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Abstract

A comparison between weak form meshless local Petrov-Galerkin method (MLPG)
and strong form meshless diffuse approximate method (DAM) is performed for
the diffusion equation in two dimensions. The shape functions are in both methods
obtained by moving least squares (MLS) approximation with the polynomial weight
function of the fourth order on the local support domain with 13 closest nodes. The
weak form test functions are similar to the MLS weight functions but defined over
the square quadrature domain. Implicit timestepping is used. The methods are
tested in terms of average and maximum error norms on uniform and non-uniform
node arrangements on a square without and with a hole for a Dirichlet jump problem
and involvement of Dirichlet and Neumann boundary conditions. The results are
compared also to the results of the finite difference and finite element method. It has
been found that both meshless methods provide a similar accuracy and the same
convergence rate. The advantage of DAM is in simpler numerical implementation
and lower computational cost.

Key words: meshless methods, MLPG, DAM, weak form, strong form, diffusion
equation, error comparison, regular node arrangement, non-regular node
arrangement.

1 Introduction

In recent years, a number of meshless approaches have been developed for the numerical
solution of partial differential equations (PDEs) to circumvent the problem of polygo-

∗ Corresponding author: Božidar Šarler, E-mail: bozidar.sarler@ung.si, Phone:
+386 5 3315 246, Fax: +386 5 3315 359.

Preprint submitted to Elsevier 29 June 2011



nisation encountered in the classical, mesh-based numerical methods, such as the finite
difference (FDM) [1] and finite volume methods (FVM) [2], finite element method (FEM)
[3] or boundary domain integral method (BDIM) [4]. The ”mesh” denotes the connec-
tivity between the corresponding neighboring nodes obtained by some sort of spatial
discretization. For non-structured three dimensional geometries from real world the mesh
construction is one of the most cumbersome step in the entire numerical solution process
[5].

Instead of using a mesh, a set of geometrically unconnected nodes can be used for the
global domain discretization, resulting in the meshless methods (MLM) (also referred to
as mesh-free methods). Initial concepts of MLM were published in the Seventies with the
smoothed particle hydrodynamics (SPH) [6], based on the combination of weak-form and
collocation techniques. Many variants of the meshless methods have been developed later,
based on different strong/weak formulations and approximation/interpolation techniques.
Diffuse element method (DEM) [7], element-free Galerkin method (EFG) [8], reproduc-
ing kernel particle method (RKPM)[9], hp-cloud method [10], partition of unity FEM
(PUFEM) [11], meshless Galerkin method using radial basis functions (MGRBF) [12–14],
and others, are based on the global weak-form. These methods became widely used in
different areas of application. General finite difference method (GFDM) [15,16], with ar-
bitrary mesh, radial basis function collocation methods (RBFCM) [17] and finite point
method (FPM) [18], which are based on collocation, are meshless methods devised from
the global strong-form. In spite of the simple formulation, additional strategies are needed
for their stabilization [19]. All above MLM methods do not need the mesh for the con-
struction of the trial function but by weak-form methods a simple background mesh is
still needed for the weighted residual integration. Detailed information on a variety of
meshless methods can be found in the review papers [20,21].

An alternative formulation of the meshless methods is based on the local weak-form. The
integration can now be performed in independent quadrature subdomains, therefore no
background mesh is needed. Interpolation [22,23] or moving least squares (MLS) approx-
imation of nodal parameters from subdomains can be used for the construction of shape
functions. Even though the interpolation simplifies the implementation of the essential
boundary conditions, there is no general method known to solve the possible singulari-
ties of the interpolation coefficient matrix in case of degenerated distribution of nodes or
to ensure the continuity of the solution. On the other hand, MLS is less influenced by
inappropriate nodal distribution in the support domain because it is over-determined by
default. It is an essential approach that guarantees the locality of many meshless meth-
ods. The shape functions are built from the weighted contributions of a certain number of
the nearest nodes [24,25]. However, the approximative nature of the MLS trial functions
makes it more difficult to impose essential boundary conditions because the trial functions
do not pass through the nodal values.

The meshless local Petrov-Galerkin method (MLPG) [26,27] is the earliest representative
of the ’truly’ meshless methods. Several variants of MLPG differ in the construction of trial
functions and the use of different test functions. Note that both of them are local. We will
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further test the MLPG1, a variant of MLPG [28], which uses the MLS weight function as
a test function over a square quadrature subdomain. New methods that combine previous
knowledge from FEM and BEM with the MLPG approach have been proposed in [29].
Several convergence issues have been addressed [28,12,30], mostly in connection with the
structural analysis, and often on smaller systems with a uniform distribution of nodes.
The convergence of MLPG methods depends on the MLS approximation accuracy and
stability and on the integration accuracy of the local weak-form, all three depending on the
distribution of discretization nodes [31,32]. Further studies have confirmed that MPLG is
a general concept that can be applied in various fields of application [33–37].

An alternative, much simpler local meshless approach, is Diffuse Approximate Method
(DAM) [47]. Similar to the MLPG, in the DAM, the local trial functions are constructed
through the MLS approach over the local support domain. In the DAM ”local” refers
to the locality of the MLS trial functions. The conceptual difference is in the treatment
of partial differential operations. The DAM uses strong-form and thus no integration is
required. All differential operations are performed by straightforward application of the
differential operator on the trial function.

