
ON GENERATION OF NODE DISTRIBUTIONS FOR MESHLESS1

PDE DISCRETIZATIONS ∗2

JURE SLAK‡† AND GREGOR KOSEC‡3

Abstract. In this paper we present an algorithm that is able to generate locally regular node4
layouts with spatially variable nodal density for interiors of arbitrary domains in two, three and higher5
dimensions. It is demonstrated that the generated node distributions are suitable to use in the RBF-6
FD method, which is demonstrated by solving thermo-fluid problem in 2D and 3D. Additionally,7
local minimal spacing guarantees are proven for both uniform and variable nodal densities. The8
presented algorithm has time complexity O(N) to generate N nodes with constant nodal spacing9
and O(N logN) to generate variably spaced nodes. Comparison with existing algorithms is performed10
in terms of node quality, time complexity, execution time and PDE solution accuracy.11

Key words. Node generation algorithms, Variable density discretizations, Meshless methods12
for PDEs, RBF-FD13

AMS subject classifications. 65D99, 65N99, 65Y20, 68Q2514

1. Introduction. In recent years, a number of meshless approaches have been15

developed to numerically solve partial differential equations (PDEs) with the desire16

to circumvent the problem of polygonization encountered in the classical mesh-based17

numerical methods. The major advantage of meshless methods is the ability to solve18

PDEs on a set of scattered nodes, i.e. without a mesh. This advantage was adver-19

tised even to the point that arbitrary nodes could be used (see [23, p. 14] and [31]),20

making node generation seemingly trivial. Nevertheless, it soon turned out that such21

simplification leads to unstable results.22

Although node placing is considered much easier than mesh generation, certain23

care still needs to be taken when generating node sets for meshless methods. Many24

methods require sufficiently regular nodes for adequate precision and stability. Among25

others, this also holds for the popular Radial Basis Function-generated Finite Differ-26

ences method (RBF-FD) [12]. Despite the need for quality node distributions, solving27

PDEs with strong form meshless methods utilizing radial basis functions (RBFs) has28

become increasingly popular [13], with recent uses in linear elasticity [35], contact29

problems [36], geosciences [12], fluid mechanics [19], dynamic thermal rating of power30

lines [21] and even in the financial sector [15].31

Since one of the key advantages of mesh-free methods is the ability to use highly32

spatially variable node distributions, which can adapt to irregular geometries and33

allow for refinement in critical areas, many specialized algorithms for generations of34

such node layouts have been developed. Most of them can generally be categorized35

into either mesh-based, iterative, advancing front or sphere-packing algorithms.36

The most basic way to generate such node sets is to employ existing tools and37

algorithms for mesh generation, use the generated nodes and simply discard the con-38

nectivity relations. Such approach was reasoned by Liu [23, p. 14] as: “There are39

very few dedicated node generators available commercially; thus, we have to use pre-40

∗Submitted to the editor on December 7th, 2018.
Funding: This work was supported by FWO grant G018916N, the ARRS research core funding

no. P2-0095 and Young Researcher program PR-08346.
†Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana,

Slovenia (jure.slak@ijs.si, http://e6.ijs.si/∼jslak/).
‡“Jožef Stefan” Institute, Department E6, Parallel and Distributed Systems Laboratory, Jamova

cesta 39, 1000 Ljubljana, Slovenia (gregor.kosec@ijs.si, http://e6.ijs.si/∼gkosec/).

1

This manuscript is for review purposes only.

mailto:jure.slak@ijs.si
http://e6.ijs.si/~jslak/
mailto:gregor.kosec@ijs.si
http://e6.ijs.si/~gkosec/

2 J. SLAK AND G. KOSEC

processors that have been developed for FEM.”. This is problematic for two reasons:41

it is computationally wasteful, and some authors have reported that such node lay-42

outs yielded unstable operator approximations [32], making them unable to obtain43

a solution. Besides above shortcomings, such approach is also conceptually flawed,44

since the purpose of mesh-free methods is to remove meshing from the solution pro-45

cedure altogether. To this end, other approaches were researched, often inspired by46

the algorithms for mesh generation.47

A common iterative approach is to position nodes by simulating free charged48

particles, obtaining so-called minimal energy nodes [17]. Other iterative methods49

include bubble simulation [24], Voronoi relaxation [1] or a combination of both [6].50

Iterative methods are computationally expensive and require an initial distribution.51

Additionally, the user is often required to consider trade-offs between the number of52

iterations and node quality. Despite their expensive nature, the produced distributions53

are often of high quality, which makes iterative methods useful for improving node54

distributions generated by other algorithms [11].55

The next category consists of advancing front methods, which usually begin at the56

boundary and advance towards the domain interior, filling it in the process. Löhner57

and Oñate [25] present a general advancing front technique that can be used for filling58

space with arbitrary objects. These methods, especially if generating a mesh, are often59

restricted to two dimensions [30]. Another example of a two-dimensional advancing60

front approach is inspired by dropping variable-sized grains into a bucket [11], which61

yields quality variable density node distributions and is computationally efficient in62

practice [34].63

The last category are the circle or sphere packing methods [22], which generate64

high quality node distributions, but are often computationally expensive. With inspi-65

ration from the graphics community, Poisson disk sampling [7] has become of interest.66

It can be used to efficiently generate nodes in arbitrary dimensions [5], and has just67

recently been used as a node generation algorithm [32] providing nodal distributions68

of sufficient quality for the RBF-FD method.69

To the best of our knowledge, algorithms presented in [11, 32] are currently among70

the best available. However, they have some shortcomings, namely [11] only works in71

two dimensions and [32] does not support variable nodal spacing. In this paper, we72

present an algorithm that overcomes these shortcomings. The presented algorithm73

works in two, three and higher dimensions and supports variable density distributions.74

It also has minimal spacing guarantees and is provably computationally efficient. The75

main shortcoming of the presented algorithm is that it requires discretized boundary76

as an input, which will be addressed in future work. For algorithms that can fill77

domains with varying density, conformal mappings can be used to generate nodes78

on curved surfaces by appropriately modifying the node density [11]. The paper by79

Shankar et al. [32] also includes an algorithm for generation of an appropriate bound-80

ary discretization, based on RBF geometric model and super-sampling. This paper81

does not deal with the task of generating a boundary discretization and focuses on82

discretizations of domain interiors, assuming that the boundary discretization already83

exists when required. The extension of the algorithm to curved surfaces will be ad-84

dressed in future work.85

The rest of the paper is organized as follows: in section 2 the requirements for86

node generation algorithms are discussed, in section 3 recently introduced algorithms87

for generating nodal distributions, suitable for strong form meshless methods, are88

presented, in section 4 a new algorithm is presented, in section 5 the algorithms are89

compared, and some numerical examples are presented in section 6.90

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 3

2. Node placing algorithm requirements. In this section we examine a list91

of properties that an ideal node-positioning algorithm should possess and discuss the92

rationale behind each property. The properties are loosely ordered by decreasing93

importance.94

1. Local regularity. Nodal distributions produced by the algorithm should be lo-95

cally regular throughout the domain, i.e. the distances between nodes should96

be approximately equal. This definition of local regularity is somewhat soft97

and imprecise. The requirement stems from the fact that local strong form98

meshless methods are often sensitive to nodal positions and large discrepan-99

cies in distances to the nearest neighbors or other irregularities can cause ill-100

conditioned approximations, making the distribution inappropriate for solv-101

ing PDEs. Thus, this point should be read in practice as follows: “The102

distributions produced by the algorithm should yield quality PDE solutions103

when using local strong form methods, if reasonable spacing function h was104

given.”.105

2. Minimal spacing guarantees. Computational nodes that are positioned too106

closely can severely impact the stability of some meshless methods [23]. Thus,107

provable minimal spacing guarantees are desirable. For constant spacing h,108

the condition109

(2.1) ‖p− q‖ ≥ h110

is required for any two different points p and q. For variable nodal spacing,111

the algorithm should guarantee a local lower bound for internodal spacing.112

3. Spatially variable densities. Many node distribution algorithms rely on a con-113

stant discretization step h, as do some efficient implementations [5]. Spatially114

variable nodal distributions are often required when dealing with irregular115

domains or adaptivity [36]. The algorithm should be able to generate distri-116

butions with spatially variable nodal spacing, which can be assumed to be117

given as a function h : Rd → (0,∞). The changes in variability should be118

gradual and smooth in order to satisfy the requirement of local regularity.119

The algorithm should work without any continuity assumptions for reason-120

able h (see remarks in subsection 4.3) and should see a constant step h as a121

special case of variable step h(p), not the other way around.122

4. Computational efficiency and scalability. Time complexity of the algorithm123

should ideally be linear in number of generated nodes. Quasilinear time com-124

plexity (e.g. O(N logN)) is acceptable, while time complexity that is Ω(Nα),125

for α > 1, is undesirable. The algorithm should also be computationally effi-126

cient in practice, making it feasible to use as a node generation algorithm in127

an adaptive setting.128

5. Compatibility with boundary discretization. Assume that a boundary dis-129

cretization Xb of ∂Ω conforming to the spacing function h, already exists.130

More precisely, we are given a set Xb of points such that for any two neigh-131

boring points p and q, the norm ‖p − q‖ is approximately equal to h(p) or132

h(q). The generated discretization of the whole domain Ω should seamlessly133

join with the boundary discretization. This helps to prevent problems of-134

ten encountered when enforcing boundary conditions (see [32, sec. 3.5] and135

references therein).136

6. Compatibility with irregular domains. The algorithm should inherently work137

with any irregular domain Ω, given its characteristic (i.e. “is element of”)138

This manuscript is for review purposes only.

