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a b s t r a c t

Simulation of macrosegregation with mesosegregates as a consequence of solidification of a binary Sn–
10%Pb alloy in a 2-dimensional rectangular cast is tackled in the present paper. Coupled volume averaged
governing equations for mass, energy, momentum and species transfer are considered by incorporating
Lever solidification rule and incompressible Newtonian fluid with Darcy limit in the mushy zone. Solid
phase is assumed stationary. Double diffusive effects in the melt are modeled by the thermal and solutal
Boussinesq hypothesis. The physical model is solved by the meshless Local Radial Basis Function
Collocation Method (LRBFCM) by using 5-noded influence domains, multiquadrics radial basis functions
and explicit time stepping. Pressure–velocity coupling is based on local pressure correction. Adaptive
upwinding has to be used for stabilization of the convective terms. The numerical simulations reveal
instabilities during solidification process that introduce anomalies in the final segregation map that scale
with the typical cast as well as sub-cast dimensions. The main advantages of choosing the represented
meshless approach for solving the problem are in its simplicity and similar coding in 2D and 3D, as well
as straightforward applicability in non-uniform node arrangements. The locality of the proposed
numerical approach is also convenient for parallel execution. It is demonstrated that LRBFCM can be
advantageously used in casting simulations where the chemical segregation exhibits industrially relevant
multi-scale patterns.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solidification science and engineering represents an interdisci-
plinary research field of great interest [1–4]. It is founded on
thermodynamics and continuum mechanics that has to cope with
solids and fluids simultaneously. Its analytical basis can be traced
back to Lamé, Clapeyron, Neumann and Stefan [5], while the
numerical treatment started by Douglas and Gallie in 1955 [6]. The
solidification phenomena include nucleation, dendritic growth,
eutectics, peritectics and microstructure selection issues, microse-
gregation, homogenization, and macro, meso and microstructures.
Many modern industrial processes, in particular, different types of
casting [7] rely on findings of solidification science and engineering.
Castings are prone to several types of defects, such as porosities,
deformation during solidification, including hot tearing, and chemical
inhomogeneities also referred to as segregation. The segregation that

scales with the whole casting is called macrosegregation, on the
other hand, the segregation, much smaller than the size of the
casting and much larger than the typical grain size is called
mesosegregation. The theoretical description of the chemical segre-
gation in solidification started in the Sixties [8], followed by more
precise model studies in the Seventies [8,9]. Recently, this topic has
been treated in many applied works, e.g. for static casting [10],
continuous casting of steel [11] and direct chill casting of aluminum
alloys [12]. Besides the applications, the physical modeling of the
problem is also developing [13–16]. Solidification systems are diffi-
cult to treat in a closed form and actually only a few analytical
solutions exist in connection with the subject [17–19]. Therefore, the
use of numerical modeling and simulation is the preferred approach.
The performance of numerical methods for solution of the macro-
segregation problems remains rather unexplored. Recently, substan-
tial efforts and resources were invested to study the behavior of
different numerical methods in the prediction of macrosegregation
[4,20], triggered in the framework of the French SMACS project,
where a call for contributions to two numerical benchmark test
cases was launched [21]. The test is gradually complicated from
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natural convection of a low Prandtl fluid [22], double diffusive
natural convection and to solidification of a binary material. In this
work we present a solution of a third part of these benchmark tests
by a novel meshless technique. The test deals with the solidification
of a Sn–10%Pb alloy and follows our recent successful application of
the same meshless technique for the first part of the benchmark [22].
The main complexities in numerical solution of alloy solidification
models are moving interfaces with high gradients of physical proper-
ties, strong couplings between the conservation equations, different
flow regimes in mushy zone and pure liquid, potentially unstable
flow patterns in low-Pr liquids such as metals, hyperbolic nature of
the solute transport due to almost completely advective transport.
The problem of strong coupling between the momentum transport
and energy and solute transport via the buoyancy force, and between
the thermal field and permeability, makes the solution even more
complex and less stable. The complexity of the prediction of macro-
segregation is a consequence of the fact that the macrosegregation
results from the entire history of the strongly coupled processes of
mass, heat, momentum and solute transport from the liquid state up
to the end of solidification. The channels (mesosegregates) in
segregation profiles have been experimentally observed in different
solidified products. In 1988 Sarazin and Hellawell performed analysis
of channel formation in the directional solidification of the Pb–Sn
alloys [23]. The experimental results, similar to the benchmark
problem have been reported also in [24]. In this paper we focus on
a numerical simulation of the phenomena with an emphasis on the
meshless numerical technique.

