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Scope 

Cooling of conductor due to the natural 
convection 

The most important cooling mechanism of a conductor, i.e. 
convection, is, in all standard Dynamic Thermal Rating (DTR) 
models, taken into account in terms of empirical relation that 
are mostly based on data collected by Morgan in 1975.  
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The domain of the problem is a cross-section of a power line 
that is further separated into a steel core and aluminum 
conductor, and surrounding air 

Numerical solution 
The solution procedure is divided in two time loops, namely the 
air and the power line loop. The involved Partial Differential 
Equations are discretized with RBF-FD method. 

Results 
The results of the simulation are presented in terms of 
temperature and velocity magnitude contour plots, convergence 
analyses, and comparison of convective heat losses of simulated 
results to IEC, IEEE and CIGRE standards. 



Numerical model vs. CIGRE/IEEE 

Numerical solution of temperature and 
velocity fields around conductor 

• Steady state achieved in order of 1 s 

• Temporal discretization in order of 1 ms 

 

CIGRE and IEEE assume empirical relation between 
temperature and cooling rate 

 

In numerical model we solve thermo-fluid problem and 
compute cooling rate without any parameters.  
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Computation of heat generation and 
transport within the power line 

• Steady state achieved in order of 10 min 

• Temporal discretization in order of 10 s 

 

CIGRE in IEEE assume homogenous conductor and assess the 
skin and core temperature from closed form solution of 
simplified problem.  

 

In numerical model we compute 2D simulation of heat 
transfer and generation within the power line.  
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Radiation 
Boundary condition 

Natural convection: 
Thermo-fluid problem 

Steel part – heat transport 

Aluminium part – heat 
transport and heat 
generation 



Solution procedure 
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 Explicit solution of 

intermediate velocity 

Pressure correction 
Poisson equation with 
regularization 

Velocity correction 

Explicit time advance of 
heat transport 

2
st

st st st st

p

T
c T

t
 


 



 2

2al
al al al al

p al

RT
c T

T

t

I

S
 


  



Implicit solution of heat 
transport in steel part 

Implicit solution of heat 
transport and generation 
in aluminum part 
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RBF-FD discretization  
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B –  matrix of dimension (m x n) 
W – diagonal weight matrix 
 
SVD / QR decomposition  
/ NE - Cholesky decomposition  

Moore Penrose pseudo 
inverse 
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Approximation 
coefficients 

Basis functions (MQs, 
monomials, Gaussians, …) 

Approximate 
solution over a 

local support 
domain 

Tû  b α



Implementation 

Meshless 
(kNN + MLS) 

Domain definition 
vector<vec> nodes 

Support size 
size_t n 

Basis pool 
vector<function> b 

Weight function 
function W 

Approximation 
Engine 

Position vector 
Defines dimensionality  of space 

Type of basis 
functions 

Type of weight 
function 

WLS object 

kNN 
Engine 

Position vector 
Defines dimensionality  of space 

WLS object 

Refinement 
engine 

Explicit 
operators 

Implicit 
operators 

Solution 
prototypes 

Vec_t laplace(container<vec_t> &u, int node) 

void laplace(matrix_t &M, int node, scalar_t alpha) 

        #pragma omp parallel for private(i) schedule(static) 

        for (i = 0; i < interior.size(); ++i) { 

            size_t c = interior[i];  

            ///Heat transport 

            T2[c] = T1[c] + O.dt * op.lap(T1, c) - O.dt*op.grad(T1,c)*v1[c];   

           ///Navier-Stokes 

            v2[c] = v1[c] + O.dt * ( - 1/O.rho    * op.grad(P1,c).transpose()  

                                     + O.mu/O.rho * op.lap(v1, c)  

                                     -              op.grad(v1,c)*v1[c]); 

            ///Mass continuity  

            scal_t dl2 = O.dl*O.dl; scal_t dt2 = O.dt*O.dt; 

            P2[c] = P1[c] - dl2*O.dt*O.rho * op.div(v1,c) + dt2*dl2 * op.lap(P1,c); 

        } 

        T1.swap(T2); 

        v1.swap(v2);  

        P1.swap(P2); 

open source meshless project   
Medusa: Coordinate Free Mehless Method implementation (MM) 
https://gitlab.com/e62Lab/medusa | http://e6.ijs.si/medusa/ 



Simulation of natural convection from Al490Fe65 conductor 
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Simulation of natural convection from Al490Fe65 conductor 

 

.  

Steady state temperature 
profile of air at different 
skin-ambient 
temperature differences.  

Convergence plot (left) 
and time development at 
different skin-ambient 
temperature differences 



Validation of numerical simulation 

R
B

F-FD
 – n

u
m

erical sim
u

latio
n

, M
 - m

easu
rem

en
t 

Result of Schlieren photography Simulated temperature 

Experimental setup for measurements of conductor temperature  

Experimental setup for Schlieren photography. 



Conclusions 

 

Improving DTR algorithms 
 

We prepared a numerical simulation of heat transport within the overhead line and 
thermo-fluid transport in surrounding air with the ultimate goal to further improve 
treatment of the most important cooling mechanism of overhead power line, i.e. 
convection.  
 
The physical model is solved by an in-house implementation of RBF-FD method within the 
Medusa open source meshless project.  
 
Model is validated by comparing simulation results, experimental data and IEEE and CIGRE 
standards.   

Future work 
 

Implement simulation of convective cooling in forced convection regime.  
 
Prepare simulated relations for Nusselt number with respect to the wind velocity and 
geometry of the power line.  
 

Thank you for your attention 


