
Fast Generation of Variable Density Node
Distributions for Meshfree Methods

Jure Slak, Gregor Kosec

41st BEM/MRM 2018, 11. 9. 2018

“Jožef Stefan” Institute

1

Scope JSI

1. Node generation algorithm requirements

2. Improvements of a published algorithm

3. New algorithm proposition and comparison

4. Numerical examples

2

Node generation JSI

Node generation is a simpler problem than mesh generation.

Why are node generation algorithms needed?

• strong form meshless methods are sensitive to node positioning
• variable density node distributions for adaptivity

Requirements:

• Input: domain Ω, nodal spacing
function δr(p) represents approximate
distance between p and its neighbors

• Output: N nodes, locally regular
• Works with irregular domains
• Dimension and direction independent
• Minimal spacing guarantees

3

A node positioning algorithm by Fornberg & Flyer JSI

• Given domain Ω,
compute a bounding
box

• Fill the bounding box
with an advancing
front algorithm

• Superimpose
boundary nodes,
discard nodes outside
of Ω

• Regularize

Algorithm and figures from: Fornberg, B. and Flyer, N. Fast generation of 2-D node
distributions for mesh-free PDE discretizations. Computers & Mathematics with
Applications, 69(7), pp. 531–544. 2015.

4

Time complexity improvements JSI

• Naive implementation
has time complexity
O(NS)

• For constant nodal
spacing h this is
O(1/h3).

• Improve to
O(N logS) using fast
minimum extraction.

Linked list, priority queue and lazy removal allow for O(logS)

amortized minimum search, O(1) access, removal and insertion.

5

Generalization to higher dimensions JSI

• Split the space as Rd−1 × R and advance the front along the
last coordinate.

• Generating new points: Cartesian products of uniformly
angle-spaced point in each dimension

• Efficient implementation generalizes as well:
use a range search structure (e.g. (d− 1)-d tree) with a
priority queue

6

Drawbacks JSI

• Fills the whole
bounding box

• Directionally
dependent

• Difficult to implement
in 3D

• Does not consider
boundary
discretization

• No minimal spacing
guarantees

• ‖pi − pj‖ ≥ min δr

violated → see Figure
7

Poisson disk sampling based algorithm JSI

• Start with a queue of given
boundary discretization and
additional “seed nodes”.

• In each iteration dequeue a
new node p and generate
new candidates at a distance
δr(p).

• Insert acceptable new
candidates into the queue.

• Repeat until queue is empty.

Time complexity: O(N logN), provable minimal spacing guarantees

8

Input: Domain Ω and its dimension d. Supports queries of type “Is
p ∈ Ω?”.
Input: A nodal spacing function h : Ω ⊂ Rd → (0,∞).
Input: A list of starting points X , this includes the possible
boundary discretisation and seed nodes. Output: A list of points in
Ω distributed according to spacing function h.

1: function PDS(Ω, h, X)
2: T ← kdtree_init(X) . Initialize spatial search structure on

points X .
3: i← 0 . Current node index.
4: while i < |X | do . Until the queue is not empty.
5: pi ← X [i] . Dequeue current point.
6: ri ← h(pi) . Compute its nodal spacing.
7: for each ci,j in candidates(pi, ri) do . Generate and

loop through candidates.
8: if ci,j ∈ Ω then . Discard candidates outside the

domain.
9: ni,j ← kdtree_closest(T, ci,j) . Find nearest

neighbour for proximity test.
10: if ‖ci,j − ni,j‖ ≥ ri then . Test candidate if it is

not too close to other nodes.
11: append(X , ci,j) . Enqueue ci,j as the last

element of X .
12: kdtree_insert(T, ci,j) . Insert ci,j into the

spatial search structure.
13: end if
14: end if
15: end for
16: i← i+ 1 . Move to the next non-expanded node.
17: end while
18: return X
19: end function

9

Comparison – node quality JSI

10

Comparison – node quality JSI

Histograms of internodal distances:

FF PDS

11

Comparison – execution time JSI

Algorithm was tested on an annulus domain covering approximately
0.5 area of its bounding box. No regularization was applied to FF.

Same time complexity, PDS is slower in practice for most cases. 12

Examples using PDS JSI

Electrostatics:

∇2φ = −ρ/ε

Solve for φ using RBF-FD in 2D and 3D:

13

Adaptivity in linear elasticity JSI

Lamé-Navier equation

(λ+ µ)∇(∇ · ~u) + µ∇2~u = ~f

describing displacements ~u = (u, v) and stresses σ.

Case arising from
fretting fatigue:

A pad is sliding along
and pushing on the
specimen. Surface
traction is of interest.

14

Adaptivity in linear elasticity JSI

15

Final remarks JSI

All computations were done using open source Medusa library.

Medusa
Coordinate Free Mehless Method
implementation
http://e6.ijs.si/medusa/

Thank you for your attention!

Acknowledgments: FWO Lead Agency project: G018916N Multi-analysis of
fretting fatigue using physical and virtual experiments and the ARRS research
core funding No. P2-0095. 16

http://e6.ijs.si/medusa/