To our knowledge this is the first work that compares errors of two meshless local methods
MLPG and DAM, with most of method-specific parameters the same, e.g. local subdo-
main, base functions, nodal distribution. Thus the comparison of the weak and strong
solution principles remains the primary focus of the present paper. As a reference, we add
also the errors of the two mesh-based methods, FDM and FEM, obtained under the same
circumstances. The meshless methods are claimed to perform well in situations with com-
plicated geometry and non-uniform node arrangement resulting in smoother solution than
mesh-based methods. However, since these methods are in development, they are in the
great majority of numerical simulations [39,38,14] demonstrated only on simple geome-
tries with regular node arrangements. Also direct comparisons between different meshless
methods are very rarely found in the literature. The main incitement of this paper is in
contributing towards a better understanding of the meshless approaches. Respectively,
we compare the well known meshless local Petrov-Galerkin method (MLPG), which is
based on the week formulation, and the local diffuse approximate method (DAM), based
on the strong formulation. The methods are tested in solving the dimensionless diffusion
equation. We use uniform and non-uniform node arrangements and simple as well as more
complicated geometry for assessment. Errors were evaluated in discretization nodes on a
square domain and on a domain with a hole with Dirichlet boundary conditions. Our
analysis has taken into account different spatial domain discretization ranging from nodes
on a simple orthogonal mesh, through randomized nodes with an approximately even
density, to nodes on a fully optimized triangular meshes.

The structure of the paper is as follows. In the next section a short background on the
meshless approaches used for the solution of a diffusion equation are given. Then the test
conditions are described in more details. In Section 4, the obtained results are presented
and analyzed. The paper concludes with the discussion on the obtained results and future
work.
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2 Governing equation and discretization

2.1 Diffusion equation

We compare the numerical solutions, obtained by two meshless methods MLPG1 and
DAM, with the standard mesh-based methods FDM and FEM. The tested PDE is a
diffusion equation in its 2-D dimensionless form:

u,t = u,xx + u,yy, (x, y) ∈ Ω, (1)

u(x, y, t) = u(x, y, t), (x, y) ∈ ΓD, (2)

u(x, y, t),n = g(x, y, t), (x, y) ∈ ΓN , , (3)

u(x, y, t) = u0, t = 0, (4)

where Ω, and ΓD and ΓN stand for interior, Dirichlet boundary and Neumann boundary
of the domain, (x, y) are spatial coordinates, t is time, u(x, y, t) is the unknown solution,
the part of subscript following the comma denotes partial derivatives, u and g are the
prescribed Dirichlet and Neumann boundary conditions and u(x, y, 0) = u0 the known
initial condition.

We use the term ’node’, denoted by xi, for the domain discretization point. Any other
points in the domain, e.g. evaluation points for calculation of numerical integrals, are
denoted by x. The unknown solution in node xi at time t is u(xi, t).

The numerical solutions of the diffusion equation (1), presented in this work, are obtained
by using our own Matlab [40] implementations, except FEM, which is obtained by COM-
SOL Multiphysics [41]. The first test domain is the unit square Ω = [0, 1]× [0, 1], shown
in the left part of Fig. 1, with initial conditions u0 = 1 and essential boundary conditions
u = 0, for which the exact solution is known [42]. In the case of mixed boundaries the
upper and right boundaries remain Dirichlet type while left and lower boundaries are
changed to insulation Neumann type. For the sake of convenient data presentations the
domain size remains the same. The second test domain is the unit square with a hole of
radius 0.15 centered at (0.6, 0.35), shown in the right part of Fig. 1, for which the refer-
ence solution is obtained by FEM with the number of degrees of freedom DOFs = 111156,
shape functions of degree two and integration order of four. The error of the reference
solution is two orders of magnitude smaller than the investigated errors of our test cases.

The analyzed test case is evolving in time, which influences the solution error. The changes
in the solution gradients are most pronounced at the beginning of the simulation, which
contributes to the error from inaccurate representation of the development of the solution
with time. Additionally, the steep gradients can not be accurately reconstructed with the
limited number of shape functions, which is the second source of errors. As a consequence,
the discrete approximation could contribute also to the error in the integration needed by
FEM and MLPG. Based on the previous findings [31], we compare all methods at time
t = 0.005, where all tree possible sources of errors contribute significantly to the finial

4



solution error.

2.2 Node positioning

The numerical solution of PDE is based on spatial discretization of the solution domain
Ω and its boundary Γ, which converts a PDE into a system of algebraic or ordinary differ-
ential equations. The spatial discretization significantly influences the solution accuracy.
In order to test the sensitivity of the solution methods to the nodal distribution we use
several spatial domain discretizations within the whole range of inter-nodal distances h
down to h = 5 · 10−3.

In the regular discretization, the nodes are distributed in a square grid with inter-nodal
distance h = 1/(

√
N − 1).

The non-regular discretization is devised from regular discretization with random shifts in
each dimension of the regularly distributed nodes by up to, e.g., irreg = ±{0.1h, 0.2h, 0.3h},
where h is the average inter-nodal distance. Such a discretization is not applicable to the
FDM. The FEM mesh can be obtained from it by triangularization of nodes but such
a discretization is not optimal and the results induce higher discretization errors. The
meshless methods must use an appropriate data structure, such as k-d tree, to efficiently
identify the support domains.

The FEM discretization is in our case a triangular mesh implemented by incrementally
improving the mesh quality and using denser nodes near the boundaries of the domain.
We obtained the FEM meshes used from COMSOL by using maximal possible quality
of the elements. For the case of quadratic shape functions, additional internal nodes are
generated automatically and added to the original nodes from the triangular mesh, which
is evident from the number of DOFs. All nodes have been used as FEM discretization
nodes. The FEM discretization can be used also in DAM and MLPG1.

