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ABSTRACT 

 

Problems with pronounced differences in intensity, such as appear in contact mechanics, where 

locally concentrated high stresses are present, are usually attacked with a spatially variable nodal 

distribution. In a meshless context, such distribution has to be quasi-smooth with minimal spacing 

requirements to produce satisfactory results. To that end, development of fast discretization 

procedures, which distribute the nodes according to given (non-constant) spacing function, has 

become of interest. We improve a recently published algorithm for fast 2D meshless discretizations, 

by lowering its time complexity from 𝑂(𝑁𝑆) to 𝑂(𝑁 log 𝑆) resulting in an algorithm that generates a 

million nodes per second. The proposed algorithm is independent of the dimensionality of the space, 

does not rely on a coordinate system and has provable minimal node spacing requirements. The 

original and new algorithms are compared in terms of node quality and execution time. The usability 

and robustness of the new algorithm is presented by solving PDE examples on irregular 3D domains 

with the RBF-FD method and by using it as a node generation algorithm in fully the automatic 

adaptive solver for linear elasticity. 
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1  INTRODUCTION 

One of the most attractive features of mesh-free methods is their ability to work on 

unstructured sets of nodes without any connectivity relations. This does not imply that any 

distribution of nodes will produce satisfying results, as especially many strong form 

methods have minimal spacing requirements that impact stability [2] and need locally 

regular distributions for good performance. An example of such a method is the Radial 

Basis Functions Finite Differences (RBF-FD) method [1]. Nonetheless, node positioning is 

an easier problem than mesh generation and specialized algorithms for fast generation of 

nodes on irregular domains have been developed [3][4]. Often the nodes are required to be 

approximately distributed according to a spacing function, allowing for variable density 

node distributions to be generated. The need for such distributions arose from problems 

with pronounced differences in intensity, such as contact problems in linear elasticity. 

Furthermore, the high-intensity regions might not be known in advance and adaptive 

iteration is needed to solve the problem. In such cases, it is essential for the node 

positioning algorithm to be fast and robust, to be able to generate quality distributions as 

required by the error indicator automatically.  

     In this work, we improve a recently published algorithm by Fornberg and Flyer for 2D 

meshless discretizations [3] by improving its time complexity and generalize it to higher 

dimensions. We propose and alternative algorithm in Section 3 and compare the algorithms 

in terms of execution time and node quality in Section 4. In Section 5, the practical 



application of the new algorithm is demonstrated on irregular 3D domains and in the fully 

automatic adaptive setting. 

2  IMPROVEMENTS OF 2D ALGORITHM BY FORNBERG AND FLYER 

The algorithm by Fornberg and Flyer [3] fills a rectangle with nodes spaced according to 

the spacing function 𝛿𝑟. The algorithm works as an advancing front algorithm that begins 

by filling the bottom line of the rectangle with candidates for node positions. On every 

iteration, a point 𝑝 with minimal 𝑦-coordinate is chosen and is added to the solution set. 

The point is then removed from the candidate list as well as other points being too close to 

it. A small constant number, e.g. 5, of new candidates are then computed, by spacing them 

uniformly by angle on an arc of radius 𝛿𝑟(𝑝) spanning between the closest remaining left 

and right candidates, and are inserted into the list. The procedure finishes when the minimal 

𝑦-coordinate is above the upper rectangle boundary. 

     A naïve implementation of the above algorithm using arrays has time complexity 

𝑂(𝑁𝑆), where 𝑁 is the number of generated nodes and 𝑆 is the maximal number of points 

in the candidate list array. For uniform nodal spacing ℎ, it holds that 𝑁 = 𝑂(1/ℎ2) and 𝑆 =
𝑂(1/ℎ), bringing the total time complexity to 𝑂(1/ℎ3).  

     Additionally, if an irregular 2D domain is treated, the algorithm first fills its bounding 

box, discards all the nodes outside the domain and nodes too close to the boundary. The 

boundary discretization is then superimposed on the remaining nodes, and the distribution 

is then further regularized using a few iterations of a repel-type algorithm. 

