin. High-Re solutions for
incompressible flow using the Navier-Stokes equa-
tions and a multigrid method. Journal of Com-
putaional Physics, 48:387–411, 1982.

[11] G. Kosec. A local numerical solution of a fluid-flow
problem on an irregular domain. Advances in Engi-
neering Software, 2016.

[12] J. H. Ferziger and M. Perić. Computational Methods
for Fluid Dynamics. Springer, Berlin, 2002.

[13] M. Sahin and R. Owens. A novel fully implicit fi-
nite volume method applied to the lid-driven cavity
problem. Part I: High Reynolds number flow calcula-
tions. International Journal for Numerical Methods
in Fluids, 42:57–77, 2003.

http://eigen.tuxfamily.org
https://grabcad.com/library/tiger-heatsink-mesh-1
https://grabcad.com/library/tiger-heatsink-mesh-1

	Introduction
	Local Strong Form Meshless Method
	Coordinate free implementation

	Numerical examples
	Heat equation
	Cantilever beam
	Lid-driven cavity

	Conclusions

