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Abstract  

Purpose – Solution of a highly nonlinear fluid dynamics in a low Prandtl number regime, 

typical for metal like materials, as defined in the Call for contributions to a numerical 

benchmark problem for 2D columnar solidification of binary alloys (Bellet, et al., 2009). The 

solution of such a numerical situation represents the first steps towards understanding the 

instabilities in a more complex case of macrosegregation. 

Approach - The involved temperature, velocity and pressure fields are represented through 

the local approximation functions which are used to evaluate the partial differential operators. 

The temporal discretization is performed through explicit time stepping. 

Originality - The solution procedure is formulated completely through local computational 

operations. Besides local numerical method also the pressure velocity is performed locally 

with retaining the correct temporal transient. 

Findings - The performance of the method is assessed on the natural convection in a closed 

rectangular cavity filled with a low Prandtl fluid. Two cases are considered, one with steady 

state and another with oscillatory solution. It is shown that the proposed solution procedure, 

despite its simplicity, provides stable and convergent results with excellent computational 

performance. The results show good agreement with the results of the classical finite volume 

method and spectral finite element method. 



Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

Key words Newtonian incompressible fluid, low Prandtl number, natural convection, 

rectangular cavity, primitive variables, meshless methods, local radial basis function 

collocation method, multiquadrics, local pressure-correction. 

Paper type Research paper 

 

1 INTRODUCTION 

The computational modelling of solidification has become an important research subject due 

to its pronounced influence in better understanding of nature as well as in the development of 

the advanced technologies. The main computational difficulties in tackling solidification 

systems stem from the moving interface between the solid and the liquid phase, respective 

jump of the physical properties (density, viscosity, etc.) across the interface as well as 

possible jumps in heat flux, species flux and concentration at the interface. The jumps are 

accompanied by the fast thermal diffusion compared to the species diffusion, and involved 

convection phenomena. The convection phenomena arise due to the thermal and solutal 

gradients in the melt as well as convection, triggered through the movement of the interface 

between the solid and the liquid phase with different densities. The situation could be 

additionally complicated by the surface tension governed (Marangoni) convection, and 

movement of the dispersed solid phase, that might be present in the melt. The respective flow 

patterns can be laminar, periodic or turbulent. The computational treatment of solidification 

phenomena can be conducted on different scales that might range from the dendritic growth 

on the micron scale (Lorbiecka and Šarler, 2010), grain growth on the millimeter scale, and 

system level on the meter scale (Vertnik, 2011). It is a long term vision to be able to solve the 

grain size and distribution of the solidified system, microsegregation (chemical 

inhomogeneities) on the scale of the solidified grain, and macrosegregation (chemical 

inhomogeneities) on the system level, together with a range of segregations on the length 

scales between micro and macro. 

 

There have been many computational studies performed up to now to simulate the 

macrosegregation. However, a precise answer on how accurate the results are (verification of 

macrosegregation modelling) is quite a novel issue, proposed in a recent benchmark test by 

(Bellet, et al., 2009). This benchmark test, that logically follows the melting exercise, 

proposed by (Gobin and Le Quéré, 2000) consists of two parts. I. A separate preliminary 

single phase exercise: concerned with the convective problem in the absence of solidification 

and in conditions close to those met in solidification processes. Two problems are considered 

for the case of laminar natural convection: I. a transient thermal convection for a pure liquid 

metal with a Prandtl number of the order of 10
-2

, and I. b double-diffusive convection in an 
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enclosure for a binary liquid metallic mixture with a Prandtl number on the order of 10
-2

 and a 

Lewis number on the order of 10
-4

.  II. The simulation of the full solidification process: First a 

specified ‘minimal’ solidification model is proposed with II. a Pb-18%Sn and II. b Sn-10%Pb 

alloys. The objective is to compare the numerical solutions obtained by different contributors 

(verification). Then different physical solidification models may be compared to check the 

features that allow for the best possible prediction of the physical phenomena (validation). It 

is essential for proper simulation of macrosegregation to be able to simulate the transient 

natural convection and the double diffusive flow structure. The part I.a of the proposed 

benchmark is tackled in the present work, which by the best of knowledge of the present 

authors represents the first results achieved on this benchmark. 