2.1  Time complexity improvements 

The naïve implementation of the above algorithm can be improved by taking note of the 

required operations in each iteration. First, a point 𝑝 with minimal 𝑦-coordinate is found, 

then all candidates in radius 𝛿𝑟(𝑝) are removed from the candidate list and some new 

candidates are inserted instead. The insertions and removals can be sped up using a linked 

list instead of an array, performing them in constant time from a known position. The 

complexity of the search operation is not changed and as the candidates are ordered 

according to the 𝑥-coordinate, only a few candidates left and right from the known position 

must be checked. The only operation left is the minimum extraction, which can be done 

fast, if additionally, a data structure that allows fast minimum extraction (e.g. a heap) is 

used in the combination with a linked list. The heap contains references to the linked list 

elements and extracting the minimum is now an 𝑂(log 𝑆) operation. Introducing the heap 

requires some more bookkeeping at insertions and removals. Upon insertion of a candidate 

in the linked list, a reference to it must also be inserted in the heap. Upon removal of the 

candidate from the linked list, it is lazily marked as removed and al the removed elements 

are ignored at the next minimum extraction. This brings the complexity of one iteration 

down to a few constant time updates of the linked list and 𝑂(log 𝑆) time updates of the 

heap, making the overall time complexity 𝑂(𝑁 log 𝑆). For uniform nodal spacing this 

results in a time complexity 𝑂(1/ℎ2 log 1/ℎ), improving the 𝑂(1/ℎ3) complexity of the 

naïve algorithm. 

     Both proposed implementations were compared in practice using uniform nodal spacing 

ℎ. They were implemented in C++11, compiled using g++v7 on Linux and run on a laptop 

computer with 4 Intel ® Core™ i7-7700HQ CPU @ 2.80 GHz cores and 16 GB DDR4 

RAM. The execution times are shown in Figure 1.  



 
Figure 1: Execution time of naive and improved implementation. The error bars indicate standard 

deviation over 10 runs. 

As expected, the naïve implementation is faster for small 𝑁 up to around 𝑁 = 10 000 due 

to less bookkeeping overhead. For large 𝑁 the improved implementation with better 

asymptotic behaviour is faster and generates a million nodes under one second.  

2.2  Generalization to higher dimensions 

The algorithm and the efficient implementation can be extended to higher dimensions 𝑑 ≥
2. Instead of a line, the advancing front forms a 𝑑 − 1 dimensional plane. In each iteration, 

the candidate 𝑝 with the minimal 𝑑-th coordinate is extracted and its neighbourhood in 

radius 𝛿𝑟(𝑝) is removed. New candidates are then inserted instead. It is not entirely 

obvious how to generalize the definition of new candidates in higher dimensions. One 

direct generalization would be to find the two closest remaining points to 𝑝 along each of 

the 𝑑 − 1 dimensions, one in each direction. The angles between those points would then 

be split into uniform parts, thus defining the angle of the new candidate along each 

dimension. The scale is given by 𝛿𝑟(𝑝) as in 1D case. In other words, angles of the new 

candidates form a tensor product mesh and the points are scaled to have radius equal to 

𝛿𝑟(𝑝).  

    Efficient implementation can also be generalized to higher dimensions: instead of a 

sorted doubly linked list with a heap, a spatial search structure, such a 𝑘-d tree must be used 

in combination with a heap to achieve similar time complexity. This makes the 

implementation somewhat more complex and out of the scope of this work. 

2.3  Minimal spacing guarantees 

It is often desirable for node generation algorithms to satisfy minimal node spacing 

guarantees, as small distances between nodes can cause ill conditioning in numerical 

methods [2]. If the nodes were generated using a constant density function 𝛿𝑟(𝑝) = 𝛿𝑟0, it 

is reasonable to expect that ‖𝑝𝑖 − 𝑝𝑗‖ ≥ 𝛿𝑟0 holds for 𝑖 ≠ 𝑗. For variable density functions, 

some constraints were introduced by [5], were assumptions on the Lipschitz constant of the 

function must be made. Even if no such assumptions can be made (and none are needed by 

any of the algorithms in this work), a weak requirement ‖𝑝𝑖 − 𝑝𝑗‖ ≥ min 𝛿𝑟, for 𝑖 ≠ 𝑗 can 

still be made. However, the algorithm by Fornberg and Flyer does not satisfy even that, as 

shown in Figure 2.  



 
Figure 2: A sample run with marked proximity violations. 

A unit square was filled with uniform density ℎ = 0.01 and marked points violate the 

proximity criterion. Most of the violations appear on the boundary, with some also 

appearing sporadically in the domain interior. 