4 J. SLAK AND G. KOSEC

function139

χΩ : Rd → {0, 1},140

χΩ(p) =

{
1, p ∈ Ω,

0, p /∈ Ω.
(2.2)141

142

Any algorithms that fill axis- or otherwise oriented bounding boxes, or pro-143

duce nodes in a certain non-constant space outside Ω are seen as impaired144

in this aspect. Desirably, as the volume of Ω decreases, no matter what the145

shape of Ω is, so should the number of operations required by the algorithm.146

7. Dimension independence. The algorithm should ideally be formulated for a147

general (low) dimension d without any special cases. One-, two- and three-148

dimensional versions of the algorithm should also allow a single general im-149

plementation.150

8. Direction independence. The produced distributions and running time of the151

algorithm should be independent of the orientation of the domain Ω or the152

coordinate system used.153

9. No free parameters. The algorithm should aim to minimize the number of free154

or tuning parameters and work well for all domains and density functions,155

without any user intervention. The aim is to require algorithms to be robust156

and work “out of the box”. Any free parameters should be explored and157

well understood, default values should be recommended, and varying the158

parameters should not drastically change the algorithm’s behavior.159

10. Simplicity. Algorithms with simpler formulations and implementations are160

preferred.161

3. State of the art algorithms. To the best of our knowledge, recently pub-162

lished algorithms by Fornberg and Flyer [11] and Shankar et al. [32] best satisfy the163

requirements described in section 2 and are hence used as a base for further develop-164

ment. Both algorithms are first briefly described in the following sections.165

3.1. Algorithm by Fornberg and Flyer. The node positioning algorithm by166

Fornberg and Flyer [11] was published in 2015 in a paper titled “Fast generation of 2-D167

node distributions for mesh-free PDE discretizations”. The algorithm in its base form168

constructs discretizations for two dimensional axis-aligned rectangles and is presented169

as Algorithm 3.1. In the following discussion, the first letters of the authors’ surnames170

(FF) will be used to refer to the algorithm.171

Initially, the lower side of the rectangle is filled with nodes, spaced according to172

the given spacing function h. The algorithm works as an advancing front algorithm,173

starting from y = ymin and advancing towards y = ymax. In each iteration the lowest174

(min(y)) candidate p from the current list of potential node locations is found, removed175

from potential candidates and added to the final list. New candidates are spaced176

accordingly away from p and are inserted into the list of potential node locations.177

The iteration continues until y = ymax limit is reached.178

For irregular domains Ω the authors recommend to run the above algorithm for179

the bounding box of Ω, denoted bb(Ω), and later discard the nodes outside Ω. If180

present, the boundary discretization is superimposed onto the discretization generated181

by Algorithm 3.1. Additionally, internal nodes whose closest boundary node p is less182

than h(p)/2 away are discarded as well.183

A few local “repel algorithm” iterations are recommended in the vicinity of the184

boundary to improve the quality. This part will be omitted from consideration, as it185

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 5

Algorithm 3.1 Node positioning algorithm by Fornberg and Flyer.

Input: Box [xmin, xmax]× [ymin, ymax], a function h : [xmin, xmax]× [ymin, ymax]→ (0,∞) and
n ∈ N.
Output: An array of points in [xmin, xmax]× [ymin, ymax] distributed according to h.

1: function FF(xmin, xmax, ymin, ymax, h, n)
2: pts← an empty array of points . This is the final array of points.
3: candidates← points spaced according to h from xmin to xmax at y coordinate ymin .

This variable represents potential point locations, candidates for actual points that will
be in the final result.

4: (ymin, imin)← findMinimum(candidates) . Find minimal point with respect to y
5: while ymin ≤ ymax do coordinate and return its value and index.
6: p← candidates[imin]
7: append p to pts
8: remove points closer than h(p) from candidates
9: find nearest remaining points in candidates to the left and to the right of p

10: add n new points to candidates, equispaced on the circular sector with center p,
spanning from the nearest left to the nearest right point

11: (ymin, imin)← findMinimum(candidates)
12: end while
13: return pts
14: end function

is an iterative improvement scheme that can be performed equivalently on any node186

distribution generated by any other algorithm [19]. The behavior of FF near the187

boundaries is thus excluded from analysis, as it is designed to work with the “repel188

algorithm”.189

3.1.1. Time complexity analysis. The complexity of the Algorithm 3.1 is not190

given by the authors and is hence derived in this section. Denote the number of191

generated nodes with N and the size of array candidates at the start of iteration i192

with si. Everything up to while loop on line 5 is negligible compared to the main193

loop and takes O(1) time for creation of lists and O(s0) for candidate generation and194

minimum extraction. In the main loop, lines 6–7 consume (amortized) constant time195

and lines 8–11 take time proportional to the size of candidates array, i.e. O(si) time.196

Total time complexity is therefore197

(3.1) TFFbox = O(1) +O(s0) +

N∑
i=1

(O(1) +O(si)) = O(N max
1≤i≤N

si) := O(NS),198

where S is defined as S = max1≤i≤N si.199

Precisely analyzing si and S is difficult for general function h. However, for a200

fixed square box and constant spacing h it holds that N = Θ(1
h2) and si = Θ(n 1

h) =201

Θ(n
√
N). The time complexity in this case is hence O(nN

√
N).202

For irregular domains Ω additional work is required. If N denotes the final num-203

ber of nodes, the algorithm will generate approximately | bb Ω|
|Ω| N nodes in case of204

constant h. Superimposing the boundary discretization with Nb nodes and testing all205

generated nodes for proximity takes O(Nb logNb + | bb Ω|
|Ω| N logNb) time, for building206

and querying the k-d tree of boundary nodes. These terms are dominated by the node207

generation in the interior and the time complexity of the algorithm by Fornberg and208

This manuscript is for review purposes only.

6 J. SLAK AND G. KOSEC

Flyer for generating node distributions for irregular domains for constant spacing h is209

(3.2) TFF = O

(
n

(
|bb Ω|
|Ω|

N

)1.5
)
.210

For variable spacing, the overhead of generated nodes due to the irregularity of Ω211

and the advancing front size have to be evaluated using integrals, making the time212

complexity expression somewhat more complicated and less illustrative.213

3.1.2. Implementation notes. Authors provided a Matlab implementation214

of Algorithm 4.1 in the Appendix ot their article [11]. This implementation has been215

translated to C++ using the Eigen matrix library [16] and the nanoflann library216

for k-d trees, provided by Blanco and Rai [4]. The translation is mostly faithful to217

the original with a few inefficiencies removed. The C++ implementation is approx-218

imately 6 times faster than the original Matlab implementation (both tested on the219

same computer).220

3.2. Algorithm by Shankar, Kirby and Fogelson. In 2018, Shankar, Kirby221

and Fogelson published a node generation algorithm in a paper titled “Robust node222

generation for meshfree discretizations on irregular domains and surfaces” [32]. Their223

node generation algorithm is designed to work on surfaces and in 3-D, however it224

does not support variable nodal spacing. We will focus our attention on the part225

that generates discretizations of the domain interior, when boundary discretization226

has already been constructed. The main part of the node generation for the interior227

is based on Poisson disk sampling of the oriented bounding box obb(Ω) of domain228

Ω, described in a paper by Bridson [5]. The relevant part of the node generation229

algorithm is presented as Algorithm 3.2. In the following discussion the first letters230

of the authors’ surnames (SKF) will be used to refer to the algorithm.231

The algorithm starts by taking points on the boundary and their corresponding232

outward unit normals and shifting them towards the domain’s interior by h. An233

oriented bounding box (OBB) of the shifted boundary points is then constructed234

using Principal Component Analysis (PCA) [18] as described by Dimitrov et al. [10].235

The main part of the algorithm, spanning lines 3 to 24, is the Poisson disk sampling236

algorithm, which generates the internal discretization of the oriented bounding box237

using a background grid G as a spatial search structure. Finally, points outside the238

domain, bounded by X , are discarded. Here, a k-d tree is used to test all candidates239

for inclusion by testing against the outward normal of their closest boundary point.240

The remaining points along with the original boundary discretization constitute the241

final discretization. As an inward-shifted array of points was used to construct the242

internal discretization, spacing of at least h is guaranteed.243

3.2.1. Time complexity analysis. Authors themselves provide the time com-244

plexity analysis of the algorithm. Translated to our notation, the running time of the245

interior fill algorithm is246

(3.3) TSKF = O

(
n
| obb(Ω)|
|Ω|

N

)
.247

This represents the running time of the Poisson disk sampling. The PCA analysis248

and tree construction are linear or log-linear in Nb and are thus dominated by the249

Poisson disk sampling.250

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 7

Algorithm 3.2 Node positioning algorithm by Shankar, Kirby and Fogelson.

Input: Domain Ω and its dimension d.
Input: A nodal spacing step h > 0.
Input: A list of boundary points X of size Nb, moved h towards domain interior.
Output: A list of points in Ω distributed according to spacing function h.

1: function SKF(Ω, h, X , n)
2: obb← OBB(X) . Generate an oriented bounding box of X using PCA.
3: G← d-dimensional grid of size h/

√
d of −1. . Maps points to their indices.

4: p← uniform random node inside obb
5: G[index(p)]← 0 . index returns d-d index of p, and its sequential index is 0.
6: S ← [p] . Resulting list of accepted samples.
7: A← {0} . Set of active indices.
8: while A 6= ∅ do
9: i← randomElement(A) . Get a uniform random element of A.

