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ABSTRACT 

The essential limiting factor of the power transmission line transfer capabilities is the 

maximal allowed temperature of the conductor that should not be exceeded to avoid 

excessive sags. A commonly used conservative approach is to limit transfer capability to 

the worst case scenarios, i.e. hot, sunny, windless days. Of course, system operators strive 

to raise the limit with more sophisticated models that take into account actual weather 

conditions or even weather forecasts. As a consequence, there has been substantial research 

done on Dynamic Thermal Rating (DTR) models in the last few decades. Based on 

accumulated knowledge the leading standards in the field published guidelines for thermal 

rating for operative use. However, the proposed models rely only on empirical relations for 

determination of the temperature gradient on the surface of the conductor that dictates the 

heat flux due to the advection. This heat flux is the most intense cooling mechanism in 

play, and also the most complex to model. In this paper, we extend the discussion about 

advective cooling with a direct simulation of temperature and velocity fields near the 

conductor with the focus on the natural convection regime. The introduced model considers 

Joule heat generation and heat transport within the power line and its vicinity, fluid flow 

driven by buoyancy force, solar heating, and radiation. The solution procedure uses RBF-

FD numerical method combined with Poisson disk sampling nodal positioning algorithm. 

The results of the simulation are presented in terms of temperature and velocity magnitude 

contour plots, convergence analyses, and comparison of convective heat losses of simulated 

results to IEC, IEEE and CIGRE standards.  
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1  INTRODUCTION 

 

The increasing demands for electrical power pressure the transmission system operators to 

improve transmission capabilities. As a result, some existing lines might become 

overloaded, especially in summer time, causing bottlenecks that can lead to blackouts [1]. 

The essential limiting factor of the power transmission line transfer capabilities is the 

maximal allowed temperature of the conductor, e.g. 80 °C in the Slovenian power system, 

which should not be exceeded to avoid excessive sags. A commonly used conservative 

approach is to limit transfer capability to the worst case scenarios, i.e. hot, sunny, windless 

days. Of course, system operators strive to raise the limit with more sophisticated models 

that take into account actual weather conditions or even weather forecasts.  

 



As a consequence a substantial research has been done on Dynamic Thermal Rating (DTR) 

models in the last few decades [2-4] that consider heat generation within the conductor and 

heat exchange with surroundings due to various mechanisms, namely radiation, solar 

heating, rain impinging and the most important as well as the most complex to model: 

convective heat transport. The most widely accepted models are collected in leading 

CIGRE [5], IEEE [6] and IEC [7] standards that offer comprehensive overview of research 

done in the field.  

 

The CIGRE, IEEE and IEC model the convective cooling by means of empirical relations 

that relate Grashof, Prandtl and Nusselt numbers, i.e. state relation between the power of 

cooling in dependence on the material properties and the temperature difference between 

the cylinder and the ambient. The most accepted is relation provided by Morgan [8], 

however there are also other similar relations as Churchill–Bernstein relation [9], 

McAdams relation [10], Zhukavskas relation [11], etc.  

 

In this paper we present a physical model of heat transfer from power line that does not rely 

solely on the data provided by measurements, but tries to predict the thermal state from 

thermo-physical properties of air, aluminum, and steel and geometry of the power line. The 

introduced model is solved numerically using a local meshless RBF-FD [12] based on 

Weighted Least Squares approximation [13, 14]. In this paper only natural convection 

regime is discussed.  

  

The rest of the paper is organized as follows, in section Physical model we discuss the main 

phenomena in the model, in section Solution procedure RBF-FD method for simulation of 

the physical model is presented, and in section Results we discuss the computed results.    