 

Natural convection heat transfer problems are fully determined through Rayleigh and Prandtl 

dimensionless numbers. Rayleigh number stands for the ratio between the buoyant to the 

viscous effects, and depends also on the geometry and boundary conditions. The Prandtl 

number, defined as the ratio of the momentum diffusivity to the thermal diffusivity, is an 

intrinsic thermophysical property of a fluid, which is not directly dependent on the problem 

configuration. The Prandtl number varies over several orders of magnitude from 10
-3

 (liquid 

metals) to 10
5
 (functional oils) in common fluids. Ratio between Prandtl and Rayleigh 

numbers is also known as Grashof number, which characterises the flow regime. There are 

three important values of the Grashof number which demarcate different flow bifurcations in 

a specific natural convection arrangement. The first critical value denotes the onset of steady 

convection from the conduction regime, the second one the onset of the periodic convection 

from the steady convection, and the third one the onset of the turbulent convection from the 

periodic convection. Subsequently, the effects of geometry, boundary conditions and fluid 

properties continue to attract the computational fluid dynamics community in search for more 

and more accurate as well as diverse simulations of natural convection (Amimul, 2011). 

 

Before tackling the macrosegregation as a consequence of the solidification of binary 

substance, a proper solution of natural convection, double diffusive convection and freezing, 

is needed. Detailed analyses and accurate solutions of different stages of solidification will 

maximize the possibilities to identify the differences between different numerical solutions at 

the point when they might originate. A comparison study of solution of macrosegregation, 

computed with the finite volume method and the finite element method (with quite different 

qualitative and quantitative response of different numerical method simulations) already 

exists, however there was until now no effort given to reasonably systematic identification of 

the origin of the differences in both solutions (Ahmad, et al., 1998). 
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The defined (Bellet, et al., 2009) macrosegregation cases with Pb-18%Sn and Sn-10%Pb give 

as a consequence results with mesosegragates which seem, at the moment, difficult to 

calculate in a discretisation and numerical method independent way. We have recently 

defined a related macrosegregation case, free of mesosegregates, and most probably for the 

first time demonstrated mesh independent and numerical method independent results (Kosec, 

et al., 2011). The numerical methods used were the finite volume method and the local radial 

basis function collocation method (Kosec and Šarler, 2008). 

 

The transient natural convection of the Low-Prandtl-Number fluids in 2D was probably for 

the first time studied in archival literature by Mohamad and Viskanta (Mohamad, 1991). Their 

work follows a number of technical reports, cited in their paper. They numerically caught 

periodic oscillations at the critical Grashof numbers. Prior to the oscillatory flow, the steady 

state solutions with an oscillatory transient period were numerically predicted. The effect of 

boundary conditions and time marching schemes on the Mohamad and Viskanta reference 

solutions has been further studied by (Cless, 1996a, Cless, 1996b) .A three dimensional study 

of Rayleigh-Benard convection of a low-Prandt-Number fluid in shallow three dimensional 

cavity heated from below was studied in (Nakano, 1998). All mentioned studies used the 

finite difference method solution procedure. The work of Mohamad and Viskanta was 

recalculated by the finite element method in 1999 (Sammouda, 1999). A problem of a low-

Prandtl-number natural convection in volumetrically heated rectangular enclosures was 

studied for different situations by (Arcidiacono, 2001a, Arcidiacono, 2001b, Di Piazza, 2001). 

A comparison between the finite volume method and the spectral Chebyshev method (Xin, 

2002), for low Prandtl number natural convection in a shallow cavity was given by (Založnik, 

et al., 2005). The transition from steady to oscillatory flow for a very low Prandtl number 

fluid (Pr= 0.008) was studied for rectangular enclosures with aspect ratios (length/height) of 

0.25, 0.4, 1.0, and 2.0 by (Crunkleton, 2006) with the finite volume method and SIMPLE 

pressure correction algorithm. A graph of Rayleigh number of first bifurcation of natural 

convection was recently given for a range of Prandtl numbers from 0.1 to 1.0 in (Xiaohua, 

2009). Tesso and Piva (Pesso and Piva, 2009) recently calculated the low Prandtl natural 

convection in a square cavity, caused by large differences in the working fluid, characterised 

by the Gay-Lussac number (Ga) in addition to the Ra and Pr. They used a finite volume based 

commercial software for obtaining the steady state results for a range of Pr from 0.0071 to 

0.71, Ra from 10 to 10
8
 and Ga from 0 to 2. Finally the authors propose a heat transfer 

correlation for the tackled range of situations. 