10: b← false . Indicates if any valid points were generated.
11: for j ← 1 to n do
12: p← uniform random point in annulus with center S[i] and radii h and 2h
13: if not outside(p, obb) and not tooClose(p, h,G, S) then
14: Add(A, size(S)) . Add sequential index of p to active set A.
15: G[index(p)]← size(S) . Mark grid cell taken by p as occupied.
16: Append(S, p) . Append p to the list of accepted samples.
17: b← true . Flag that an accepted sample was generated.
18: break for
19: end if
20: end for
21: if b = false then . Point S[i] failed to generate any accepted samples.
22: remove(A, i) . Point with index i is removed from the active set.
23: end if
24: end while
25: T ← kdtreeInit(X) . Initialize spatial search structure on points X .
26: S ← Filter(T, S) . Discard points outside the region, bounded by X .
27: return S
28: end function

3.2.2. Implementation notes. There is a small difference between the algo-251

rithm as described by Shankar et al. [32] and Bridson [5]. The Bridson version gener-252

ates up to n candidates for each point and stops as soon as one candidate is accepted.253

The version in the SKF algorithm generates all n points and adds all accepted candi-254

dates. Algorithm 3.2 uses the original, Bridson version and to obtain the SKF version,255

one needs to remove the break statement on line 18. Since the authors of SKF al-256

gorithm claim to use a faithful implementation of algorithm as presented by Bridson257

and only list the algorithm for completeness, we decided to use the Bridson version in258

our tests. All matrix and tensor operations were again implemented using the Eigen259

matrix library and the k-d tree operations were implemented using nanoflann.260

4. New node placing algorithm. From the discussion presented in section 3261

it is clear that although state of the art placing algorithms provide a solid spatial262

discretization methodology for strong form meshless methods, there is still room for263

improvements, especially in the generalization to higher dimensions, flexibility regard-264

ing variable nodal density, and treatment of irregular domains. Improving upon the265

work of Fornberg and Flyer [11] and Shankar et al. [32], we propose a new algorithm266

This manuscript is for review purposes only.

8 J. SLAK AND G. KOSEC

that overcomes some of limitations of FF and SKF algorithms. We will refer to the267

proposed node placing algorithm as PNP in the rest of the paper.268

The PNP algorithm is, similarly to SKF, based on Poisson disk sampling. Poisson269

disk sampling has certain stochastic properties, such as the fact that it produces a270

“blue noise distribution” that is an excellent fit for graphical applications like dither-271

ing [5, 7]. In context of PDE solution procedure a slightly different distribution is272

required that primarily follows appropriate spacing and regularity criteria. There-273

fore, the PNP algorithm deviates from the original Poisson disk sampling in order to274

effectively produce tightly packed regular distributions needed in solution of PDEs.275

The PNP algorithm begins either with a given non-empty set of “seed nodes” or276

with an empty domain. In the context of PDE discretizations, some nodes on the277

boundary are usually already known and can be used as seed nodes, possibly along278

with additional nodes in the interior. If algorithm starts with no nodes, it adds a279

seed node randomly within the domain. Before the main iteration loop, seed nodes280

are put in a queue, waiting to be processed. In each iteration i, a node pi is dequeued281

and expanded, by generating a set of candidates Ci, which are positioned on a sphere282

with center pi and radius ri, where ri is obtained from the function h, ri = h(pi).283

Candidates that lie outside of the domain or are too close to already existing nodes are284

rejected and remaining candidates are enqueued for expansion. Node pi is accepted285

as a domain node and will not be touched any more. The iteration continues until286

the queue is empty. Figure 1 demonstrates a core operation of the algorithm, i.e. the287

expansion, with possible selection of new candidates and the rejection process.288

Fig. 1. Generation and selection of new candidates in the proposed algorithm.

Figure 2 illustrates the execution of the algorithm. The first panel shows an initial289

setup on a unit square. For demonstration purposes, the nodes in the initial boundary290

discretization along with a single node in the interior were chosen as the seed nodes.291

The subsequent panels in Figure 2 illustrate the progression of the algorithm. The292

discretization grows from the initial nodes inwards towards the empty interior, until293

no more acceptable candidates can be found due to already existing nodes. The294

advancing front nature of the algorithm can be seen, however the front itself is not a295

straight line as in FF.296

An efficient implementation with an implicit queue contained in the array of final297

points and the k-d tree spatial structure [29] is presented as Algorithm 4.1. In practice,298

the comparison on line 10 should be done with some tolerance, due to inexactness of299

the floating point arithmetic, i.e. the line should in practice read ‖ci,j−ni,j‖ ≥ (1−ε)ri300

for e.g. ε = 10−10.301

The algorithm includes generation of new candidates in line 7 that needs to be302

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 9

Fig. 2. Run-time progress of the proposed algorithm (left to right). Unit square [0, 1]2 was
sampled with nodal spacing function h(x, y) = 0.015 (1 + x+ y).

Algorithm 4.1 Proposed node positioning algorithm.

Input: Domain Ω and its dimension d.
Input: A nodal spacing function h : Ω ⊂ Rd → (0,∞).
Input: A list of starting points X , this includes the possible boundary discretization and
seed nodes.
Output: A list of points in Ω distributed according to spacing function h.

1: function PNP(Ω, h, X)
2: T ← kdtreeInit(X) . Initialize spatial search structure on points X .
3: i← 0 . Current node index.
4: while i < |X | do . Until the queue is not empty.
5: pi ← X [i] . Dequeue current point.
6: ri ← h(pi) . Compute its nodal spacing.
7: for each ci,j in candidates(pi, ri) do . Loop through candidates.
8: if ci,j ∈ Ω then . Discard candidates outside the domain.
9: ni,j ← kdtreeClosest(T, ci,j) . Find nearest node for proximity test.

10: if ‖ci,j − ni,j‖ ≥ ri then . Test that ci,j is not too close to other nodes.
11: append(X , ci,j) . Enqueue ci,j as the last element of X .
12: kdtreeInsert(T, ci,j) . Insert ci,j into the spatial search structure.
13: end if
14: end if
15: end for
16: i← i + 1 . Move to the next non-expanded node.
17: end while
18: return X
19: end function

further defined. Three options are proposed and evaluated below:303

1. Random candidates: The candidate set Ci in each iteration consists of n304

random points chosen on a d-dimensional sphere with center pi and radius ri,305

reminiscing the original Poisson disk sampling.306

2. Fixed pattern candidates: The candidate set Ci in each iteration consists307

of a fixed discretization of a unit ball, translated to pi and scaled by ri.308

The discretization of a unit ball in 2-D is obtained simply by Cunit(k) =309

{(cosϕ, sinϕ); ϕ ∈ {0, ϕ0, 2ϕ0, . . . , (k − 1)ϕ0}, ϕ0 = 2π
k }. In d-dimensions,310

the discretization of a ball with radius r is obtained using d-dimensional311

spherical coordinates and recursively discretizing a d− 1 dimensional ball.312

Using e.g. k = 6 results in 14 candidates in 3-D, and using k = 12 results313

in 48. In 3-D, the parameter k represents the number of points lying on the314

great circle.315

3. Randomized pattern candidates: The candidate set Ci is obtained from the316

This manuscript is for review purposes only.

10 J. SLAK AND G. KOSEC

fixed set in point 2, by applying a random rotation to all the points.317

The three ways of candidate generation were used to produce node distributions318

on a unit square, shown in Figure 3. Different types of candidate generation are ab-319

breviated as PNP-R, PNP-F and PNP-RF for random, fixed pattern, and randomized320

fixed pattern variants, respectively.

Fig. 3. Comparison of different types of candidate generation when filling the unit square [0, 1]2

with h = 0.025.

321

The fixed pattern candidate generation algorithm stands out, as the gaps where322

the advancing fronts of nodes joined are clearly visible. Due to reproduction of space-323

efficient hex-packing it also has the most nodes. Other two algorithms generate visu-324

ally similar distributions, but a higher value of n needed to be used for the randomized325

version to produce similar results. We decided to use the randomized fixed pattern326

for candidate distribution, as it produces results similar to the random version with327

lower time complexity.328

The presented algorithm has a few differences compared to the original Poisson329

disk sampling. First and foremost, the algorithm works with variable nodal spacing330

and is able to generate distributions with spatially variable densities. Each node is331

used only once to generate the new candidates. Third, the candidates are generated332

uniformly on the sphere with random offsets, as opposed to being generated at random333

on an annulus. This packs the candidates more tightly and reduces the gaps. It also334

improves running time, as candidates better cover the unoccupied space at the cost335

of removing the stochastic properties of the sampling, which are not relevant to the336

PDE solutions. Fourth, the candidates that are outside Ω are immediately discarded,337

only continuing the generation of candidates actually inside Ω, once again improv-338

ing execution time. More details about impact of above differences are investigated339

in section 5 and can be observed in Figure 4 and Figure 11.340

PNP algorithm exhibits gaps between nodes where the advancing fronts meet341

in Figure 3, however the gaps are never large enough that another node could be342

placed inside and are even emphasized visually is the marker size is comparable to343

nodal spacing (see Figure 4). The exact place where the advancing fronts meet is344

dependent on the position of the seed nodes. If the algorithm is run from a seed node345

in the domain interior instead of from the boundary nodes, these types of front do346

not appear throughout the domain, but gaps form at the boundary instead. With347

PDE discretization in mind it is less problematic to have them appear in the domain348

interior, and this is how the algorithm is run for the rest of the paper.349

Additionally, the algorithm can be easily modified to return the indices of the350

nodes where the fronts meet. For each node i, we can check if any candidates generated351

from it are accepted and added on line 11. If that is not the case, index i can be352

added to the list of terminal nodes, which is returned after the algorithm finishes.353

Regularization can then be performed on those or neighboring nodes, if necessary.354

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 11

4.1. Time complexity analysis. Output sensitive time complexity is straight-355

forward to analyze. Let us denote the number of given starting points in X with356

Nb = |X |. Is is assumed that Nb is significantly less than N , e.g. Nb = O(N
d−1
d) as is357

the case when X represents the boundary discretization. The initial construction of358

the spatial index costs O(Nb logNb) and initialization of other variables costs O(1).359