3  POISSON DISK SAMPLING BASED ALGORITHM 

The algorithm proposed by Fornberg and Flyer has a few undesired properties. First, it has 

no minimal spacing guarantees, it is directionally dependent, and it does not work for 

arbitrary shapes without additional algorithms. Therefore, we propose an alternative 

algorithm for node generation, which is not directional, it is dimension independent, works 

with irregular domains, and satisfies minimal spacing criteria. 

     The algorithm starts with a given boundary discretization and works inwards. All 

boundary nodes and optionally some other starting user-supplied nodes are placed in a 

queue of non-expanded nodes. In each iteration, a new node 𝑝 is popped from the queue 

and new candidates arising from it are considered. The candidates are considered one by 

one. If a candidate is outside of the domain, it is removed from consideration immediately. 

Otherwise, if it is not too close to any existing nodes, it is accepted and added to the queue 

and the result set. This iteration continues until the queue is empty. 

    The new candidates arising from each point can be generated in a few different ways: 

either chosen uniformly at random from a sphere with radius 𝛿𝑟(𝑝) or generated in a 

deterministic way. One good way is such that hex packing is reproduced in 2D and 3D 

when using uniform spacing. 

3.1  Time complexity 

Each iteration consists of considering one node and adding a few new nodes in the queue. 

The most time-consuming operation is to check that new candidates are not too close to the 

existing nodes. There are different approaches to answering these types of queries, using 

e.g. background cell meshes or spatial trees. If 𝑘-d trees are used, then insertions and 

queries can be performed in 𝑂(𝑛 log 𝑛), where 𝑛 is the number of points in the tree. As 

each candidate is inserted in the tree at most once and queries at most once, the overall time 

complexity is 𝑂(𝑁 log𝑁). 



4  COMPARISON OF ALGORITHMS 

4.1  Node quality 

Both algorithms are first compared in terms of node quality. A sample function  

 𝛿𝑟(𝑥, 𝑦) =
1

8.5979
(3(𝑥 − 1)2𝑒−𝑥2−(𝑦+1)2 − 5𝑒−𝑥2−𝑦2

+ 4.2166) ⋅ (𝐻 − ℎ) + ℎ (1) 

was used to compare and asses the quality of both algorithms. The function is such that 𝐻 is 

the largest and ℎ is the smallest node spacing used. Values 𝐻 = 0.1 and ℎ = 0.01 were 

used in our examples. The generated nodes are shown in Figure 3. 

 

   
 

   
 

   
Figure 3: The left column represents the density function, the nodes generated by the algorithm 

published by Fornberg and Flyer (FF) and the nodes generated by the Poisson Disk Sampling (PDS) 

based algorithm, respectively. The right column shows zoomed in versions of the left column to better 

asses the node quality. 



The node distributions produced by both algorithms do clearly conform to the specified 

nodal spacing function. Additionally, both distributions are locally regular as shown in the 

zoomed in plots. Further analysis of node quality can be done by comparing generated node 

distributions against the theoretical distribution, shown in Figure 4. 

 
Figure 4: Spacing distribution produced by FF (left) and PDS algorithms (right). 

Both algorithms produce a matching distribution of nodal spacing, with 9277 and 8693 

nodes, respectively.  

4.2  Execution time 

Execution times of both algorithms are compared. The same density function as before (eq. 

1) was used. The procedure was run using 𝐻 = 10ℎ with ℎ varying in such a way that the 

number of generated nodes ranged approximately from 100 to 1000000. The domain of 

choice was an annulus, centred at (0, 0) with inner radius 0.25 and outer radius 2. The 

proposed Poisson Disk Sampling based algorithm was applied directly, while the algorithm 

by Fornberg and Flyer was applied to the bounding box [−2, 2] × [−2, 2] and generated 

nodes were later filtered to keep only the nodes inside the domain and not too close to the 

domain boundary. The results are shown in Figure 5. 

 
Figure 5: Comparison of execution time of both algorithms on an annulus domain. Shown execution 

time is the median of 10 runs, with error bars representing standard deviation. 



An irregular domain was used on purpose to include a moderate overhead that the first 

algorithm has due to generating nodes within the whole bounding box. Nonetheless, it 

outperforms the Poisson Disk Sampling based algorithm for all tested 𝑁 and exhibits very 

similar time complexity. 