We also test a distribution with four nodes in the corners, and a proportional number on
the boundaries, but was otherwise completely random. The only method which works with
such a discretization is FEM, however, the error increases for two orders of magnitude.
Therefore we do not test further such a random discretization.

In the left part of Fig. 1 the regular (up) and non-regular (middle) discretization with
irreg = ±0.3h on the unit square domain without hole for N = 1600 are shown. FEM
discretization is shown for 1633 DOFs (bottom), i.e. nodes of FEM shape functions of
degree 2. The right part of Fig. 1 shows the same discretizations for similar nodal densities
but on the domain with a hole with N = 1528 for the regular (up) and non-regular
(middle) discretization, and with 1464 DOFs for FEM discretization (below).

In the unit square domain the nodes are always far enough from boundaries in all the
discretizations, e.g. by at least (1 − irreg)h in case of non-regular discretization. On
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Fig. 1. Typical examples of regular discretization (upper row), non-regular discretizations for
irreg = ±0.3h (middle row) and FEM discretization (bottom row) on a domain without hole
(left column) and with a hole (right column) for the average inter-nodal distance h = 2.6 · 10−2.
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the other hand, in the domain with a hole, some of the nodes from the regular and the
non-regular discretizations can fall in the vicinity of hole boundary or even very close to
a node on the hole boundary, which may produce numerical instability and inaccurate
integration. In case of MLPG1 and DAM, nodes are therefore removed if their distances
to the hole boundary are below 10−3h, which is the threshold that has produced the best
results. For FDM, the best threshold is 0.5h, because in this case the errors near the hole
boundary span evenly between positive and negative values. These restrictions need not
to be applied in FEM discretization that manages non-orthogonal or curved boundaries
by its meshing algorithm.

2.3 Time discretization

If the PDE is time-dependent, as in our case (1), the PDE is converted into a system of or-
dinary differential equations (ODE) with nodal parameters ui(t) as unknowns. Therefore
a time discretization is also needed, which transforms the system of ODE into a system
of algebraic equations. The solution procedure starts from the initial conditions u(x, y, t0)
and generate approximate solution for every time-step ∆t. The procedure for the genera-
tion of the final algebraic system of equations depends on the formulation, which is weak
in MLPG1, and strong in DAM. We use in both meshless methods the Crank-Nicolson
time discretization scheme:

u(t+
∆t

2
) =

u(t+∆t) + u(t)

2
, u,t(t+

∆t

2
) =

u(t+∆t)− u(t)

∆t
. (5)

This scheme is unconditionally stable and achieves second order accuracy in time [43].

Because our primary goal is the comparison of methods in terms of errors and convergence
rate rather than computation time, we select a time-step dt = 10−6 that guarantees the
stability of all numerical methods for all tested systems but introduces insignificant time-
discretization error, as compared with the domain-discretization error.

2.4 Error norms used in comparison

The error analysis and comparison of all analyzed methods is performed by examining the
error in nodes over the whole domain. Besides the error in nodes, we also evaluate the error
on a dense reference grid with 220×220 points. In FEM and MLPG1 the evaluated solution
values are obtained from their native shape functions. Direct evaluation of reference grid
error is not possible in FDM and DAM, because the solution is known only in nodes,
therefore it was interpolated to the reference grid by griddata Matlab function. In all test
cases, the evaluated solution error was slightly higher than the error evaluated just in
the nodes. With the increasing number of the nodes both errors become practically the
same, because the nodal density is approaching to the density of the evaluation grid. We
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conclude that for the tests, presented in this paper, the error in the nodes suffices. Note
that the regular FDM works only on orthogonal mesh.

We have analyzed the accuracy of the methods in terms of maximal absolute error E∞ in
the L∞ norm and the relative error E2 in the L2 norm defined as:

E∞ = max
xi∈Ω

|û(xi)− u(xi)| E2 =

(∑
xi∈Ω(û(xi)− u(xi))

2∑
xi∈Ω u(xi)2

)1/2

. (6)

2.5 Moving least squares

The domain Ω is discretized by a set of nodes xi. The approximate solution û is a linear
combination of shape functions ϕi with nodal parameters ui as the coefficients:

û(x) =
N∑
j=1

ujϕj(x) = uTΦ(x), uT = [u1, . . . , uN ]. (7)

Both meshless methods, MLPG1 and DAM, obtain the shape functions in the same way
by the moving least squares (MLS) approximation, which will be described first. The MLS
approximation is an extension of the classical least squares, in that just a few nearest nodes
affect the approximated value at any point x. The locality is implemented by hat-shaped
MLS weight functions w [20], which are non-zero on the circular MLS support domain ΩS

of the point of interest x:

w(x,xi) = w

(
||xi − x||2
rS(x)

)
, where w(d) =

1− 6d2 + 8d3 − 3d4 d ≤ 1

0 d > 1
(8)

and rS(x) is the radius of ΩS. The MLS support of each point contains nS support nodes
xi, which locally approximate the unknown function û(x):

û(x) =
m∑
i=1

pi(x)ai(x) = pT(x)a(x), (9)

where p is a set of m basis functions evaluated in point x, e.g. m = 6 for monomials up to
degree 2 in 2-D with pT = [1, x, y, x2, xy, y2], and ai(x) are unknown coefficients obtained
by minimizing:

eMLS =
∑

xi∈ΩS(x)

w(x,xi)(û(xi)− ui)
2. (10)