The number of iterations of the main loop is equal to the number of generated points,360

denoted by N . A total of n candidates are generated in i-th iteration and, in the worst361

case, two k-d tree operation on the tree with at most i + Nb nodes are performed,362

taking O(log(i + Nb)) time for each candidate. All other operations are (amortized)363

constant. Thus the total time complexity of the algorithm is equal to364

(4.1) TPNP = O(Nb logNb) +O(1) +

N∑
i=1

[nO(log(i+Nb)) +O(1)] = O(nN logN).365

The above analysis shows that the time complexity of the algorithm is dominated366

by the spatial search structure used, which adds an undesired factor logN . If h is367

assumed to be constant, the algorithm could be sped up by using a uniform-grid based368

spatial search structure, similar to one used in Algorithm 3.2. Using such a search369

structure requires a rectangular grid, usually with spacing h/
√
d, such that there is370

at most one point per grid cell. When constructed on the rectangle obb(Ω), the time371

complexity of its allocation and initialization is proportional to the number of cells,372

which leads to time complexity373

(4.2) O

(
| obb Ω|
(h/
√
d)d

)
= O

(
| obb Ω|
|Ω|

N

)
,374

using the fact that for constant h the number of nodes is N = Θ(|Ω|/hd).375

The subsequent insertions and queries in the grid are all O(1), thus improving376

the time complexity of the algorithm for constant h to377

(4.3) TPNP-grid = O

(
| obb Ω|
|Ω|

N + nN

)
.378

Furthermore, the factor | obb Ω|
|Ω| can be eliminated by using a hash map of cells instead379

of a grid; however, the practical benefit of that approach shows only with very irregular380

domains.381

Using the background grid for a spatial structure is feasible even with moderately382

spatially variable h, by allowing more than one point per cell. For even higher vari-383

ability, hierarchical grids could be used, but a k-d tree-like search structure is needed384

to cover all cases. For a specific use case, k-d tree can be replaced with any spatial385

search structure, as desired by the user, obtaining time complexity386

(4.4) TPNP-general = O(P (N) +Nn(Q(N) + I(N))),387

where P is the precomputation/initialization time used by the data structure on N388

nodes, Q(N) is the time spent on a radius query and I(N) is the time spent for new389

element insertion.390

4.2. Implementation notes. As in the previous two algorithms, all matrix and391

tensor operations were implemented using the Eigen matrix library and the k-d tree392

operations were implemented using nanoflann.393

This manuscript is for review purposes only.

12 J. SLAK AND G. KOSEC

4.3. Remarks. Algorithm 3.1 and Algorithm 4.1 do not necessarily terminate,394

depending on the nodal spacing function used. The integral395

(4.5) N(h) :=

∫
Ω

dΩ

h(p)d
,396

approximately measures the number of points required and can be infinite even if397

function h is smooth and positive on Ω. Simply taking a one dimensional example398

Ω = (0, 1) and h(x) = 0.1
x is enough to trick the algorithm into sampling indefinitely.399

As a precaution to that and more practically, as a memory limit, the maximal number400

of points Nmax can be specified by the user and the algorithm can be terminated401

prematurely.402

5. Satisfaction of the requirements. This section compares all three node403

placing algorithms, namely FF (Algorithm 3.1), SKF (Algorithm 3.2) and PNP (Al-404

gorithm 4.1). The results of the comparison presented in this section are summarized405

at the end in Table 3. The following subsections roughly follow the requirements406

postulated in section 2.407

5.1. Local regularity. The most important feature that an algorithm should408

possess is regularity of the distributions. This property is initially tested visually,409

by observing plots of nodal distributions, which is feasible only in 2-D. Among other410

things, local regularity states also that large discrepancies in distances to nearest411

neighbors are not desired. This can be tested in arbitrary dimensions, by observ-412

ing distances to nearest neighbors, using various statistics and histogram plots to413

determine their properties. Finally, accuracy and stability of solutions of PDEs on414

generated node distributions can be compared to fully determine the quality of dis-415

tributions generated by the three algorithms.416

We begin our analyses by comparing the three algorithms on the unit square417

[0, 1] × [0, 1]. Node distributions were generated using constant density h = 0.025418

and the expected number of nodes is N(h) = 1600. Node distribution for all three419

algorithms are shown in Figure 4. Parameters n for various algorithms were chosen420

as recommended in their respective papers (n = 5 for FF and n = 15 for SKF), with421

n = 15 also being used for the algorithm presented in this paper.422

Fig. 4. Node distributions on the unit square [0, 1]2 with h = 0.025 generated with different
algorithms. Rightmost figure shows the enlarged PNP distribution in the center where the advancing
fronts meet.

SKF algorithm generated substantially less nodes than the other two. It also has423

significant gaps between the boundary and internal nodes as well as visually more424

irregular distributions. FF algorithm generates a smooth distribution without any425

significant defects in the interior. PNP algorithm exhibits gaps on diagonals, where426

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 13

advancing fronts from the sides have merged, but behaves better near the boundaries.427

The part of the distribution where the advancing fronts meet is shown in rightmost428

panel in Figure 4 to give a better perspective on the size of the gaps.429

In terms of the number of nodes, FF gives the best result, since it produced only430

45 nodes less than expected, followed by PNP that produces 128 less nodes. The431

worst performance is demonstrated by SKF with deficiency of 573 nodes.432

To analyze local regularity, distances to nearest neighbors are observed in the433

interior of the domain. For each node pi at least 2h away from the boundary, its c434

closest neighbors (excluding i itself) are found and denoted by pi,j for j = 1, . . . , c with435

distances to these neighbors computed as di,j = ‖pi − pi,j‖. Figure 5 shows average436

distances of each node to its three closest neighbors, i.e. the plot of d̄i = 1
3

∑3
j=1 di,j437

for each considered node pi. Along with the average distance, the interval [dmin
i , dmax

i]438

is shown, where439

dmin
i = min

j=1,2,3
di,j , dmax

i = max
j=1,2,3

di,j .440

Fig. 5. Average distances to the nearest neighbors for internal nodes. Error bars show minimal
and maximal distances to three nearest neighbors.

FF and PNP algorithms show similar behavior, with average distance being close441

to h with little variability between distances to closest neighbors. FF algorithm has a442

few nodes a bit closer than h together, but keeps the internodal distance closer to h and443

with less spread than PNP. SKF algorithm performs worse with most of its distances444

to c nearest neighbors being on average closer to 0.03 and with a significantly larger445

spread. The numerical results representing these quantities are shown in Table 1.446

The first two columns of the table demonstrate that the prescribed nodal spacing h is447

much better obeyed in PNP and FF algorithms, and the last column shows that the448

average spread of the internodal distances in SKF algorithm is more than two times449

greater than in FF and PNP.450

Besides distances to the nearest neighbors, we can also take a look at the empty451

space between the generated nodes. This can be done by computing the Voronoi452

diagram vertices vj that lie inside the domain and observing the diameters sj of the453

largest circles centered at vj not containing any nodes. Formally, sj are given as454

(5.1) sj = 2 min
i
‖vj − pi‖.455

Note that the largest value of sj is the diameter of the largest empty circle. The basic456

statistics os sj for the three considered algorithms are presented in Table 1.457

Additional insight is offered with histograms of distances to three nearest neigh-458

bors (Figure 6). As expected, the largest count is in the bin around h. PNP and459

SKF algorithms have no distances in bins below h, however the FF algorithm does460

put a small number of nodes at a distance less than h (see subsection 5.2). The ir-461

regularities visible in the SKF algorithm distribution in Figure 4 are reflected in the462

histogram. The histogram has a much heavier tail than PNP and FF histograms,463

This manuscript is for review purposes only.

14 J. SLAK AND G. KOSEC

Table 1
Numerical quantities related to internodal distance and hole regularity.

alg. mean d̄i std d̄i mean(dmax
i − dmin

i) min sj mean sj max sj

FF 0.02575 0.00065 0.00208 0.028071 0.03438 0.04352

SKF 0.03042 0.00275 0.02894 0.029737 0.04470 0.07008

PNP 0.02604 0.00086 0.00276 0.028949 0.03568 0.05164

with far less nodes exactly at distance h. PNP and FF histograms show more tightly464

packed distributions with slimmer tails, however the tail of PNP histogram is a bit465

longer and more spread out.466

Fig. 6. Histogram of distances to three nearest neighbors for node distributions on unit square
[0, 1]2 with h = 0.025.

Next, the PNP and SKF algorithms are compared in three dimensions. The unit467

cube [0, 1] × [0, 1] × [0, 1] is filled with a constant density h = 0.05, starting from468

the boundary in the PNP case. The expected number of nodes is N(h) = 8000.469

Histograms of distances to the closest c = 6 nodes for internal nodes are shown470

in Figure 7 for PNP and SKF algorithms.471

Fig. 7. Histogram of distances to six nearest neighbors for internal nodes of distributions on
unit cube [0, 1]3 with h = 0.05.