 

The meshless or sometimes also named meshfree or mesh reduction methods represent a class 

of numerical methods where an arbitrarily distributed set of nodes, without any additional 
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topological relations between them, is used. Such meshless methods represent a promising 

technique to avoid problems with polygonisation. There exist several meshless methods such 

as Element free Galerkin method, the Meshless Petrov-Galerkin method, the point 

interpolation method, the point assembly method, the finite point method, smoothed particle 

hydrodynamics method, reproducing kernel particle method, Kansa method (Monaghan, 

1988, Kansa, 1990a, Kansa, 1990b, Atluri and Shen, 2002b, Atluri and Shen, 2002a, Chen, 

2002, Liu, 2003, Gu, 2005, Fasshauer, 2006, Šterk and Trobec, 2008, Trobec, et al., 2009). 

However, this work is focused on one of the simplest classes of meshless methods in 

development today, the local point interpolation (Wang and Liu, 2002) Radial Basis Function 

(Buhmann, 2000) Collocation Method (RBFCM) (Šarler, 2007). Undoubtedly, these methods 

can be of great advantage in solving solidification processing problems. In the present paper 

we use a local variant of RBFCM (Šarler, 2007), the Local Radial Basis Function Collocation 

Method (LRBFCM). The main advantage of the local approach is that the spatial disretization 

problem is simplified to solving small systems instead of large global systems, which might 

become unstable for increasing number of computational nodes. The LRBFCM approach was 

already successfully applied to several thermofluid situations, ranging from the laminar to 

turbulent situations (Šarler and Vertnik, 2006, Vertnik and Šarler, 2006, Divo and Kassab, 

2007, Kosec and Šarler, 2008).  

2 GOVERNING EQUATIONS 

The considered problem domain is a closed air-filled square-shaped cavity with differentially 

heated vertical walls with temperature difference T  and insulated horizontal walls. The 

non-permeable and no-slip velocity boundaries are assumed. The problem is described by 

three coupled PDE equations: mass (1), momentum (2), and energy conservation (3) 

equations, where all material properties are considered to be constant. The Boussinesq 

approximation (4) is used for the treatment of body force in the momentum equation. The 

natural convection is thus described by the following system of equations 

0 v         

 ( ) P
t

  


      


v
vv v b        

 
 ( )

p

p

c T
c T T

t
  


    


v        

 ref1 ( )T T T   b g        
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with ref, , , , , , , , ,p TP T c T   v g  and b  standing for velocity, pressure, temperature, 

thermal conductivity, specific heat, gravitational acceleration, density, coefficient of thermal 

expansion, reference temperature for Boussinesq approximation, viscosity and body force, 

respectively. The case is characterized by three dimensionless numbers 

3 2

Ra =
T H p

T

T c 



 g
      

Pr
pc


         

A H

W





        

standing for Rayleigh number, Prandtl number and domain aspect ratio. The ratio between 

Rayleigh and Prandtl is often referred as Grashof number, defined as  

Ra
Gr=

Pr

T         

H
 stands for domain height and W for domain width (Figure 1). 

 

Figure 1: The natural convection benchmark test schematics.  
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The introduced physical model does not have a closed form solution and in order to solve it a 

numerical approach has to be employed. A reference eponymous work in this field is that by 

De Vahl Davis (de Vahl Davis, 1983). 

3 SOLUTION PROCEDURE 

In this paper we use a novel local meshless numerical method with local pressure velocity 

coupling. A general idea behind the local meshless methods is the use of local sub clusters of 

domain nodes (Figure 2), named local support domains, with local basis functions for the 

approximation of fields. With the selected support domain, an approximation function is 

introduced as a sum of weighted basis functions 

1

( ) ( )
BasisN

n n

n

 


 p p         

where , , andBasis n nN    stand for the approximation function, the number of basis 

functions, the approximation coefficients and the basis functions, respectively. The basis 

could be selected arbitrarily (e.g., monomials, radial basis function, etc.), however in this 

paper Hardy’s Multiquadrics (MQs) 

      2/ 1n n

n C     p p p p p        

with C  standing for the free shape parameter of the basis function, are used, based on the 

results of the study by Franke (Franke, 1982). By taking into account all support domain 

nodes and equation (9) the approximation system is obtained. In this paper we use collocation 

(the number of support nodes is the same as the number of the basis functions). An arbitrary 

spatial differential operation  L  can be applied on the approximation function in the 

following way  

 
1

( )
BasisN

n n

n

L L 


 p p        

In general, the system (9) has to be solved only when the influence domain topology changes 

and therefore the computation can be optimized by computing 1
Ψ  in a pre-process. 
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Furthermore, the computation of the coefficients and the evaluation of differential operators 

can be combined. All information about the numerical approach and the local nodal topology 

can be stored in a predefined vector, which has to be re-evaluated only when the topology of 

the nodes changes. The differential operator vector (
L

m )  is introduced as 

 1

1

( ) ( )
N

L

m nm n

n

L 



  p p

      





The introduced formalism holds in general and therefore the general notation for partial 

differential operator  L  is used. However, in the present work, only operators / p   and 2  

are employed. 