We select nS = 13 based on the experiments published in [31]. The solution of (10) results
in a system of linear equations:

A(m×m)a = B(m×nS)uS, (11)
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where a stands for approximation coefficients, uS for nodal parameters of nodes from ΩS

and

Ai,j =
nS∑
k=1

w(x,xk)pi(xk)pj(xk), Bi,j = w(x,xj)pi(xj). (12)

The approximated trial function û(x) can be reproduced by substituting the solution of
(11) into (9):

û(x) = pT(x)A−1(x)B(x)uS = Φ(x)uS. (13)

In an alternative but equivalent view, a shape function ϕj, is equal to the approximation of
the value 1 in node xj and 0 in all other nodes. It is determined solely by the nodal positions
and is independent of the nodal parameters. The derivatives of the shape functions Φ on
the i-th independent variable xi, again denoted for simplicity by a subscript after a comma,
can be obtained as proposed in [20]:

Φ,xi
= gT

,xi
B + gTB,xi

= (pT
,xi

− gTA,xi
)A−1B + gTB,xi

, (14)

where g is an auxiliary vector g = pTA−1. In the MLPG solution process, the shape
functions Φ and their derivatives can be evaluated in any domain point, in particular in
integration points. We will show in the next section that in the DAM, the trial functions
and their derivatives are needed in nodes only, which simplifies the evaluation procedure.

2.6 Meshless local Petrov-Galerkin method

The MLPG method can be derived through the weighted residual method [44]. The MLPG
equations for internal nodes can be constructed by stating that the residual r(x) is or-
thogonal to a set of test functions Wi:∫

Ω
Wi(x)r(x) dΩ = 0. (15)

where the residual r(x) of Eq. (1) is obtained by replacing u with û and subtracting the
right from the left side of the PDE:

r(x) = û,t − (û,xx + û,yy). (16)

The equations for MLPG boundary nodes are constructed by collocation using the known
essential boundary conditions. The test function Wi can in principle be any nonzero
function. The various versions of MLPG differ mainly in the type of test functions Wi

used in the weak form (15). Test functions Wi are non-zero only in the vicinity of the
node xi, which is called the node’s quadrature domain ΩQi. Consequently, the integration
in (15) is performed only locally over ΩQi.

The MLPG1 uses the MLS weight functions as test functions. We analyze the version
of MLPG1, which uses in its 2-D version the hat-shaped test function over the square
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quadrature domain ΩQi, as proposed in [30]:

Wi(x, y) =


(
1−

(
x−xi

dQ(xi)/2

)2)
·
(
1−

(
y−yi

dQ(xi)/2

)2)
x, y ∈ ΩQi

0 x, y ̸∈ ΩQi

(17)

where dQ(xi) is the side of the square quadrature domain dQ. The dimension of ΩQi should
be related to the point density in order to retain the required integration accuracy in the
whole Ω. We relate the size of MLS support domain ΩS(xi) and quadrature domain ΩQi

by dQ(xi) = βQ rS(xi), with βQ = 0.7, which was confirmed as the optimal value for
MLPG1 with MLS of degree 2 [31].

By inserting Eq. (17) and (16) in Eq. (15) and using integration by parts on the two terms
containing the second spatial derivative, we obtain:∫

ΩQi

Wiû,t dΩQi −
∫
ΓQiB

Wi (û,xnx + û,yny) dΓQiB +
∫
ΩQi

(Wi,xû,x +Wi,yû,y) dΩQi = 0,

(18)

where ΓQiB = ΓQi ∩ Γ is the part of the quadrature domain boundary ΓQi that coincides
with the global domain boundary Γ. To obtain ODEs with nodal parameters uj(t) as
unknowns, (7) is substituted into (18). One equation per internal domain node is thus ob-
tained after the numerical integration in each ΩQi with contributions from all the domain
nodes with non-zero shape functions over ΩQi, and the remaining equations for boundary
nodes are obtained by collocation, resulting in the final system of ODEs:

Cu,t(t) +Ku(t)− f = 0, (19)

where u is the vector of all nodal parameters, and by tradition C and K are the damping
and the stiffness matrix, respectively, and f the load vector.

The MLPG1 shape functions obtained by MLS are non-polynomial and the integrals
in Eq. (15) can only be evaluated numerically. We use Gaussian quadrature [45] with
a square mesh of nq = nG × nG standard Gaussian quadrature points in ΩQi. Most of
MLPG1 results presented in this paper have been obtained with nG = 3. In some specific
cases of nodal positions, e.g. extremely uneven nodal density, or a node very close to the
domain boundary, Gaussian integration fails to provide required accuracy. In such cases
the recursive adaptive Simpson quadrature rule was applied, which significantly increases
the time needed for integration [46].

In Fig. 2 the domain Ω, which is the unit square with a hole, is discretized by FEM dis-
cretization with 364 DOFs/nodes (dots) obtained from COMSOL meshing utility. A circu-
lar ΩSi and square ΩQi with the side dQ = 0.7rS are shown for nodes i = 22, 200 and 300.
Each MLS support is composed of nS = 13 nodes (asterisks). In each quadrature domain
there are nq = 9 Gaussian quadrature points (crosses). We can see that the dimensions of
the local supports are consistent with the local nodal densities.
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Fig. 2. Circular ΩS and square ΩQ for nodes 22, 200 and 300. Discretization nodes are marked
with dots, MLS support nodes with asterisks, and quadrature points with crosses.