The histograms behave similarly to their 2-D counterparts. SKF algorithm again472

generated significantly less nodes than the PNP algorithm. PNP has a large number473

of neighbors at distance h and a lighter tail, while the distances in SKF case are more474

spread out.475

Further visual confirmation of regularity for variable density cases is demonstrated476

in subsection 5.3 (see Figure 9, Figure 10 and Figure 8), and more importantly, by477

the solutions of PDEs on generated node sets [13, 32, 35], thus confirming sufficient478

local regularity. Additionally, section 6 considers sample solutions to PDE examples479

and discusses accuracy, eigenvalue stability and convergence properties. Our experi-480

ments have shown that SKF distributions cause stability problems when using small481

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 15

stencils, such as e.g. closest 7 nodes. The likely cause of this instability is higher node482

irregularity in SKF node distributions. PNP and FF distributions had no problems483

with small stencils.484

5.2. Minimal spacing requirements. Point 2 discusses minimal spacing guar-485

antees. Provable minimal spacing guarantees are very desirable, since nodes that are486

positioned too closely can effect the stability of strong form methods. FF algorithm487

does not strictly respect the spacing h. When running the algorithm with h = 0.005488

on a unit square [0, 1]2, some pairs of points in the domain interior were closer than489

0.95h. Although the violations do not appear to be significant and do not affect the490

quality in practice, no bound of form ‖pj − pi‖ ≥ αh, for α > 0 and i 6= j is known.491

SKF algorithm enforces the spacing between nodes to be greater than or equal to492

h in the interior and on the boundary, both times leveraging specialized spatial search493

structures. The algorithm thus has the usual minimal spacing guarantee for constant494

nodal spacing:495

(5.2) ‖p− q‖ ≥ h496

for p 6= q.497

Similar argument can be made for PNP algorithm: each new candidate is checked498

using a k-d tree against all previous ones, proving the minimal spacing guarantee for499

constant h. For variable h, the above argument yields the bound500

(5.3) ‖pi − pj‖ ≥ min
p∈Ω

h(p)501

for i 6= j. This bound is dependent on a global property of h and can be very502

coarse. More precise, local bounds when considering spatially variable distributions503

are defined by Mitchell et al. [28]. If an ordered list of points, numbered 1 to N , is504

considered, then the minimal spacing guarantee, called the empty disk property, is505

satisfied if506

(5.4) ‖pi − pj‖ ≥ f(pi, pj),507

for 1 ≤ i < j ≤ N , where f is a function evaluated at previously accepted node pi508

and new candidate pj . Four basic variations were proposed, based on which point’s509

spacing is taken into account when positioning new candidates:510

• Prior-disks: f(pi, pj) = h(pi),511

• Current-disks: f(pi, pj) = h(pj),512

• Bigger-disks: f(pi, pj) = max{h(pi), h(pj)},513

• Smaller-disks: f(pi, pj) = min{h(pi), h(pj)}.514

The PNP procedure satisfies neither of this variations. The following proposition515

establishes a version of the empty disk property (5.4) of PNP.516

Preposition 5.1. Let the points pi, i = 1, . . . , N, be a list of nodes generated517

by Algorithm 4.1, where first Nb nodes were given as initial nodes. The minimal518

spacing inequality519

(5.5) ‖pk − pj‖ ≥ h(pβ(j))520

holds for all Nb ≤ k < j < N . The function β represents the predecessor function.521

Proof. Algorithm 4.1 begins with Nb initial nodes. Each candidate is generated522

from a unique existing node, thus giving rise to a predecessor-successor relation. Pre-523

decessor function β : {Nb + 1, . . . , N} → {1, . . . N} for an accepted candidate pj that524

This manuscript is for review purposes only.

16 J. SLAK AND G. KOSEC

was generated from pi is defined as β(j) = i. Note that predecessors for the first Nb525

initially given points are not defined.526

Consider an accepted candidate pj , generated from a node pi. The candidate was527

generated at a distance h(pi) from pi, thus satisfying the equality528

(5.6) ‖pi − pj‖ = h(pi) = h(pβ(j)).529

In particular, this means that Algorithm 4.1 satisfies the prior-disks property for530

predecessor-successor pairs. The distance d to the nearest neighbor of pj among531

already accepted nodes is then found and if d ≥ h(pi), the candidate is accepted.532

This means that the following inequality holds for all k < j:533

(5.7) ‖pk − pj‖ ≥ d ≥ h(pi) = h(pβ(j)),534

establishing the desired property.535

5.3. Spatial variability. An important feature of FF and PNP algorithms is536

the ability to generate node sets with variable nodal spacing on irregular domains.537

SKF algorithm does not support variable nodal spacing and is excluded from this538

analysis. As an example, the image shown in top left corner of Figure 8 is chosen as a539

source for the nodal spacing function h. The image is a modified version of an image540

showing stress distribution in a plastic spoon under a photoelasticity experiment [2].541

It features an irregular domain and rapidly varying dark and light regions, which542

presents a more challenging case usually found in PDE discretizations. The conversion543

from gray levels to the nodal spacing function is the same as used by Fornberg and544

Flyer [11]. Normalization factor h0 = 1.5 was used to adjust the number of nodes for545

maximal visibility. The nodal spacing function h is thus constructed from the image546

as547

(5.8) h(x, y) = h0 s

(
Ibwxc,bwyc

255

)
, s(g) = 0.002 + 0.006 g + 0.012 g8,548

where Iij represents the grey level, ranging from 0 to 255, of the pixel in the i-th549

row and the j-th column of the image and w is the width of the image. The node550

distributions obtained by filling the spoon shape with aforementioned density using551

PNP and FF algorithms are shown in the first row of Figure 8. The bottom row552

shows an enlarged portion of the image and the corresponding distributions, so that553

individual nodes are visible for easier visual assessment.554

Both generated node sets conform to the supplied nodal spacing function. The555

total number of nodes is similar in both cases, with PNP having fewer nodes than FF.556

Enlarged portions show that PNP and FF distributions are locally regular, visually557

similar and respect the variable nodal spacing function h.558

Further examples of 2D and 3D spatially variable distributions are shown in Fig-559

ure 9. The 2D domain is a non-convex polygon with a hole and the 3D domain is a560

spherical shell with one of the octants cut out. Figure 10 displays successive enlarge-561

ment of a nodal distribution used to solve a contact problem [36], which illustrates562

the graded nature of the refinement and its local regularity in the most zoomed panel.563

5.4. Computational efficiency and scalability. Point 4 concerns computa-564

tional efficiency in two aspects: theoretical time complexity and execution time.565

The time complexity of the FF algorithm is proven in subsection 3.1.1 and given566

by (3.2)567

(5.9) TFF = O

(
n

(
|bb Ω|
|Ω|

N

)1.5
)

568

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 17

Fig. 8. Illustration of variable density node sampling, with the nodal spacing function h obtained
from the image on the left using (5.8). Enlarged variants are present to better asses the node quality.

Fig. 9. Example of generated variable density distributions for non-convex domain with non-
trivial boundaries.

for constant spacing h and is similar for variable spacing. There are no immediate ben-569

efits if h is assumed to be constant. The SKF algorithm benefits from the assumption570

of constant h and has time complexity given by (3.3) in subsection 3.2.1:571

(5.10) TSKF = O

(
obb(Ω)|
|Ω|

nN

)
.572

PNP algorithm has time complexity573

(5.11) TPNP = O(nN logN),574

This manuscript is for review purposes only.

18 J. SLAK AND G. KOSEC

Fig. 10. Discretisation of a contact region and successive enlargements.

as analyzed in subsection 4.1. If h is assumed constant, the time complexity is further575

reduced to O(|obb(Ω)|
|Ω| N +nN) using grid spatial search structure and even to O(Nn)576

using hashing for irregular domains.577

PNP algorithm is better for a domain irregularity factor compared to both SKF578

and FF algorithms. In case of constant h it shares the same remaining factor Nn579

with SKF and for variable densities it is strictly better than FF.580

Next, we compare the running time and scalability of proposed algorithms. All581

time measurements were done on a laptop computer with an Intel(R) Core(TM)582

i7-7700HQ CPU @ 2.80GHz processor and 16 GB DDR4 RAM. Code was compiled583

using g++ (GCC) 8.1.1 for Linux with -std=c++11 -O3 -DNDEBUG flags.584

Note that we implemented all three algorithms in the same manner with great585

emphasis on optimization of the code in order to provide a fair comparison.586

All algorithms were run on a unit square [0, 1]2 with the same parameters as587

in subsection 5.1. The nodal spacing function h was varied as h = 1
n , for such n that588

the total number of nodes N reached approximately N = 106. Each run was executed589

10 times and the median time was taken. The results are shown in Figure 11.590

Fig. 11. Execution times for the considered algorithms when filling [0, 1]2 with successively
smaller densities. Each data point represents a median of 10 runs. Standard deviation of run times
from the median was below 3% in all cases. Value k in the legend indicates slope of the line.

In 2-D the FF algorithm performs better than the others for small N . This is591

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 19

also expected, as the algorithm generates nodes in a much simpler (and deterministic)592

way than the other two approaches. SKF algorithm is next in terms of performance,593

with its grid-based search structure. PNP algorithm is the slowest, due to the k-d594

tree search structure. Nonetheless, 106 nodes are generated in 5 to 10 seconds, which595

is significantly less than the time that would be spent on solving the PDE on these596

nodes.597

The trends for large N coincide with the theoretical time complexities with SKF598

being an O(N) algorithm, PNP being an O(N logN), and FF being O(N
√
N).599

PNP was also run using the same grid search structure as SKF, denoted in Fig-600

ure 11 by “PNP-grid”. It shows a significant improvement over the use of k-d tree601

spatial search structure and agrees with the predicted linear time complexity. This602

also shows that PNP algorithm itself is about three times faster than SKF, when603

compared using the same search structure and the same number of candidates. PNP604

with a gird-based structure also comes close to FF for smaller N and constant h.605

Execution time of PNP and SKF algorithms was tested also in 3-D and the results606

are equivalent.607

Additionally, we analyze the execution time of the three algorithms when dealing608

with irregular domains. Both FF and SKF algorithms do no have time complexity609

proportionate to |Ω|, but rather to the volume of its (oriented) bounding box, which610

can be arbitrarily larger. In practice this means that PNP algorithm inherently ben-611

efits in execution time by a factor of | bb(Ω)|
|Ω| .612

This is illustrated in Figure 12, which shows the execution time of the considered613

algorithms when filling increasingly “emptier” domains614

(5.12) Ω(α) = [0, 1]2 \
(1

2
− α, 1

2
+ α

)2

.615

Domains Ω(α) are chosen in such a way that the bounding box is equal to [0, 1]2616

for all α and that the limit of the ratio between the bounding box and domain volume617

approaches zero as α approaches 1/2.618

Fig. 12. Execution time when filling domains Ω(α) which have decreasing area.