2
2

1

2
1

( ) ( )
N

m nm n

n p 

 




  


 p p        

/ 1

1

( ) ( )
N

p

m nm n

n p




   




  


p p        

The structured formulation is convenient since most of the complex and CPU demanding 

operations are performed in the pre-process phase. For all inner temporal loop operations only 

N floating point operations (FLOPS) are need for evaluation of an arbitrary partial differential 

operator. The implementation of the Dirichlet boundary condition is straightforward. In order 

to implement Neumann and Robin boundary conditions a special case of interpolation is 

needed. In these boundary nodes the function directional derivative instead of the function 

value is known and therefore the equation in the interpolation system changes to 

1

( ) ( )
BasisN

BC n n n

n

a b 


 
    

 
 p p

n
       



In the presented numerical framework the computation of Neumann and Robin boundary 

conditions can be simplified through the usage of the differential operator vector. Consider 

the Neumann boundary condition  

BCa b


 


 
n

        
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/

2
0 /

0

SubN

BC m m

m

a

a b

  




 



 






 n

n
       

where 0  stands for boundary node. Equation (17) simplifies to Neumann boundary condition 

computation if b  is set to zero.  Such approach makes the Neumann and the Robin boundary 

condition computation straightforward and CPU effective, again only N  flops are needed to 

evaluate it, without any kind of special computational treatment on or near boundaries. 

 

For the temporal discretization we use a two-level explicit time stepping 

   0
0 0 0 0 0 0 0D S

t

 
   


   


v        

where zero-indexed quantities stand for the values at the initial time, and ,D S  for general 

diffusion coefficient, and source term, respectively. The time step is denoted with t . The 

pressure-velocity coupling is performed through the correction of the intermediate velocity 

 v̂  

  0 0 0 0 0 0
ˆ ( )

t
P  




      v v v b v v       

The equation (19) did not take into account the mass continuity and respective corrections 

need to be applied  

1ˆ ˆm m  v v v         
1ˆ ˆm mP P P           

where , andm v P  stand for iteration index, velocity correction and pressure correction, 

respectively. By combining the momentum and the mass continuity equations, the pressure 

correction Poisson equation emerges 

2ˆ m t
P




  v         
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Instead of solving the global Poisson equation exactly, the pressure correction is guessed from 

the divergence of the intermediate velocity. 

2 ˆ mP
t


 


v         

The proposed assumption makes solving of the pressure velocity coupling iteration local. 

Such an approach is very CPU efficient, as it needs only one computation for each pressure 

correction. With the computed pressure correction the pressure and the velocity can be 

corrected as  

1ˆ ˆm mP P P           

where   stands for the relaxation parameter. The iteration is performed until the criterion 

ˆ· V v  is met in all computational nodes. The approach is similar to the artificial 

compressibility method (ACM) (Massarotti, et al., 1998, Rahman and Siikonen, 2008) and in 

the framework of the Finite Difference Method to the SOLA approach (Hong, 2004). 

However, the proposed approach retains the correct time transient which is not the case in 

SOLA and ACM approaches. The free fluid flow situations have been tackled by ACM in 

(Traivivatana, et al., 2007) and the flow in porous media in (Malan and Lewis, 2011). In the 

present paper we are particularly interested in proper transient response of the computations. 

The proposed solution procedure is effective from computational point of view as all 

numerical operations are completely local. Despite several degrees of freedom over the spatial 

discretization, its complexity remains comparable to Finite Difference Method or Finite 

Volume Method.     
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Figure 2: Schematic representation of meshless numerical principle. The differential 

operations in a circled node are performed only through the consideration of a local influence 

domain.     