2.7 Diffuse approximate method

The strong formulation, which is the foundation of DAM, requires that the continuous
spatial variables and derivatives of the PDE are replaced by their approximate values.
In the original implementation of DAM [47] six monomials were used for basis functions
with nine nodes in each subdomain. Various types of basis functions might appear in the
calculation of the trial function. The most commonly used are multiquadrics, Gaussians,
monomials, etc. If the number of basis functions m from Eq. (9) is the same as the number
of support nodes nS, the interpolation is used to determine the coefficients ai. If the radial
basis functions are employed besides monomials and collocation is used instead of MLS the
method is known from the literature as Local Radial Basis Function Collocation Method
(LRBFCM) [38,48–51]. The Diffuse Approximate Method (DAM), as implemented in this
paper, uses the described MLS approach (9) for the local approximation of the unknown
solution û(x).

To be comparable with the MLPG and remaining tested methods we apply for the basis
functions all the monomials up to degree 2: pT = [1, x, y, x2, xy, y2], and the already
defined hat-shaped weight functions (8) for the construction of the nodal trial functions
with a constant number of MLS support nodes nS = 13 in all ΩSi. MLS support nodes
are determined again as nS closest nodes to a domain node xi.

To determine the approximation coefficients a the overdetermined system (11) has to be
solved for each support domain ΩSi. With known a the approximate value of the spatial
derivatives in node xk can be computed by applying the derivation operators xj on the
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nodal trial functions (9):

û(xk),xj
=

m∑
i=1

pi(xk),xj
ai . (20)

The above expression can be written in a compact form by inserting explicit computation
of approximation coefficients:

û(xk),xj
=

m∑
i=1

 nS∑
j=1

A−1
i,j Bi,j uj

 pi(xk),xj
. (21)

By applying the basic summation rules, can Eq. (21) be rewritten in a more convenient
form:

û(xk),xj
=

nS∑
j=1

(
m∑
i=1

A−1
i,j Bi,j pi(xk),xj

)
uj. (22)

Spatial derivation of basis functions is simple. Equation (22) represents in fact the relation
between field values in the support domain nodes and value of arbitrary partial differ-
ential operation in the central node of the support domain. If working with static nodal
distributions, the second summation in (22) can be computed in pre-processing phase and
therefore only nS operations are needed to compute arbitrary differential operator on the
local support domain ΩS.

3 Results

3.1 Discretization error

Visualized typical shapes of numerical solutions for the described test cases û(x, y, 0.005)
are shown in Fig. 3. The solutions are shown for non-regular discretization with irreg =
±0.3h and N = 40 × 40 = 1600 nodes on the domain with no hole (left) and with
the same nodal density on the domain with a hole (1528 inner nodes and 193 boundary
nodes), which are the spatial discretizations shown in the middle part of Fig. 1. Note
that the DAM solutions are defined in nodes only therefore they are shown with dots,
which are triangularized with a mesh for better visibility. On the lower part of Fig. 3
the corresponding solution errors are shown, again in nodes. Error distributions have
similar shapes also for other numerical methods and for systems with a larger number of
the nodes. They have peaks near corners and boundaries, and are larger in regions with
steeper gradients near boundaries.

Our primary aim is to compare the local weak and strong form meshless methods, MLPG1
and DAM, on both test domains with all three discretizations and with different nodal
densities. We run also FDM and FEM, both with second order convergence, as references,
only on their native discretization, i.e. the regular and the triangular FEM mesh. All
simulation parameters were kept constant as described in previous sections. The E∞ is
shown in Fig. 4 for the domain with no hole (left) and the domain with a hole (right), for
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Fig. 3. Numerical solutions and errors of our test cases obtained by DAM for non-uniform
discretization from the middle part of Fig.1 with irreg = ±0.3h and the average inter-nodal
distance h = 2.6 · 10−2.

regular (up) and non-regular discretization with irreg = ±0.3h (middle), and for FEM
discretization (bottom).

The relative error E2 is also calculated, as well. It behaves in the same way as E∞ being
constantly smaller for approximately a factor of two, however it can hide some single error
spikes. The numerical errors for both error norms, for different number of domain nodes
N and for both domains are given in Table 1 for regular discretization, in Table 2 for
non-regular discretization with irreg = ±0.3h and in Table 3 for the FEM discretization.
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Fig. 4. Comparison of E∞ of FDM, FEM, DAM, and MLPG1 solutions obtained on regular
(upper row), non-regular (middle row) and FEM (bottom row) discretization on a domain with
no hole (left column) and with a hole (right column), as a function of average inter-nodal distance
h.

3.2 Computation time

Both meshless techniques are compared regarding the computation time. As the meth-
ods have been implemented in MatLab and executed on the same computer (Intel Core
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MLPG1 - no hole DAM - no hole FDM - no hole