The difference in the behavior of execution time is substantial and shows that619

both versions of PNP really scale with volume of Ω, while the execution time of FF620

and SKF remains almost constant, as predicted by time complexity analysis. This621

means that around 30 000 nodes can be generated, for less than 8 000 to remain in622

the final set.623

5.5. Compatibility with boundary discretizations. The next point dis-624

cusses the compatibility between interior and boundary discretizations. All three625

This manuscript is for review purposes only.

20 J. SLAK AND G. KOSEC

algorithms treat boundary discretizations separately from discretizing the interior of626

Ω. Due to box-fill nature of FF, the generated discretization of the interior is chopped627

off at the boundary of Ω when the boundary discretization is superimposed. Nodes628

that are closer to the boundary nodes than a given threshold are discarded. If the629

threshold is strictly h, gaps between the boundary and the interior discretization can630

occur. The authors recommend setting the threshold to h/2 and preforming a few631

iterations of a repel-type algorithm that is executed locally on the nodes near the632

boundary to smooth the transition between both discretizations. SKF algorithm pos-633

sesses a similar problem, but deals with it differently. It generates internal nodes in a634

slightly reduced oriented bounding box, which is computed from boundary nodes that635

were shifted by h to the interior. This prevents the generation of internal nodes too636

close to the boundary of the box; however, the nodes still need to be tested for inclu-637

sion, which is done using the shifted nodes and their normals. This causes gaps near638

the boundary, which can be observed in the sample distribution in Figure 4 (second639

panel).640

PNP algorithm bypasses the aforementioned problems altogether, by offering the641

option to use the boundary discretization as a starting point of the interior discretiza-642

tion and thus allowing for a smooth transition near the boundary. Similar irregu-643

larities to those present near the boundary in SKF algorithm are formed when the644

advancing fronts from the opposite sides meet, but they appear in the interior of Ω645

(see Figure 4, rightmost panel), where they have less impact on the stability of the646

solution. Consequently no need to smooth the irregularities with expensive iterative647

repel techniques arose.648

5.6. Compatibility with irregular domains. Another requirement deals with649

irregular domains. FF algorithm has a disadvantage of being only able to fill axis-650

aligned boxes, which results in potentially a lot of unnecessarily generated nodes.651

This approach is somewhat improved in the SKF algorithm, where oriented bounding652

boxes are used, in general reducing the number of generated nodes compared to FF.653

The number of unnecessarily generated nodes could be reduced even further by de-654

composing an unfavorably shaped domain into smaller domains, which can be better655

bounded by cuboids. The smaller domains can then be filled separately and combined656

together, provided that the node generation algorithm behaves well near boundaries.657

An appropriate domain decomposition would also enable immediate parallel execution658

of the algorithm.659

Of the three discussed algorithms only PNP never generates any unnecessary660

nodes in the exterior of the given domain Ω, never evaluates nodal spacing function h661

outside of Ω and has the property that the number total number of generated nodes662

and the time complexity scale directly with |Ω|. The impact of unnecessary node663

generation outside Ω on the execution time is illustrated in subsection 5.4; however,664

the slowdown introduced by bounding boxes is in practice often acceptable.665

The strength of the PNP algorithm which allows it to generate nodes only inside666

Ω can also become its disadvantage. If seed nodes are supplied only in one part of667

Ω and the domain has a bottleneck in the middle (such as an hourglass shape) of668

girth approximately equal to nodal spacing h in that area, the algorithm might fail669

to advance through such bottleneck and would not generate any nodes in the other670

part. The FF and SKF algorithms do not suffer from this problem, and it can also be671

circumvented in PNP by supplying at least one seed node in each problematic part of672

the domain.673

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 21

5.7. Direction and dimension independence. Points 7 and 8 deal with di-674

rection and dimension independence. FF algorithm is only two-dimensional and di-675

rectionally dependent, because the advancing front progresses with respect to the676

increasing y coordinate. For inconveniently rotated or badly shaped domains, filling677

via increasing last coordinate might perform badly. Choosing a filling direction is678

the first step of the algorithm, and it can have significant effect on the running time679

and the generated node distribution. The algorithm is also not easily generalizable to680

higher dimensions, as it is not immediately obvious how to extend the concept of the681

“closest left” point to higher dimensional spaces.682

The SKF algorithm is better in this aspect. Using PCA it computes oriented683

bounded boxes, which provides independence from rotations. The main parts of the684

SKF algorithm, i.e. PCA and Poisson Disk Sampling, all work in arbitrary dimensions.685

Similarly, all parts of the PNP algorithm are formulated for a general dimension d686

and the formulation of the fill procedure is independent of the coordinate system. The687

same is true for the implementation: there is a single implementation for all values of d688

and the space dimension can truly be a run-time parameter. The coordinates of points689

are only accessed in the internals of the k-d tree operations; all other expressions are690

coordinate-free.691

5.8. Free parameters. Point 9 states that the developed algorithm should aim692

to minimize the number of free or tuning parameters. All three algorithms have693

a parameter influencing the number of candidates, which represents a time-quality694

trade-off. Authors of FF set n = 5 and anything above has similar distributions695

with a higher execution time. Authors of SKF analyze the effect of the number of696

candidates more precisely and recommend n = 15 in 2-D and 3-D, with a higher697

number of candidates corresponding to lower errors. For PNP algorithm we similarly698

recommend n = 15 in 2-D, and n = 30 in 3-D with increasing n for higher dimensions.699

Anything above n = 30 in 2-D gives very similar results and is computationally700

wasteful.701

6. Solution of PDEs on generated nodes.702

6.1. Poisson’s equation. The decisive factor of node distribution quality for703

strong form methods is its ability to support construction of a good approximations704

of differential operators. A basic test of this ability is to solve the Poisson’s equation705

on nodes generated by all three algorithms and compare the accuracy of the solutions.706

A d-dimensional boundary value problem707

∇2u = f in Ω = [0, 1]d,708

u = 0 on ∂Ω(6.1)709710

with u(x1, . . . , xd) =
∏d
i=1 sin(πxi) and f(x1, . . . , xd) = −dπ2

∏d
i=1 sin(πxi) is con-711

sidered in d = 2 and d = 3 dimensions.712

The solution is obtained using the popular strong form RBF-FD method [13, 26,713

35]. Polyharmonic radial basis functions (PHS)714

(6.2) ϕ(r) =

{
rk k odd

rk log r k even
715

with k = 3 augmented with monomials up to order 2 are used to construct the716

approximations on a stencil of 15 closest nodes in 2-D and 42 closest in 3-D. The final717

This manuscript is for review purposes only.

22 J. SLAK AND G. KOSEC

system is solved using BiCGSTAB iterative algorithm with tolerance 10−15 and 100718

iterations with ILUT preconditioner with fill factor 20 and drop tolerance 10−5.719

The L1 error between the correct solution u and obtained solution uh is evaluated720

on an independent uniform grid of points G, three times denser than the densest721

discretization used in solution of the problem, and computed as722

(6.3) L1 = ‖uh − u‖1 ≈
1

|G|
∑
p∈G
|u(p)− uh(p)|.723

Node distributions generated by the three considered algorithms are tested using724

the same parameters as in subsection 5.1 and subsection 5.4. The nodal spacing725

function h varies as h = 1
n , for such n that the total number of nodes N reached726

approximately N = 105. The results are shown in Figure 13.727

Fig. 13. Accuracy of the numerical solution of (6.1) for considered algorithms when filling
[0, 1]d with successively smaller densities in 2D (left) and 3D (right).

In both 2D and 3D case we observe convergence with expected rates for large N .728

All node sets give well-behaved solutions with very similar accuracy. Similar results729

are obtained in 3D.730

6.2. Eigenvalue stability. An often observed property of numerical discretiza-731

tion methods is the spectrum of discretized partial differential operator. For example,732

the spectrum of discretized Laplace operator should have only eigenvalues with neg-733

ative real part, and a relatively small spread along the imaginary axis [32]. Figure 14734

shows the spectrum of Laplace operator discretized with 2nd order RBF-FD PHS on735

PNP nodes shown in Figure 9. There are no eigenvalues with positive real part and736

also imaginary spread is relatively small, which additionally confirms the stability of737

RBF-FD PHS differentiation on scattered nodes.738

Additionally, we tested several different setups with different stencil sizes and739

approximation orders on nodes distributed with all three positioning algorithms with740

minimal differences observed in the spectrum.741

6.3. Thermo-fluid problem. Finally, the PNP algorithm is tested on a more742

complex problem. The goal is to demonstrate the capability of meshless solution pro-743

cedure on PNP nodes solving a transient non-linear convection dominated problem744

in 2D and 3D irregular domain with mixed Dirichlet and Neumann boundary con-745

ditions. The natural convection problem governed by coupled Navier-Stokes, mass746

continuity and heat transfer equations is chosen for a test case. First, a well-known747

de Vahl Davis benchmark test [9] is solved to demonstrate correctness of the solution748

procedure, both in 2D and 3D. Once we attain confidence in the solution procedure749

we extend the demonstration to irregular domains.750

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 23

Fig. 14. Spectra of the Laplacian operator discretized with RBF-FD PHS r3, augmented with
monomials or order 2 on PNP nodes. Note the different scales on the axes of both plots. Variable
nn denotes the number of nearest neighbors used to construct the stencil. The 5 eigenvalues with
the largest real parts are given in the top left corner of each plot.

