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e, SCOPE

Cooling of conductor due to the natural

convection
The most important cooling mechanism of a conductor, i.e.
convection, is, in all standard Dynamic Thermal Rating (DTR)
models, taken into account in terms of empirical relation that
are mostly based on data collected by Morgan in 1975.

Physical model
The domain of the problem is a cross-section of a power line
that is further separated into a steel core and aluminum
conductor, and surrounding air

Numerical solution
The solution procedure is divided in two time loops, namely the
air and the power line loop. The involved Partial Differential
Equations are discretized with RBF-FD method.

Results
The results of the simulation are presented in terms of
temperature and velocity magnitude contour plots, convergence
analyses, and comparison of convective heat losses of simulated
results to IEC, IEEE and CIGRE standards.
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NUMERICAL MODEL VS. CIGRE/IEEE

Numerical solution of temperature and
velocity fields around conductor

* Steady state achieved in order of 1 s

*  Temporal discretization in order of 1 ms

CIGRE and IEEE assume empirical relation between
temperature and cooling rate

In numerical model we solve thermo-fluid problem and
compute cooling rate without any parameters.

Natural convection:
Thermo-fluid problem
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Computation of heat generation and
transport within the power line
e Steady state achieved in order of 10 min
*  Temporal discretization in order of 10 s

CIGRE in IEEE assume homogenous conductor and assess the
skin and core temperature from closed form solution of
simplified problem.

In numerical model we compute 2D simulation of heat
transfer and generation within the power line.

4 4
T =0g6 (T, ()T
Radiation ® ® s( al( 2) : )
Boundary condition
o l;
Js =— —
> T

Steel part — heat transport

T(6)=T"(r)

Aluminium part — heat . oT ™ o
transport and heat you o =AMVT?
generation u
Clz;;lpal aT :ﬂ,alvaal +q3
2 al
PR [w
qJ - Sal m3 !
lal ial — //LS'[ iﬂ
on on

1

h



Main simulation loop

SOLUTION PROCEDURE
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e’ RBF-FD DISCRETIZATION
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[ 1 J
® IMPLEMENTATION
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open source meshless project

Medusa: Coordinate Free Mehless Method implementation (MM)
https://gitlab.com/e62Lab/medusa | http://e6.ijs.si/medusa/



- 1 SIMULATION OF NATURAL CONVECTION FROM AL490FES5 CONDUCTOR
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SIMULATION OF NATURAL CONVECTION FROM AL490FE65 CONDUCTOR
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Steady state temperature
profile of air at different
skin-ambient
temperature differences.

Convergence plot (left)
and time development at
different skin-ambient
temperature differences



e¢° VALIDATION OF NUMERICAL SIMULATION
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Result of Schlieren photography  Simulated temperature Experimental setup for Schlieren photography.



¢, CONCLUSIONS
®

Improving DTR algorithms
We prepared a numerical simulation of heat transport within the overhead line and
thermo-fluid transport in surrounding air with the ultimate goal to further improve
treatment of the most important cooling mechanism of overhead power line, i.e.

convection.

The physical model is solved by an in-house implementation of RBF-FD method within the
Medusa open source meshless project.

Model is validated by comparing simulation results, experimental data and IEEE and CIGRE
standards.

Future work
Implement simulation of convective cooling in forced convection regime.

Prepare simulated relations for Nusselt number with respect to the wind velocity and
geometry of the power line.
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