4  NUMERICAL RESULTS 

The results of the benchmark tests are assessed in terms of streamfunction and cavity Nusselt 

number, with dimensionless variables, defined as  

 
yx

x y

W H

pp
p p 

 
, (25) 

 
x W p y H p

x y

v c v c
v v

 

 

 
  , (26) 

 C

H C

T T
T

T T





, (27) 

 
2

p H

t t
c







. (28) 
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  
1

0

( ) x yv dp  p p , (29) 

 
( )

Nu( ) ( ) ( )x

x

T
v T

p


 



p
p p p . (30) 

 

The Nusselt number is computed locally on five nodded influence domains, while the 

streamfunction is computed on the one dimensional influence domains representing each row, 

where all nodes in the row are used as an influence domain. The streamfunction is set to zero 

in south west corner of the domain  0,0 0  . The presented solution procedure is first 

verified through the comparison of results against previously published data. The similar 

oscillatory low Prandtl number flow is considered, where a tall cavity with height/width 

aspect ratio A=4 is filled with Pr=0.0137 (Al4.5%Cu alloy) fluid and simulated at 
5Ra=2.81 10 . Current numerical approach is compared against finite volume method and 

Chebishev spectral method (Založnik, et al., 2005). In present paper the results are presented 

in terms of hot side mean Nusselt number and its transformation into frequency domain 

(Figure 4). From Figure 4 it can be seen that our present numerical approach shows good 

agreement with more standard numerical solutions. In the present work computation is 

performed on 40497 uniformly distributed nodes. This case has already been solved in (Divo 

and Kassab, 2007, Kosec and Šarler, 2009). We additionally present the frequency analysis of 

the case in the present paper. In Figure 3 the streamlines and the temperature contour plots for 

tall cavity test at different times are presented. 
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Figure 3: Streamlines (stream step 0.2) and temperature contours (contour step 0.1) for tall 

cavity test. 

 

 
Figure 4: Comparison case: Left: hot side mean Nusselt number as a function of 

dimensionless time. Right: hot side mean Nusselt number as a function of dimensionless 

frequency. 

 

The numerical setup of present cases is presented in Table I together with some characteristic 
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results of numerical solution. Dimensionless pressure velocity coupling relaxation parameter 

is set to the same numeric value as a dimensionless time step in all computations. The 

dimensionless pressure velocity coupling criterion V  is set to 0.5 for all computations. Free 

RBF shape parameter C  is set to 90 in all computations. In our computations Case 1 results 

in steady state while Case 2 produces oscillatory solution. In Table I the maximum 

streamfunction and hot side mean Nusselt numbers in steady state are presented for Case 1. 

For Case 2 the values averaged over  5,7t   are stated. Figure 4 depicts excellent agreement 

of the present method with the FEM and spectral method. Solution of Case 1 is depicted in 

Figure 5, where the streamlines and the temperature contour plots are plotted on the left 

figure. The temporal development of the hot side mean Nusselt number is presented on the 

right figure. In Figure 6 the streamlines and the temperature contour plots for Case 2 at 

different times during one oscillation are presented. In Figure 7 the hot side mean Nusselt 

number temporal development and in Figure 8 its representation in the frequency domain are 

presented, where f  stands for dimensionless frequency. One can observe from Figure 6 an 

almost same maximum flow intensity during oscillations. One can see from Figure 7 that 

increase of the number of the computational nodes also increases the amplitude of the 

oscillations. Both cases show good convergent behaviour with respect to the number of the 

discretization nodes (Figure 9). In Case 2 it is evident that using too coarse nodal distribution 

the important part of the solution can be missed as with the coarsest computation the strongest 

oscillation is not captured. The oscillation is more pronounced with the increasing number of 

the nodes. The oscillations are fully developed after initial transient which ends roughly at 

4.5t .  

 

Table I: Discretization parameters and principal results. Since Case 2 does not exhibit steady 

state, a mean value over one oscillation period is given. 

 Ra Pr A ND ,dt   
max  hot side

meanNu  
Case 1 

 

410  0.01 1 437 410  4.3358  2.0615  S
tead

y
 

state      

v
alu

es  

2597 55 10  4.4735  1.9496  

10197 510  4.5896  1.9523  

40397 65 10  4.6328  1.9572  

160797 610  4.6444  1.9584  

Case 2 45 10  0.01 1 437 55 10  6.7741  3.3319       M
ean

     

    v
alu

es  

2597 55 10  7.0020  2.8477  

10197 510  7.1591  2.7831  

40397 65 10  7.2786  2.7946  

160797 610  7.3123  2.7991  



Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

15 

 

 

 

 

 

 

 

 

 

 
Figure 5: Case 1: Left: Steady state streamlines (stream step 0.5) and temperature contours 

(contour step 0.1). Right: hot side mean Nusselt number as a function of dimensionless 

time. 
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Figure 6: Case 2: Streamlines (stream step 0.8) and temperature contours (contour step 0.1) 

as a function of dimensionless time during one oscillation period. 
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Figure 7: Case 2: Hot side mean Nusselt number as a function of dimensionless time. 