The natural convection benchmark problem is governed by the following equa-751

tions:752

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+

µ

ρ
∇2v +

1

ρ
b,(6.4)753

∇ · v = 0,(6.5)754

b = ρ(1− β(T − Tref))g,(6.6)755

∂T

∂t
+ v · ∇T =

λ

ρcp
∇2T,(6.7)756

757

where v(u, v, w), p, T , µ, λ, cp, ρ, g, β, Tref and b stand for velocity, pressure, tempera-758

ture, viscosity, thermal conductivity, specific heat, density, gravitational acceleration,759

coefficient of thermal expansion, reference temperature for Boussinesq approximation,760

and body force, respectively. The de Vahl Davis test is defined on a unit square do-761

main Ω, where vertical walls are kept at constant temperatures with ∆T difference762

between cold and hot side, while horizontal walls are adiabatic. In generalization to763

3D we assume also front and back walls to be adiabatic [37]. No-slip velocity bound-764

ary conditions are assumed on all walls. The problem is characterized by Rayleigh765

(Ra) and Prandtl (Pr) numbers, defined as766

(6.8) Pr =
µcp
λ
,Ra =

gβρcp∆Th
3

λµ
,767

with h standing for characteristic length, in our case set to 1. All cases considered in768

this paper are computed at Pr = 0.71.769

The problem is solved with implicit time stepping, where each time step begins770

with a computation of intermediate velocity (ṽ2)771

(6.9) ṽ2 = v1 + ∆t

[
−(v1 · ∇)ṽ2 +

µ

ρ
∇2ṽ2 +

1

ρ
b(T1)

]
.772

The computed velocity is coupled with mass continuity by an iterative velocity-773

correction scheme, where it is assumed that the correction depends only on the pres-774

sure term775

(6.10) v2 = ṽ2 −
∆t

ρ
∇p.776

This manuscript is for review purposes only.

24 J. SLAK AND G. KOSEC

Applying divergence on (6.10) yields a pressure Poisson equation777

(6.11) ∇2p =
ρ

∆t
∇ · ṽ2 in Ω,

∂p

∂n
=

ρ

∆t
ṽ2 · n on ∂Ω, subjected to

∫
Ω

p = 0,778

which is solved first to get the pressure field. With computed pressure the velocity779

is corrected following the (6.10). Steps (6.11) and (6.10) are repeated until the con-780

vergence criterion is not met. Once the velocity is satisfactorily divergence free, the781

temperature field, coupled with momentum equation through Boussinesq approxima-782

tion, is updated as783

(6.12) T2 = T1 + ∆t

[
−v2 · ∇T2 +

λ

ρcp
∇2T2

]
.784

All spatial operators are discretized using RBF-FD with r3 PHS radial basis785

functions, augmented with monomials up to order 2, with the closest 25 nodes used786

as a stencil. For the time discretization time step ∆t = 10−3 was used for all cases.787

Nodal distance h = 0.01 is used for simulations in 2D and h = 0.25 for simulations788

in 3D. Boundaries with Neumann boundary conditions are additionally treated with789

ghost nodes [3].790

In Figure 15 steady state temperature contour and velocity quiver plots for Ra =791

108 case in 2D and Ra = 106 case in 3D are presented. A more quantitative analysis is792

done by comparing characteristic values, i.e. peak positions and values of cross section793

velocities, with data available in literature [8, 20, 37, 14]. We analyze six different794

cases, namely Ra = 106, 107, 108 in 2D, and Ra = 104, 105, 106 in 3D. The comparison795

in presented in Table 2.796

Fig. 15. Temperature contour and velocity quiver plots for Ra = 108 case in 2D (left) and
Ra = 106 case in 3D (right).

Finally, in Figure 16 we demonstrate the solution of transient convection dom-797

inated problem in an irregular 2D and 3D domain with mixed Dirichlet-Neumann798

boundary conditions on nodes positioned with the proposed algorithm. Note that799

this case, a solution of natural convection in an irregular domain, includes several po-800

tential complications, such as Neumann boundary conditions on curved boundaries,801

concavities, convection dominated transport and non-linearities.802

This manuscript is for review purposes only.

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 25

Table 2
Comparison of results computed with RBF-FD on FF nodes and reference data.

Ra
vmax(x, 0.5) x umax(0.5, y) y

present [8] [20] present [8] [20] present [8] [20] present [8] [20]

2D

106 0.2628 0.2604 0.2627 0.037 0.038 0.039 0.0781 0.0765 0.0782 0.847 0.851 0.861

107 0.2633 0.2580 0.2579 0.022 0.023 0.021 0.0588 0.0547 0.0561 0.870 0.888 0.900

108 0.2557 0.2587 0.2487 0.010 0.011 0.009 0.0314 0.0379 0.0331 0.918 0.943 0.930

Ra
wmax(x, 0.5, 0.5) x umax(0.5, 0.5, z) z

present [37] [14] present [37] [14] present [37] [14] present [37] [14]

3D

104 0.2295 0.2218 0.2252 0.850 0.887 0.883 0.2135 0.1968 0.2013 0.168 0.179 0.183

105 0.2545 0.2442 0.2471 0.940 0.931 0.935 0.1564 0.1426 0.1468 0.144 0.149 0.145

106 0.2564 0.2556 0.2588 0.961 0.965 0.966 0.0841 0.0816 0.0841 0.143 0.140 0.144

Fig. 16. Temperature contour and velocity quiver plots of solutions in irregular 2D domain
(left) and irregular 3D domain (right).

7. Conclusions. A new algorithm for generating variable density node distri-803

butions in interiors of arbitrary dimensions is proposed. The algorithm has many804

desirable properties, such as direction independence, support for irregular domains805

by only discretizing the area actually contained in the domain interior, good com-806

patibility with boundary discretizations and good scaling behavior. We prove that807

the time complexity of the proposed algorithm scales as O(N) for constant spacing808

and O(N logN) for variable spacing. A minimal nodal spacing guarantee for con-809

stant and variable nodal spacing functions is also proven. With examples it is shown810

that the proposed algorithm produces locally smooth distributions that are suitable811

for RBF-FD method for solving partial differential equations. The algorithm is com-812

pared against two other state-of-the-art algorithms, and the summary of the findings813

is presented in Table 3.814

The algorithm is also included in the Medusa library [27] for solving PDEs with815

strong form meshless methods, but a standalone implementation of the algorithm is816

available from the library’s website as well [33].817

At least three directions are open for future research. The first one deals with818

effective adaptive modification of parts of generated distributions with target com-819

plexity O(Nold + Nnew), where Nold and Nnew stand for the number of removed old820

nodes and the number of added new nodes. The second direction is to generalize the821

This manuscript is for review purposes only.

26 J. SLAK AND G. KOSEC

Table 3
Comparison of FF, SKF and PNP algorithms.

property / algorithm FF SKF PNP

supports variable density yes no yes

supports 3-D distributions no yes yes

supports irregular domains yes, using BB yes, using OBB yes, natively

compatibility with
boundary nodes

n/a no yes

dimension independence no yes yes

direction independence no yes yes

randomized
minimal
(only starting line)

yes (fully) yes (controlled)

minimal spacing guarantees no yes (constant h)
yes (constant
and variable h)

time complexity O
(
n
(| bb(Ω)|
|Ω| N

)1.5)
O
(
n | obb(Ω)|

|Ω| N
) O(nN logN)

(O(nN) if h constant)

computational time
best for smaller N ,
5 s for 106 nodes

6 s for 106 nodes
10 s for 106 nodes,
2 s if h constant

PDE accuracy satisfactory
satisfactory with
larger support sizes

satisfactory

number of free parameters 1 (no. of cand. n) 1 (no. of cand. n) 1 (no. of cand. n)

algorithm to (parametric) surfaces, again with desired O(N) time complexity irre-822

spective of the surface. The third direction is to investigate parallelization opportuni-823

ties on different parallel architectures ranging from shared memory multi-core central824

processing units (CPUs) and general purpose graphics processing unit (GPGPUs)825

to distributed computing. A potential approach, suitable for shared memory, is to826

independently build the discretization from several seed nodes. The bottleneck in827

such an approach is the manipulation of global kd-tree search structure, especially828

on GPGPUS. Alternative simpler search structures, such as spatial grids, could be829

used instead, as is common practice in computer graphics community. Second option,830

also suitable for distributed computing, is via domain decomposition, where main831

problems arise in load balancing and appropriate partitioning of the complex higher832

dimensional domains.833

Acknowledgments. The authors would like to acknowledge the financial sup-834

port of the Research Foundation Flanders (FWO), The Luxembourg National Re-835

search Fund (FNR) and Slovenian Research Agency (ARRS) in the framework of the836

FWO Lead Agency project: G018916N Multi-analysis of fretting fatigue using phys-837

ical and virtual experiments, the ARRS research core funding No. P2-0095 and the838

Young Researcher program PR-08346.839

REFERENCES840

[1] M. Balzer, T. Schlömer, and O. Deussen, Capacity-constrained point distributions: a vari-841
ant of Lloyd’s method, ACM Transactions on Graphics, 28 (2009), https://doi.org/10.842
1145/1531326.1531392.843

[2] S. Bauer, Image Number K7245-1. United States Department of Agriculture, https://www.844
ars.usda.gov/oc/images/photos/k7245-1/.845

[3] V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett, On the role of polynomials in846
RBF-FD approximations: II. Numerical solution of elliptic PDEs, J. Comput. Phys., 332847
(2017), pp. 257–273, https://doi.org/10.1016/j.jcp.2016.12.008.848

This manuscript is for review purposes only.

