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Introduction (300 words) 

 

The simplicity, generality and efficiency are probably the main attractiveness of the meshless 
methods that have been under intense developed in recent years. This paper considers one of 
those methods, namely a relatively simple Meshless Local Strong form Method (MLSM) [1] that 
generalises several other mesh based and meshless strong form methods, e.g. Finite 
Difference Method, Local Radial Basis Functions Method, Finite Point Method, Diffuse 
Approximate Method, etc. MLSM is based on a Weighted Least Squares (WLS) approximants 
constructed over small local neighbourhood of the considered node. One of the most attractive 
features of MLSM is its dependency solely on the nodal positions, which enables a rather 
general formulation that can be directly implemented in a programming language with support 
for generic abstractions, such as C++11. In another words, the MLSM implementation is not 
dependent on dimensionality of the domain, on the approximation type, basis pool size, basis 
types, support size, and nodal positions. In this paper the generic implementation of MLSM is 
demonstrated by solving various problems in 1D, 2D and 3D on different domain shapes. It is 
shown that this implementation has little to no execution overhead over e.g. classical Finite 
Difference Method implementation despite its significant abstraction. 

 

Methods (300 words) 

To obtain a solution of a PDE, it is first split on a spatial and temporal part. Temporal 
discretization is treated separately using standard methods, while the spatial part is solved 

using MLSM. The spatial part is assumed to be an elliptic boundary value problem  on 

domain  with Dirichlet boundary conditions  on . First,  is discretized by choosing  

points in domain interior and  points on the boundary. 

 

The core of the spatial discretization is based on WLS approximation, constructed over local 

neighbourhood. Choose a point  and  of its neighbours, denoted by . An 

approximation  of function  is introduced in form  

 
where  are arbitrary basis functions defined over the neighbourhood of  and  are unknown 

coefficients. To obtain these coefficients, a weighted discrete  norm 

 

is minimized, where positive numbers  represents the weights associated with support nodes 

. Above equation can be rearranged into minimization of , where  is 

a  matrix,  is the vector of function values, , and  is a diagonal matrix of 

square roots of weights, . This problem can be in general solved by computing the 

Moore-Penrose pseudoinverse of , denoted by  and expressing . Vector  

can be substituted back into approximation to obtain  

 

Additionally, a linear partial differential operator  can be applied to  simply by computing 

 



where  is called a shape function for operator  in point  and gives 

the discrete approximation of  applied at . 

 

To solve given equation  on  we approximate it with a linear equation  for 

every discretization point  in the interior of the domain. Accompanied by equations 

 for boundary nodes, this now yields a sparse system of linear equations with 

 nonzero entries, which can be solved to obtain an approximation for . 

 

Results (300 words) 

 

First the method is tested on 1D boundary value problem . 

Results are compared against an analytical solution in terms of accuracy with respect to the 
number of discretization nodes. It is demonstrated that MLSM has the same order of 
convergence as FDM and no implementation overhead. Convergence is also analysed 
regarding different precision floating point arithmetic. To solve a two or three dimensional 
problem, only very small modifications are necessary, which is demonstrated by solving 

 and  in two and three dimensions. Again, convergence against analytical 

solution is analysed for different setups up to  nodes and the observed order of 

convergence matches the one obtained with FDM. The solution procedure is then generalized 
to arbitrary two and three dimensional shapes. 

 

Next, we consider a classical cantilever beam problem from linear elasticity [2], where 

displacements of a beam, bent in one end by a parabolically distributed force , are sought. A 

numerical solution is obtained by solving the Cauchy-Navier equations 

 Again; convergence in  norm in displacements and stresses 

towards an analytical solution up to  nodes is shown. In addition, a drilled cantilever beam 

domain is also solved to demonstrate flexibility of MLSM regarding nodal positions. 

 

Finally, a solution of the classical lid driven cavity problem [3] from computational fluid 

dynamics is considered up to  and up to  nodes. This time, no analytical solution 

is known, but the problem is well studied and can be compared to already known results from 
literature [3, 4]. 

 

Conclusions and Contributions (300 words) 

The paper describes a general strong form meshless method which generalizes many existing 
meshless methods, such as FDM, LRBFCM, FPM etc., along with a generic implementation of 
the method written in C++11. It is demonstrated that the method is suitable for solving energy 
transport problems, linear elasticity and fluid flow problems by solving benchmark cases in all 
three fields along with full convergence analyses. Furthermore, it is shown that the method 
generalizes well to different shapes and higher dimensions with little to no modifications. 

It is also demonstrated that it is possible to have a generic implementation in a modern 
language using high level concepts that enables direct mapping of the mathematical description 
to the code without significant overhead. 
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