 
Figure 8: Case 2: Hot side mean Nusselt number as a function of the number of the domain 

nodes in frequency domain.  

 
Figure 9: Maximal streamfunction (left) and hot side mean Nusselt number (right) as a 

function of the number of domain nodes, where all quantities are normalized to one at the 

finest calculation. 
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The oscillations in Case 2 are result of a balance between the buoyancy and shear stress 

forces.  

5 CONCLUSIONS 

In the present paper we demonstrate the application of extremely simple and intuitive 

meshless numerical approach towards solution of transient thermo-fluid problems. The first 

two numerical problems from the spectra of recent solidification oriented benchmark call are 

treated. The low Prandtl number natural convection in a closed domain is solved with the 

proposed numerical solution procedure. Two cases are considered; one with steady state and 

another with oscillatory solution. In both situations we show good convergence behaviour. 

Until now, no other reference solution exists of the treated cases. In addition, we compare the 

present numerical approach on the treated oscillatory case and show excellent agreement with 

more common global numerical approaches. We show that in oscillatory case the coarse nodal 

distributions miss relevant physical behaviour. In our recent related work we research 

application of adaptive nodal distribution in connection with the method used in this paper 

(Kosec, 2011). More involved solidification benchmark call tests will be attempted by this 

adaptive numerical approach. The future work will also be focused on a parallel 

implementation of current solver as we already achieve good speedups with straightforward 

OpenMP based parallelization. Further steps will be taken in a GPU and MPI based 

parallelization schemes. 

 

Acknowledgment: 

The research was funded through Slovenian state research projects J2-4120, P2-0379 and P2-

0095. The Centre of Excellence for Biosensors, Instrumentation and Process Control is an 

operation financed by the European Union, European Regional Development Fund and 

Republic of Slovenia, Ministry of Higher Education, Science and Technology. The financial 

support is kindly acknowledged. 

6 REFERENCES 

Ahmad, N., Combeau, H., Desbiolles, J. L., Jalanti, T., Lesoult, G., Rappaz, J., Rappaz, M. 

and Stomp, C. (1998), "Numerical simulation of macrosegreation: a comparison 

between finite volume method and finite element method predictions and a 

confrontation with experiments", Metallurgical and Materials Transactions, Vol. A29, 

pp. 617. 

 

Amimul, A. (2011), Convection and Conduction Heat Transfer, Intech, Rijeka. 



Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

19 

 

 

 

 

 

 

 

 

Arcidiacono, S.; Ciofalo, M. (2001a), "Low-Prandtl number natural convection in 

volumetrically heated rectangular enclosures III. Shallow cavity, AR = 0.25", 

International Journal of Heat and Mass Transfer, Vol. 44, pp. 3035-3065. 

 

Arcidiacono, S.; Di Piazza, I.;Ciofalo, M. (2001b), "Low-Prandtl number natural convection 

in volumetrically heated rectangular enclosures II. Square cavity, AR = 1", 

International Journal of Heat and Mass Transfer, Vol. 44, pp. 537-550. 

 

Atluri, S. N. and Shen, S. (2002a), The Meshless Method, Tech Science Press, Encino. 

 

Atluri, S. N. and Shen, S. (2002b), "The meshless local Petrov-Galerkin (MLPG) method: a 

simple & less-costly alternative to the finite element and boundary element methods", 

CMES: Computer Modeling in Engineering & Sciences, Vol. 3, pp. 11-52. 

 

Bellet, M., Combeau, H., Fautrelle, Y., Gobin, D., Rady, M., Arquis, E., Budenkova, O., 

Dussoubs, B., Duterrail, Y., Kumar, A., Gandin, C. A., Goyeau, B., Mosbah, S. and 

Zaloznik, M. (2009), "Call for contributions to a numerical benchmark problem for 2D 

columnar solidification of binary alloys", International Journal of Thermal Sciences, 

Vol. 48, pp. 2013-2016. 

 

Buhmann, M. D. (2000), Radial Basis Functions, Cambridge University Press, Cambridge. 

 

Chen, W. (2002), "New RBF collocation schemes and kernel RBFs with applications", 

Lecture Notes in Computational Science and Engineering, Vol. 26, pp. 75-86. 