h E∞ E2 E∞ E2 E∞ E2

1.7E-01 8.29E-02 7.03E-02 9.73E-02 6.45E-02 9.87E-02 6.50E-02

1.1E-01 4.47E-02 3.09E-02 4.51E-02 2.76E-02 4.55E-02 2.80E-02

5.3E-02 1.18E-02 7.23E-03 1.31E-02 6.73E-03 1.33E-02 6.82E-03

2.6E-02 4.05E-03 2.21E-03 3.27E-03 1.60E-03 3.33E-03 1.62E-03

1.7E-02 1.98E-03 1.06E-03 1.43E-03 6.95E-04 1.46E-03 7.07E-04

1.3E-02 1.17E-03 6.15E-04 7.97E-04 3.87E-04 8.15E-04 3.94E-04

1.0E-02 7.67E-04 4.02E-04 5.05E-04 2.45E-04 5.18E-04 2.50E-04

8.4E-03 5.43E-04 2.84E-04 3.48E-04 1.69E-04 3.58E-04 1.73E-04

7.2E-03 4.06E-04 2.11E-04 2.53E-04 1.24E-04 2.60E-04 1.27E-04

6.3E-03 3.14E-04 1.63E-04 1.92E-04 9.49E-05 1.98E-04 9.75E-05

5.6E-03 2.49E-04 1.30E-04 1.51E-04 7.52E-05 1.55E-04 7.75E-05

5.0E-03 2.03E-04 1.05E-04 1.21E-04 6.14E-05 1.25E-04 6.35E-05

4.6E-03 1.68E-04 8.74E-05 9.95E-05 5.14E-05 1.04E-04 5.33E-05

MLPG1 - hole DAM - hole FDM - hole

h E∞ E2 E∞ E2 E∞ E2

1.6E-01 1.77E-01 1.72E-01 1.41E-01 9.98E-02 1.38E-01 9.79E-02

1.1E-01 1.38E-01 8.61E-02 1.02E-01 5.96E-02 1.86E-01 7.57E-02

5.1E-02 3.61E-02 2.19E-02 2.58E-02 1.35E-02 1.59E-01 3.12E-02

2.5E-02 8.94E-03 5.05E-03 4.47E-03 2.74E-03 8.31E-02 1.24E-02

1.6E-02 3.60E-03 2.18E-03 1.76E-03 1.05E-03 6.14E-02 8.74E-03

1.2E-02 1.91E-03 1.22E-03 9.56E-04 5.29E-04 4.70E-02 6.23E-03

9.7E-03 1.29E-03 7.70E-04 6.20E-04 3.26E-04 3.95E-02 4.43E-03

8.1E-03 8.77E-04 5.15E-04 3.95E-04 2.15E-04 3.40E-02 3.52E-03

6.9E-03 6.33E-04 3.65E-04 4.07E-04 1.54E-04 2.93E-02 3.55E-03

6.1E-03 4.78E-04 2.73E-04 3.72E-04 1.24E-04 2.59E-02 3.09E-03

5.4E-03 3.77E-04 2.11E-04 3.46E-04 1.09E-04 2.39E-02 2.45E-03

4.8E-03 3.73E-04 1.71E-04 3.37E-04 1.00E-04 2.12E-02 1.87E-03

4.4E-03 2.57E-04 1.35E-04 2.23E-04 9.91E-05 1.96E-02 2.24E-03

Table 1
Numerical errors E∞ and E2 for MLPG1, DAM and FDM on a domain with no hole and with
a hole, and regular discretization with different nodal densities h.

i7 CPU, 2.8GHz) under the same operating system (64 bit Windows 7), the measured
execution time can be compared. Most of the support functions, i.e. initial placement of
nodes, finding the support domains, evaluation of errors, are equal for both methods. The
solution of the final liner system with the sparse banded matrix was obtained by iterative
solver (bicgstab). The systems are similar for both methods and can be solved in time
proportional to O(N). The most time consuming procedure is the creation of the system
matrix. We have to determine the MLS supports and to solve an over determined system
for each node, in the case of DAM, or for each integration point, in the case of MLPG1.
Computation time is shown in Fig. 5. We experience a significant difference between DAM
and MLPG1, in the favor of DAM, for more than an order of magnitude.

The numerical values for the computation time of DAM (tDAM) and MLPG1 (tMLPG1)
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MLPG1 - no hole DAM - no hole

h E∞ E2 E∞ E2

1.7E-01 1.21E-01 7.02E-02 1.13E-01 6.27E-02

1.1E-01 8.12E-02 3.53E-02 7.32E-02 2.97E-02

5.3E-02 1.82E-02 8.27E-03 1.82E-02 6.95E-03

2.6E-02 4.75E-03 2.28E-03 3.43E-03 1.58E-03

1.7E-02 2.17E-03 1.03E-03 1.63E-03 7.43E-04

1.3E-02 1.26E-03 6.19E-04 8.57E-04 3.96E-04

1.0E-02 8.10E-04 4.00E-04 5.52E-04 2.51E-04

8.4E-03 6.04E-04 2.79E-04 3.84E-04 1.69E-04

7.2E-03 4.41E-04 2.12E-04 2.59E-04 1.21E-04

6.3E-03 3.29E-04 1.64E-04 2.15E-04 9.76E-05

5.6E-03 2.58E-04 1.29E-04 1.64E-04 7.47E-05

5.0E-03 2.07E-04 1.03E-04 1.34E-04 6.36E-05

4.6E-03 1.78E-04 8.70E-05 1.13E-04 4.97E-05

MLPG1 - hole DAM - hole

h E∞ E2 E∞ E2

1.6E-01 2.67E-01 1.99E-01 1.18E-01 8.71E-02

1.1E-01 1.25E-01 8.89E-02 1.04E-01 4.71E-02

5.1E-02 3.74E-02 2.00E-02 1.83E-02 1.04E-02

2.5E-02 9.83E-03 5.20E-03 4.03E-03 2.15E-03

1.6E-02 3.22E-03 1.96E-03 1.67E-03 9.43E-04

1.2E-02 2.15E-01 6.10E-03 9.54E-04 5.13E-04

9.7E-03 1.20E-03 6.78E-04 5.46E-04 3.11E-04

8.1E-03 8.26E-04 4.61E-04 4.15E-04 2.07E-04

6.9E-03 6.27E-04 3.31E-04 3.67E-04 1.56E-04

6.1E-03 4.51E-04 2.44E-04 3.90E-04 1.30E-04

5.4E-03 3.73E-04 1.89E-04 3.55E-04 1.10E-04

4.8E-03 3.64E-04 1.54E-04 3.56E-04 1.04E-04

4.4E-03 3.52E-04 1.29E-04 3.12E-04 1.04E-04

Table 2
Numerical errors E∞ and E2 for MLPG1 and DAM on a domain with no hole and with a hole,
and non-regular discretization with irreg = ±0.3h and different nodal densities h.