https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1145/1531326.1531392
https://www.ars.usda.gov/oc/images/photos/k7245-1/
https://www.ars.usda.gov/oc/images/photos/k7245-1/
https://www.ars.usda.gov/oc/images/photos/k7245-1/
https://doi.org/10.1016/j.jcp.2016.12.008

NODE GENERATION FOR MESHLESS DISCRETIZATIONS 27

[4] J. L. Blanco and P. K. Rai, nanoflann: a C++ header-only fork of FLANN, a library for849
nearest neighbor (NN) with KD-trees, 2014, https://github.com/jlblancoc/nanoflann.850

[5] R. Bridson, Fast Poisson disk sampling in arbitrary dimensions, in SIGGRAPH sketches,851
2007, p. 22, https://doi.org/10.1145/1278780.1278807.852

[6] Y. Choi and S. Kim, Node generation scheme for meshfree method by Voronoi diagram and853
weighted bubble packing, in Fifth us national congress on computational mechanics, Boul-854
der, CO, 1999.855

[7] R. L. Cook, Stochastic sampling in computer graphics, ACM Trans. Graphics, 5 (1986), pp. 51–856
72, https://doi.org/10.1145/7529.8927.857

[8] H. Couturier and S. Sadat, Performance and accuracy of a meshless method for laminar858
natural convection, Numerical Heat Transfer: Part B: Fundamentals, 37 (2000), pp. 455–859
467, https://doi.org/10.1080/10407790050051146.860

[9] G. de Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical861
solution, Int. J. Numer. Methods Fluids, 3 (1983), pp. 249–264, https://doi.org/10.1002/862
fld.1650030305.863

[10] D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote, On the bounding boxes obtained by864
principal component analysis, in 22nd European Workshop on Computational Geometry,865
2006, pp. 193–196.866

[11] B. Fornberg and N. Flyer, Fast generation of 2-D node distributions for mesh-free PDE867
discretizations, Computers & Mathematics with Applications, 69 (2015), p. 531–544, https:868
//doi.org/10.1016/j.camwa.2015.01.009.869

[12] B. Fornberg and N. Flyer, A primer on radial basis functions with applications to the870
geosciences, SIAM, 2015, https://doi.org/10.1137/1.9781611974041.871

[13] B. Fornberg and N. Flyer, Solving PDEs with radial basis functions, Acta Numerica, 24872
(2015), p. 215–258, https://doi.org/10.1017/S0962492914000130.873

[14] T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, A numerical study of three-874
dimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat875
Mass Transfer, 34 (1991), pp. 1543–1557, https://doi.org/10.1016/0017-9310(91)90295-p.876

[15] A. Golbabai and E. Mohebianfar, A new method for evaluating options based on multi-877
quadric RBF-FD method, Appl. Math. Comput., 308 (2017), pp. 130–141, https://doi.878
org/10.1016/j.amc.2017.03.019.879

[16] G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, http://eigen.tuxfamily.org.880
[17] D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices of881

the AMS, 51 (2004), pp. 1186–1194.882
[18] I. Jolliffe, Principal component analysis, Springer Series in Statistics, Springer, 2nd ed., 2011,883

https://doi.org/10.1007/978-3-642-04898-2 455.884
[19] G. Kosec, A local numerical solution of a fluid-flow problem on an irregular domain, Adv.885

Eng. Software, 120 (2018), pp. 36–44, https://doi.org/10.1016/j.advengsoft.2016.05.010.886
[20] G. Kosec and B. Šarler, Solution of thermo-fluid problems by collocation with local pressure887

correction, International Journal of Numerical Methods for Heat & Fluid Flow, 18 (2008),888
pp. 868–882, https://doi.org/10.1108/09615530810898999.889

[21] G. Kosec and J. Slak, RBF-FD based dynamic thermal rating of overhead power lines, in890
Advances in Fluid Mechanics XII, vol. 120 of WIT transactions on engineering sciences,891
Wessex institute, WIT press, 2018, pp. 255–262, https://doi.org/10.2495/afm180261.892

[22] X.-Y. Li, S.-H. Teng, and A. Ungor, Point placement for meshless methods using sphere893
packing and advancing front methods, in ICCES’00, Los Angeles, CA, Citeseer, 2000.894

[23] G.-R. Liu, Mesh free methods: moving beyond the finite element method, CRC press, 2002,895
https://doi.org/10.1201/9781420040586.896

[24] Y. Liu, Y. Nie, W. Zhang, and L. Wang, Node placement method by bubble simulation and897
its application, Computer Modeling in Engineering and Sciences(CMES), 55 (2010), p. 89,898
https://doi.org/10.3970/cmes.2010.055.089.899

[25] R. Löhner and E. Oñate, A general advancing front technique for filling space with arbitrary900
objects, Int. J. Numer. Methods Eng., 61 (2004), pp. 1977–1991, https://doi.org/10.1002/901
nme.1068.902

[26] B. Mavrič and B. Šarler, Local radial basis function collocation method for linear thermoe-903
lasticity in two dimensions, Int. J. Numer. Methods Heat Fluid Flow, 25 (2015), pp. 1488–904
1510, https://doi.org/10.1108/hff-11-2014-0359.905

[27] Medusa library, http://e6.ijs.si/medusa/.906
[28] S. A. Mitchell, A. Rand, M. S. Ebeida, and C. Bajaj, Variable radii Poisson-disk sam-907

pling, extended version, in Proceedings of the 24th canadian conference on computational908
geometry, vol. 5, 2012.909

[29] A. W. Moore, An introductory tutorial on kd-trees, 1991, https://doi.org/10.1.1.28.6468.910

This manuscript is for review purposes only.

https://github.com/jlblancoc/nanoflann
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1145/7529.8927
https://doi.org/10.1080/10407790050051146
https://doi.org/10.1002/fld.1650030305
https://doi.org/10.1002/fld.1650030305
https://doi.org/10.1002/fld.1650030305
https://doi.org/10.1016/j.camwa.2015.01.009
https://doi.org/10.1016/j.camwa.2015.01.009
https://doi.org/10.1016/j.camwa.2015.01.009
https://doi.org/10.1137/1.9781611974041
https://doi.org/10.1017/S0962492914000130
https://doi.org/10.1016/0017-9310(91)90295-p
https://doi.org/10.1016/j.amc.2017.03.019
https://doi.org/10.1016/j.amc.2017.03.019
https://doi.org/10.1016/j.amc.2017.03.019
http://eigen.tuxfamily.org
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1016/j.advengsoft.2016.05.010
https://doi.org/10.1108/09615530810898999
https://doi.org/10.2495/afm180261
https://doi.org/10.1201/9781420040586
https://doi.org/10.3970/cmes.2010.055.089
https://doi.org/10.1002/nme.1068
https://doi.org/10.1002/nme.1068
https://doi.org/10.1002/nme.1068
https://doi.org/10.1108/hff-11-2014-0359
http://e6.ijs.si/medusa/
https://doi.org/10.1.1.28.6468

28 J. SLAK AND G. KOSEC

[30] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004),911
pp. 329–345, https://doi.org/10.1137/s0036144503429121.912

[31] K. Reuther, B. Sarler, and M. Rettenmayr, Solving diffusion problems on an unstructured,913
amorphous grid by a meshless method, Int. J. Therm. Sci., 51 (2012), pp. 16–22, https:914
//doi.org/10.1016/j.ijthermalsci.2011.08.017.915

[32] V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for meshfree dis-916
cretizations on irregular domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. 2584–917
2608, https://doi.org/10.1137/17m114090x.918

[33] J. Slak and G. Kosec, Standalone implementation of the proposed node placing algorithm.919
http://e6.ijs.si/medusa/static/PNP.zip.920

[34] J. Slak and G. Kosec, Fast generation of variable density node distributions for mesh-free921
methods, in WIT Transactions on Engineering Sciences, vol. 122, 2018, https://doi.org/10.922
2495/be410151.923

[35] J. Slak and G. Kosec, Refined meshless local strong form solution of Cauchy–Navier equation924
on an irregular domain, Eng. Anal. Boundary Elem., (2018), https://doi.org/10.1016/j.925
enganabound.2018.01.001.926

[36] J. Slak and G. Kosec, Adaptive radial basis function-generated finite differences method for927
contact problems, Int. J. Numer. Methods Eng., (2019), https://doi.org/10.1002/nme.6067.928

[37] P. Wang, Y. Zhang, and Z. Guo, Numerical study of three-dimensional natural convection929
in a cubical cavity at high Rayleigh numbers, Int. J. Heat Mass Transfer, 113 (2017),930
pp. 217–228, https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057.931

This manuscript is for review purposes only.

https://doi.org/10.1137/s0036144503429121
https://doi.org/10.1016/j.ijthermalsci.2011.08.017
https://doi.org/10.1016/j.ijthermalsci.2011.08.017
https://doi.org/10.1016/j.ijthermalsci.2011.08.017
https://doi.org/10.1137/17m114090x
http://e6.ijs.si/medusa/static/PNP.zip
https://doi.org/10.2495/be410151
https://doi.org/10.2495/be410151
https://doi.org/10.2495/be410151
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1002/nme.6067
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057

	Introduction
	Node placing algorithm requirements
	State of the art algorithms
	Algorithm by Fornberg and Flyer
	Time complexity analysis
	Implementation notes

	Algorithm by Shankar, Kirby and Fogelson
	Time complexity analysis
	Implementation notes

	New node placing algorithm
	Time complexity analysis
	Implementation notes
	Remarks

	Satisfaction of the requirements
	Local regularity
	Minimal spacing requirements
	Spatial variability
	Computational efficiency and scalability
	Compatibility with boundary discretizations
	Compatibility with irregular domains
	Direction and dimension independence
	Free parameters

	Solution of PDEs on generated nodes
	Poisson's equation
	Eigenvalue stability
	Thermo-fluid problem

	Conclusions
	References