 

2  PHYSICAL MODEL 

 

First, a physical model for thermal rating of overhead power line is discussed. The domain 

of the problem is a cross-section of a power line that is further separated into a steel core 

and aluminum conductor, and surrounding air (Figure 1). Within the steel core only heat 

conduction takes place  
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while heat generation due to Joule losses is also present in the aluminum conductor 
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where indices st, al denote steel and aluminum domain, pc  specific heat capacity,   

thermal conductivity,  density, and jq  heat source due to the Joule losses, which is 

modeled as  
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with temperature dependent conductivity  R T  introduced as [5] 

 
20 20( ) (1 ( 20 C)),R T R T     (4) 

where R20 stands for resistivity at 20 C , 1

20 4.5e-3 C    for the thermal resistance 

coefficient, and 
alS  for conductor area.  

 

The heat transport in surrounding air is driven primarily by convection and therefore 

momentum transport has to be considered, which is modelled with the Naver-Stokes 

equation and mass continuity further coupled with the heat transfer through the Boussinesq 

approximation   
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  ref1 ( )T T T   b g , (8) 

with   ref, , , , , , , , , ,p Tu v P T c T   v g  and b  standing for velocity, pressure, 

temperature, thermal conductivity, specific heat, gravitational acceleration, air density, the 

coefficient of thermal expansion, reference temperature for Boussinesq approximation, 

viscosity and body force, respectively. Thermal conductivity and viscosity of air are further 

modelled as [5] 

 2 5 8 22.368 10 7.23 10 2.763 10T T         , (9) 

  2 5 2 617.239 4.635 10 2.03 10 10T T         . (10) 

On boundaries between steel core, aluminum conductor and surrounding air, conservation 

has to hold yielding following boundary conditions 
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where 1r  in 2r  denote steel core and line radius, n outside unit normal vector to the 

domain boundary, and rq  heat sink due to the radiation, modelled as 

  4 4

r B s s aq T T    , (15) 



where 2 45,67 [W/ m K ]B  and s  stand for the Stefan-Boltzmann constant and 

emissivity, respectively. 
sT  and 

aT  stand for skin temperature ( 2( )al

sT T r ) and ambient 

temperature.  

 

At the top boundary the symmetry is assumed 
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Other boundaries are assumed to be far enough that air is still at ambient temperature.  

 
Figure 1: Scheme of the problem 

 

3  SOLUTION PROCEDURE 

 

The solution procedure is divided in two time loops, namely the air and the power line loop. 

The reason for this lies in extremely different dynamics of involved phenomena. For 

illustration, if skin temperature of line suddenly increases for 40
, the system (5)-(8) will 

reach steady state in few seconds. On the other hand, if electric current through the 

conductor suddenly increases for 800 A, the power line will reach thermal equilibrium only 

in a few hours. This can be quickly seen from values of thermo-physical properties 

introduced in next section. Besides, the system (1)-(4) can be solved implicitly with a 

relatively big time step, i.e. in order of 10 s, while non-linearities of the system (5)-(8) 

requires much finer temporal stepping, i.e. in order of 1 ms. Therefore, first system (1)-(4) 

is solved implicitly with time step 
linet  using values of air temperature from previous time 

step, followed by internal iteration, where system (5)-(8) is solved explicitly with airt . 

Each internal time step begins with computing the intermediate velocity (
iter

v ) from the 

equation (6) without pressure term. Since the intermediate velocity does not satisfy 

equation (5), a Poisson pressure correction equation  
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is solved with  
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boundary condition. The pressure Poisson equation is, at given boundary conditions, 

defined only up to a constant and to avoid instabilities a unique solution is enforced with an 

additional condition, also referred to as a regularization 

 0pd


  . (20) 

Once the pressure correction is known, a velocity is corrected accordingly 
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Finally, the equation (7) is solved, again with Euler’s method. The internal iteration takes 

place until steady state is achieved.   