are given in Table 4. In the last column the ratio (tMLPG1/tDAM) is shown, which is
much larger by smaller systems. The DAM requires less memory and therefore uses the
computer cache memory in a more efficient way.

It was shown in [52] that the asymptotical computational complexity of the construction
of the final linear system in MLPG1 is O(Nnq[logN + nSm

2]), nq and nS representing
respectively the number of local quadrature points and the number of nodes in the support.
The construction of the final linear system in DAM is done in O(Nn3

S). We see from Table
4 that the measured computation time is in accordance with these findings because in our
case nq = 9. We need one additional evaluation of the MLPG1 solution for the calculation
of errors. The remaining complexity of MLPG1 comes from the searching of support nodes
and reconstructing trial functions for each quadrature point. Note that there are nq times
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MLPG1 - no hole DAM - no hole FEM - no hole

h E∞ E2 E∞ E2 E∞ E2

1.9E-01 7.71E-02 6.83E-02 3.75E-02 2.93E-02 7.25E-02 4.32E-02

1.1E-01 8.05E-02 4.01E-02 5.65E-02 2.73E-02 7.92E-02 3.69E-02

7.2E-02 2.82E-02 1.63E-02 2.49E-02 1.03E-02 1.64E-02 6.15E-03

5.3E-02 2.09E-02 1.15E-02 1.26E-02 7.51E-03 6.24E-03 2.78E-03

3.7E-02 9.96E-03 4.55E-03 6.67E-03 2.77E-03 4.38E-03 1.24E-03

2.5E-02 8.98E-03 3.03E-03 2.97E-03 1.48E-03 8.22E-04 2.81E-04

1.8E-02 2.72E-03 1.35E-03 1.47E-03 6.75E-04 6.42E-04 2.33E-04

1.3E-02 1.37E-03 7.00E-04 8.03E-04 3.57E-04 2.49E-04 8.92E-05

9.2E-03 7.12E-04 3.51E-04 4.28E-04 1.88E-04 1.06E-04 4.52E-05

6.5E-03 3.65E-04 1.79E-04 1.97E-04 9.09E-05 6.20E-05 2.65E-05

4.5E-03 1.73E-04 8.30E-05 9.12E-05 4.22E-05 2.52E-05 1.42E-05

MLPG1 - hole DAM - hole FEM - hole

h E∞ E2 E∞ E2 E∞ E2

1.7E-01 6.14E-01 3.58E-01 6.13E-01 2.59E-01 2.08E-01 1.36E-01

1.0E-01 1.45E-01 8.36E-02 1.06E-01 4.63E-02 7.11E-02 3.64E-02

7.1E-02 5.79E-02 3.71E-02 4.10E-02 1.65E-02 2.04E-02 1.11E-02

5.1E-02 3.71E-02 1.70E-02 2.65E-02 1.20E-02 1.08E-02 4.85E-03

3.6E-02 1.85E-02 8.34E-03 1.33E-02 5.14E-03 5.76E-03 1.88E-03

2.5E-02 8.17E-03 4.78E-03 5.67E-03 2.78E-03 3.11E-03 9.36E-04

1.7E-02 3.36E-03 2.02E-03 1.63E-03 9.74E-04 7.77E-04 2.68E-04

1.2E-02 1.73E-03 1.02E-03 9.65E-04 4.99E-04 3.24E-04 1.95E-04

8.9E-03 9.18E-04 5.57E-04 4.98E-04 2.66E-04 1.59E-04 8.65E-05

6.3E-03 4.85E-04 2.82E-04 2.42E-04 1.32E-04 7.58E-05 4.07E-05

4.3E-03 2.12E-04 1.28E-04 1.03E-04 7.00E-05 3.27E-05 1.92E-05

Table 3
Numerical errors E∞ and E2 for MLPG1, DAM and FEM on a domain with no hole and with
a hole, and FEM discretization with different nodal densities h.

N tDAM tMLPG1 tMLPG1/tDAM

49.00 0.05 3.70 76.72

100.00 0.06 4.93 76.20

400.00 0.26 13.38 51.80

1600.00 1.22 53.26 43.72

3600.00 3.84 136.53 35.59

6400.00 8.69 279.30 32.14

10000.00 16.98 494.07 29.10

14400.00 32.67 823.60 25.21

19600.00 42.36 1104.10 26.06

25600.00 67.34 1620.30 24.06

32400.00 106.84 2308.40 21.61

40000.00 162.13 3200.00 19.74

48400.00 237.07 4361.40 18.40

Table 4
Computation time of DAM and MLPG1 for different number of nodes.
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Fig. 5. Total computation time of DAM and MLPG1 as a function of the number of nodes.

more quadrature points than discretization nodes.