 

Cless, C.M.;Prescott, PJ., (1996a), "Effect of time varying thermal boundary conditions on 

oscillatory natural convection of a low-Prandtl-number fluid", Numerical Heat 

Transfer, Vol. A29, pp. 645-669. 

 

Cless, C.M.;Prescott, PJ., (1996b), "Effect of time marching schemes on predictions of 

oscillatory natural convection ", Numerical Heat Transfer, Vol. A29, pp. 575-597. 

 

Crunkleton, D. W.; Narayanan, R.; Anderson, T. J. (2006), "Numerical simulations of 

periodic flow oscillations in low Prandtl number fluids", International Journal of Heat 

and Mass Transfer, Vol. 49 pp. 427–438. 

 



Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

20 

 

 

 

 

 

 

 

de Vahl Davis, G. (1983), "Natural convection of air in a square cavity: a bench mark 

numerical solution", International Journal for Numerical Methods in Fluids, Vol. 3, 

pp. 249-264. 

 

Di Piazza, I.; Ciofalo, M. (2001), "Low-Prandtl number natural convection in volumetrically 

heated rectangular enclosures II. Slender cavity, AR = 4", International Journal of 

Heat and Mass Transfer, Vol. 43, pp. 3027-3051. 

 

Divo, E. and Kassab, A. J. (2007), "Localized meshless modeling of natural-convective 

viscous flows", Numerical Heat Transfer, Vol. B129, pp. 486-509. 

 

Fasshauer, G. (2006), "Radial basis functions and related multivariate meshfree 

approximation methods: Theory and applications - Preface", Computers & 

Mathematics with Applications, Vol. 51, pp. 1223-1366. 

 

Franke, J. (1982), "Scattered data interpolation: tests of some methods", Mathematics of 

Computation, Vol. 48, pp. 181-200. 

 

Gobin, D. and Le Quéré, P. (2000), "Melting from an isothermal vertical wall, synthesis of a 

numerical comparison excercise", Computer Assisted Mechanics and Engineering 

Sciences Vol. 7, pp. 289-306. 

 

Gu, G.R. Liu; Y.T. (2005), An Introduction to Meshfree Methods and Their Programming, 

Springer, Dordrecht. 

 

Hong, C. P. (2004), Computer Modelling of Heat and Fluid Flow Materials Processing, 

Institute of Physics Publishing, Bristol. 

 

Kansa, E. J. (1990a), "Multiquadrics - a scattered data approximation scheme with application 

to computational fluid dynamics, part I", Computers and Mathematics with 

Applications, Vol. 19, pp. 127-145. 

 

Kansa, E. J. (1990b), "Multiquadrics - a scattered data approximation scheme with application 

to computational fluid dynamics, part II", Computers and Mathematics with 

Applications, Vol. 19, pp. 147-161. 

 

Kosec, G. and Šarler, B. (2008), "Solution of thermo-fluid problems by collocation with local 



Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

21 

 

 

 

 

 

 

 

pressure correction", International Journal of Numerical Methods for Heat & Fluid 

Flow, Vol. 18, pp. 868-882. 

 

Kosec, G. and Šarler, B. (2009), "Solution of phase change problems by collocation with local 

pressure correction", CMES: Computer Modeling in Engineering & Sciences, Vol. 47, 

pp. 191-216. 

 

Kosec, G., Založnik, M., Šarler, B. and Combeau, H. (2011), "A Meshless Approach Towards 

Solution of Macrosegregation Phenomena", CMC: Computers, Materials, & Continua, 

Vol. 580, pp. 1-27. 

 

Kosec, G.;Šarler, B. (2011), "H-adaptive local radial basis function collocation meshless 

method", Computers, Materials & Continua, Vol. 26, pp. 227-254. 

 

Liu, G.R. (2003), Mesh Free Methods, CRC Press, Boca Raton. 

 

Lorbiecka, A. Z. and Šarler, B. (2010), "Simulation of dendritic growth with different 

orientation by using the point automata method", CMC: Computers, Materials, & 

Continua, Vol. 18, pp. 69-103. 

 

Malan, A. G. and Lewis, R. W. (2011), "An artificial compressibility CBS method for 

modelling heat transfer and fluid flow in heterogeneous porous materials", 

International Journal for Numerical Methods in Engineering, Vol. 87, pp. 412-423. 