5  NUMERICAL EXAMPLES 

The numerical examples in this work serve to demonstrate that nodes generated by the 

Poisson Disk Sampling based algorithm described in Section 3, can be used to solve PDEs 

using the RBF-FD method.  

5.1  Electrostatics in 2D 

Let us begin with a simple two-dimensional example originating from electrostatics. The 

electric field �⃗�  satisfies ∇ ⋅ �⃗� = 𝜌/𝜀 and ∇ × �⃗� = 0. Introducing the electric potential 𝜙, 

such that �⃗� = −∇𝜙, we get the Poisson’s equation 

 ∇2𝜙 = −𝜌/𝜀. (2) 

In the absence of charge, this becomes the Laplace’s equation.  

     The first case will computing the electric potential around 4 uniformly charged circles in 

a box. The Medusa framework [7] implementation of RBF-FD was used in the solution 

procedure, specifically; a neighbourhood of 9 support nodes and a basis consisting of 9 

Gaussian functions with shape parameter 𝜎 = 30. The obtained solution is shown in Figure 

6. 

 
Figure 6: Electric potential around four uniformly charged circles in a box. 

     The plotted values are values of potential 𝜙 obtained in computational nodes, which are 

distributed densely enough to create an illusion of a full plot.  

5.2  Electrostatics in 3D 

The second case is a generalization of the first case to three dimensions. Eight uniformly 

charges spheres are put in a box, and the electric potential 𝜙 is computed using RBF-FD as 

before. A neighbourhood of 7 support nodes and a basis consisting of 7 Gaussian functions 

with shape parameter 𝜎 = 30 were used to solve the problem. The 𝑧 cross-sections are 

shown in Figure 7. 



 
Figure 7: Electric potential around eight uniformly charged spheres in a box. 

5.3  Adaptivity in linear elasticity 

The final example deals with a linear elasticity problem, specifically fretting fatigue contact 

on the case described by Pereira et. al. [9]. Two cylindrical pads act on a specimen of width 

𝑊, length 𝐿 and thickness 𝑡, creating a contact area, that is split into the stick and slip 

zones. Numerically, the problem is simplified to two dimensions and solved on the domain 

Ω = [−𝐿/2, 𝐿/2] × [−𝑊/2, 0], with known top and right side tractions, symmetry 

boundary conditions on the bottom boundary and no displacement boundary conditions on 

the left. For further explanation and specific parameter values, the reader is referred to [9]. 

An important feature of this problem is that stick and slip contact zones cause high stress 

peaks on top boundary, which cannot be captured with uniform discretizations on current 

day computers. Refinement is thus needed and its behaviour in RBF-FD context has been 

investigated recently by Slak and Kosec [8]. Here, a fully automatic adaptive solution of the 

problem will be shown, with the purpose of demonstrating the capabilities of the node 

generation algorithm, as described in Section 3.  

     Figure 8 shows top traction of the RBF-FD solution compared to a solution obtained 

using well-established FreeFem++ framework [10]. The solution is gradually improved 

over the course of 4 iterations, demonstrating that the node generator was generating 

distributions, which were suitable for RBF-FD method. The generated distributions under 

the contact area are shown in Figure 9, coloured by von Mises stress. In the first iteration, 

only three nodes on the top of the domain are present. In the next iteration, the node 

distribution becomes denser, capturing the contact phenomenon well enough to separate 

high and low stress areas. Consequently, the third iteration produces a variable density 

distribution, and the final distribution is already well adapted to the solution behaviour. 

 



 
Figure 8: Adaptive solution of fretting fatigue contact problem. Top traction 𝜎𝑥𝑥 is shown. 

 
Figure 9: Nodes under contact in final iteration coloured by von Mises stress. 

6  CONCLUSIONS 

A recently published algorithm for node positioning in 2D was improved, by lowering its 

theoretical time complexity and demonstrating the decrease in execution time in practice, 

generating 1 000 000 nodes per second. A new, slower, but dimension and domain shape 

independent algorithm with provable minimal spacing requirements and same time 

complexity is proposed. The algorithm is shown to generate node distributions conforming 

to an arbitrary nodal spacing function, and the produced nodal distributions can be used to 



solve problems with the RBF-FD method on irregular domains in two and three 

dimensions. Furthermore, it can also be used in the fully automatic adaptive setting. 
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