4 Discussion

All methods converge consistently on the unit square domain with no hole and regular
discretization (see Fig. 4 upper left) for both test cases: Dirichlet boundary and mixed
Dirichlet-Neumann boundaries (denoted in legend graphs by suffix N). In case of the non-
regular discretization with irreg = ±0.3 and no-hole (Fig. 4 middle left) the convergence
rate of the test case with only Dirichlet boundaries remains, however, the test with mixed
Dirichlet-Neumann boundaries cannot provide a reasonable solution. For mixed boundary
conditions, MLPG and DAM work only for smaller levels of randomization, up to irreg =
±0.1.

The number of Gaussian quadrature points in MLPG1 has been selected as nq = 3 × 3
(nG = 3), based on the calculated solution error presented in Fig. 6, where E∞ is plotted as
a function of nG for different numbers of domain nodes. The analysis has been performed
on the test case with the Dirichlet boundaries and the domain with no hole. The solution
error converges fast with the number of integration points. Higher number of quadrature
points (nG > 3) does not significantly decrease the solution error. The same conclusion
has been reported in [31].

Although FEM discretization introduces uneven density of the nodes, the convergence
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Fig. 6. E∞ as a function of nG for different number of domain nodes N .

rate still persists, in particular with denser nodes (Fig. 4 lower left). The most accurate
method on the square domain with no hole is FEM, followed by DAM and MLPG1. On
the regular discretization FDM provides the same results as DAM, as expected, with a
slightly better convergence rate than MLPG1.

The behavior of methods is different on the square domain with a hole. In regular dis-
cretization (Fig. 4 upper right) FDM cannot, in most cases, use the nodes on the hole
boundary and therefore significant errors appear there, regardless of the node density.
The convergence rate of DAM and MLPG1 deteriorates in larger systems, even more so
in case of non-regular discretization (Fig. 4 middle right). The problematic area lies also
near the hole boundary. In order to retain the MLPG1 convergence rate by non-structured
nodal distribution (Fig. 4 middle right) we remove all nodes that were closer to the hole
boundary as h to lessen the area of the quadrature domain intersecting with the hole,
which makes the integration on the hole boundary more simple.

In the case of FEM discretization (Fig. 4 lower right) the convergence rate of DAM is
recovered because of denser nodes in the vicinity of the hole boundary. However, this
is not the case by MLPG1. Because of significantly denser nodes near the hole, even if
we remove nodes at distances less than h, in some nodes the errors persisted. We have
to introduce a special procedure to retain the convergence rate of MLPG1 on the FEM
discretization.
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Fig. 7. Evaluated shape function of node 170 (left) and its derivative on x (right) in a part of
the domain with a hole and FEM discretization with 364 DOFs.

We suspect, based on performing extensive further numerical experiments with applying
adaptive integration in these near-hole-boundary nodes, that the Gaussian integration on
square quadrature domains with dimension dQ = 0.7rS is inadequate because it allows
that the quadrature domain intersects in great part the hole boundary. We should know
that in such cases the MLS shape functions and their derivatives are far from polynomial
functions because they become zero in the hole. Therefore the weighted residual integrals
(15) are hard to evaluate with any polynomial based quadrature rule.

In Fig. 7, a MLS shape function in the domain with a hole and FEM discretization with
364 DOFs (left) and its derivative on x (right) are shown, as an example. Both functions
are evaluated on a 220 × 220 grid. They confirm their non-polynomial nature, which is
particularly apparent in the case of non-regular nodal distribution. In order to retain
the MLPG1 convergence rate for FEM discretization, shown in Fig. 4 (lower right) we
use three times smaller quadrature domains in the nodes, which were closer to the hole
boundary as h, to lessen the area of the quadrature domain that falls in the hole.

5 Conclusions

In the present paper we compared two mehsless methods and two classical numerical ap-
proaches FDM and FEM. We have selected a weak and a strong form meshless techniques
and kept all common parameters and procedures the same for both methods in order to
create a reasonable comparison. The well known Dirichlet jump case has been used for
the test case on a square domain. The symmetry of the problem was exploited to test
the numerical methods on mixed Dirichlet-Neumann boundaries. Complicated boundary
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geometry is introduced with considering the domain with a hole.

We demonstrate that both meshless methods work with a similar performance with respect
to the measured error, show the same spatial convergence rate and a similar behavior with
respect to the randomization of the computational nodes. On the regular discretization
the meshless methods perform similar as the FDM, which cannot be used on the irregular
node arrangements. The FEM approach gives better results than both meshless methods
on the specific FEM discretization.

Both meshless methods performed well on the domain with a hole with slight deterioration
of the convergence rate by largest systems. Maximal errors have been detected near the
hole, however with the FEM discretization such a behavior is diminished, because of
denser nodes near the hole boundary.

We show that the inclusion of Neumann boundaries does not affect the performance of the
meshless methods while working with regular node arrangements. The methods, however,
fail to converge on irregular nodal distributions, when Neumann boundaries are present.

An important aspect of the numerical solution procedures is the computation time. We
measure the computation time of both methods in the same software environment and
by running on the same computer. It has been confirmed that MLPG1 is more complex
to compute (order of 10 and more) in comparison to DAM. However, the DAM solution
is known in nodes only. If the solution values between nodes are needed, they have to be
obtained by interpolation, which introduces additional errors and computational cost.

We show that although the integration is an important issue in the MLPG1, refining it
with more Gaussian quadrature points does not improve the solution error.

Our future work will be focused on the selection of the support domain as we suspect that
performance of the considered meshless techniques might be improved by more sophisti-
cated selection strategies.
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