 

Massarotti, N. , Nithiarasu, P. and Zienkiewicz, O. C. (1998), "Characteristic-based-split 

(CBS) algorithm for incompressible flow problems with heat transfer", International 

Journal of Numerical Methods for Heat and Fluid Flow, Vol. 8, pp. 969. 

 

Mohamad, A. A, ; Viskanta, R. (1991), "Transient natural convection of low-Prandtl-number 

fluids in a differentially heated cavity", International Journal of Numerical Methods in 

Fluids, Vol. 13, pp. 61-81. 

 

Monaghan, J. J. (1988), "An Introduction to SPH", Computer Physics Communications, Vol. 

48, pp. 89-96. 

 

Nakano, A.; Ozoe, H; Churchill. S. W. (1998), "Numerical computation of natural convection 

for a low-Prandtl-number fluid in a shallow rectangular region heated from below", 



Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

22 

 

 

 

 

 

 

 

Chemical Engineering Journal, Vol. pp. 175-182. 

 

Pesso, T. and Piva, S. (2009), "Laminar natural convection in a square cavity: Low Prandtl 

numbers and large density differences", International Journal of Heat and Mass 

Transfer, Vol. 52, pp. 1036–1043 %U 

http://www.sciencedirect.com/science/article/pii/S0017931008004067. 

 

Rahman, M. M. and Siikonen, T. (2008), "An artificial compressibility method for viscous 

incompressible and low Mach number flows", International Journal for Numerical 

Methods in Engineering, Vol. 75, pp. 1320-1340. 

 

Sammouda, H.;Belghith, A.; Surry, C. (1999), "Finite element simulation of transient natural 

convection of low-Prandtl-number fluids in heated cavity", International Journal of 

Numerical Methods for heat and Fluid Flow, Vol. 9, pp.  

 

Šarler, B. and Vertnik, R. (2006), "Meshfree explicit local radial basis function collocation 

method for diffusion problems", Computers and Mathematics with Applications, Vol. 

51, pp. 1269-1282. 

 

Šarler, B. (2007), From global to local radial basis function collocation method for transport 

phenomena, Springer, Berlin, pp. 257-282. 

 

Šterk, M. and Trobec, R. (2008), "Meshless solution of a diffusion equation with parameter 

optimization and error analysis", Engineering Analysis with Boundary Elements, Vol. 

32, pp. 567-577. 

 

Traivivatana, S., Boonmarlert, P., Thee, P., Phongthanapanich, S. and Dechaumphai, P. 

(2007), "Combined adaptive meshing technique and characteristic-based split 

algorithm for viscous incompressible flow analysis", Applied Mathematics and 

Mechanics, Vol. 28, pp. 1163-1172. 

 

Trobec, R., Šterk, M. and Robič, B. (2009), "Computational complexity and parallelization of 

the meshless local Petrov-Galerkin method", Computers & Structures, Vol. 87, pp. 81-

90. 

 

Vertnik, R. and Šarler, B. (2006), "Meshless local radial basis function collocation method for 

convective-diffusive solid-liquid phase change problems", International Journal of 

http://www.sciencedirect.com/science/article/pii/S0017931008004067


Gregor Kosec and Božidar Šarler 

 

 

 

 

 

 

23 

 

 

 

 

 

 

 

Numerical Methods for Heat & Fluid Flow, Vol. 16, pp. 617-640. 

 

Vertnik, R.; Šarler, B.; Senčič, B. (2011), "Solution of macrosegregation in continuously cast 

billets by a meshless method", The 3rd International Conference on Advances in 

Solidification Processes. 

 

Wang, J. G. and Liu, G. R. (2002), "A point interpolation meshless method based on radial 

basis functions", International Journal for Numerical Methods in Engineering, Vol. 

54, pp. 1623-1648. 

 

Xiaohua, W.; Yingjie, W.;Xinrong, S. (2009), "Numerical investigation of the first bifurcation 

for natural convection of fluids enclosed in a 2D square cavity with Pr lower than 1.0", 

Energy Conversion and Management Vol. 50, pp. 2504-2512. 

 

Xin, S.;Le Quere, P. (2002), "An extended chebyshev pseudo – spectral benchmark for the 

8:1 differentially – heated cavity", International Journal of Numerical Methods in 

Fluids, Vol. 40, pp. 981-98. 

 

Založnik, M., Xin, S. and Šarler, B. (2005), "Verification of a numerical model of 

macrosegregation in direct chill casting", International Journal of Numerical Methods 

for Heat & Fluid Flow, Vol. 18, pp. 308-324. 

 

 

 