 

Spatial discretization needed to compute involved partial differential operators is based on a 

local approximation of a considered field over the overlapping local support domains, i.e. in 

each node an approximation over a small local sub-set of neighboring n  nodes among all 

nodes N 
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with  , , , ,x ym p pα b p  standing for the number of basis functions, approximation 

coefficients, basis functions and the position vector, respectively, is used. In this paper we 

use a higher number of support nodes than the number of basis functions, i.e. n m , and 

therefore Weighted Least Squares (WLS) approximation is used to solve the over-

determined problem, i.e. a norm 
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is minimized, where W  is a diagonal matrix with elements  jj jW W p  with 
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where   stands for weight parameter, 0p  for the center of support domain and minp  for 

the distance to the first support domain node. The solution can be written in matrix form as  

  0.5 0.5 


α W B W u , (25) 



where  0.5


W B  stand for a Moore–Penrose pseudo inverse. By explicit expression of α  

into (22) an equation  
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 p b p W p B W p u χ p u , (26) 

is obtained, where χ  stand for the shape function. Now, we can apply partial differential 

operator ( L ), on the trial function,  

     ̂Lu Lp χ p u , (27) 

and obtain an approximation for desired operator at point p. In described model, we deal 

with Navier-Stokes and Heat equations and therefore only shape functions for Laplace 

operator and first derivatives are needed, which are pre-computed and stored.  

4  RESULTS 

 

The natural convection from 490-AL1/64-ST1A power line is numerically investigated in 

this section. This power line with radius 1.33 cm is made of material with following 

properties 32703kg/mal  , 37780 kg/mst  , 897J/(kgK)al

pc   481J/(kgK)al

pc  . The 

thermal conductivity of the power line is estimated to 2 W/ mKal al    as proposed in 

[5, 15]. The air is modelled with 31.29 kg/m  , 1005J/kgKpc  and 0.00367  . In the 

numerical simulation the 490-AL1/64- ST1A is positioned in the centre of in 10x10 cm 

square domain,  

 

We start analysis with illustration of phenomena by means of contour plots of temperature 

field and velocity magnitude near power line (Figure 2).    

 
Figure 2: Temperature (left) and velocity magnitude (right) contour plots for cooling of 

overhead power line. 

 

First set of more quantitative analysis is focused on internal iteration, i.e. on computation of 

thermo-fluid problem near power line at constant skin temperature. In Figure 3 temperature 

profiles for different asT T T    are presented, where we can see that the boundary layer 

is in order of a few centimeters, and as expected it narrows with increasing difference 



between skin and ambient temperature. From Figure 4 it can be concluded that the 

presented RBF-FD solution is convergent and that, as assumed in solution procedure 

section, the steady state is achieved within few seconds for all reasonable cases.  

 

 
Figure 3: Temperature profile ( , y 0)T x   at different 

asT T T   .  

 
Figure 4: Convergence plot (left) and time development for different 

asT T T   . 

 

In the left plot of Figure 5 a comparison of RBF-FD simulation, CIGRE, IEEE, and IEC 

models in terms of convective cooling as a function of 
a ST T T    is presented. It can be 

clearly seen that IEC completely fails at prediction, while CIGRE, IEEE and RBF-FD 

simulation agree relatively well. In the right plot of Figure 5 a full simulation is presented. 

Two different runs are presented in one figure. In each run electric current two times 

suddenly increases and then suddenly drops to zero. This way we cover four heating 

simulations and two cooling simulations. A comparison of RBF-FD simulation CIGRE 

model gives relatively good agreement. 



 
Figure 5: Power of convective cooling with respect to the difference between the skin 

temperature and ambient temperature (
a ST T T   ) (left) and skin temperature 

development (right). 

5  CONCLUSIONS 

This paper introduces relatively simple physical model describing the natural convection 

from overhead power line that takes into account heat transport and generation within the 

power line, radiation on the line skin, and thermo-fluid transport in the surrounding air. The 

presented physical model is numerically solved by RBF-FD meshless numerical method 

and it is demonstrated that simulated cooling by natural convection agrees well with the 

results provided by CIGRE and IEEE standards. In future work we want to further analyze 

the phenomena by simulating natural convection from different power lines and to include 

also forced convection in the analysis.   
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