The meshless or sometimes also named meshfree or mesh
reduction methods represent a class of numerical methods where
an arbitrarily distributed set of nodes, without any additional
topological relations between them, is used. Such meshless meth-
ods represent a promising technique to avoid problems with
polygonisation. There exist several meshless methods such as
the Element free Galerkin method, the Meshless Petrov–Galerkin
method, the point interpolation method, the point assembly
method, the finite point method, smoothed particle hydrody-
namics method, reproducing kernel particle method, and Kansa
method [25–35]. This work is focused on one of the simplest
classes of meshless methods in development today, the local point
interpolation [36] Radial Basis Function [37] Collocation Method
(RBFCM) [38]. In the present paper we use a local variant of RBFCM
[38], the Local Radial Basis Function Collocation Method (LRBFCM).
The main advantage of the local approach is that the spatial
discretization of the problem is simplified to solving only small
systems of algebraic equations instead of a large global system as
in Kansa method [25,31] that might become unstable for increased
number of computational nodes. The LRBFCM approach was
already successfully applied to several thermo-fluid situations,
ranging from laminar to turbulent as well as from single to two
phase situations [39–44]. The LRBFCM has been recently also
compared with GRBFCM and extended to the three dimensional
problems [45–47].

2. Governing equations

The minimal solidification model, i.e. solidification model,
simplified to the largest possible degree, is addressed in the
present paper. The set of governing equations is based on con-
tinuum conservation laws and related constitutive relations. The
model comprises energy transport, solute transport, incompres-
sible Newtonian and porous Darcy fluid flow, and Eutectic phase
diagram coupled with the solute transport over the phase front for
consideration of the microscopic level. The model originates in the
paper of Ni and Beckerman [13] and was later employed in many
works [14–16]. In this paper we address the solidification in a two

dimensional rectangular domain Ω with boundary Γ. The identical
problem has been proposed in [21] within a call for a benchmark
solutions. The problem is formulated as a system of four coupled
Partial Differential Equations (PDE), Kozeny–Carman relation,
Boussinesq approximation, and transport over the phase front on
the microscopic scale, coupled with a phase diagram.

∇Uv¼ 0; ð1Þ

ρ
∂v
∂t

þ ρ

f L
ð∇vÞv¼ � f L∇Pþμ∇2v� f L

μ

K
vþ f Lb; ð2Þ

ρ
∂h
∂t

þρvU∇h¼ λ∇2T ; ð3Þ

∂C
∂t

þvU∇CL ¼ 0 ð4Þ

v¼ f LvL; ð5Þ

K ¼ K0
f 3L

ð1� f LÞ2
; ð6Þ

b¼ ρref ½1�βT ðT�Tref Þ�βCðCL�Cref Þ�g; ð7Þ

h¼ cpTþ f LL; ð8Þ

C ¼ ½f Lþð1� f LÞkp�CL; ð9Þ

T ¼ TFþmLCL U ð10Þ
The following quantities are involved in the PDE: liquid velocity v,
intrinsic liquid velocity vL, enthalpy h, average concentration C,
and the pressure P. The permeability K is defined through a
permeability constant K0 and the liquid fraction f L. The thermo-
physical properties, i.e. viscosity μ, thermal conductivity λ, specific
heat cp and density ρ are assumed to be equal and constant in both
phases. The buoyancy term b depends on the temperature T , the
liquid concentration CL , the thermal expansion coefficient βT , the
concentration expansion coefficient βC , the reference density ρref
given at the reference temperature Tref and the reference con-
centration Cref . The binary phase diagram is defined by the
liquidus slope mL, the equilibrium partition coefficient kp and
fusion temperature of the pure solvent TF . Symbols t and g stand
for time and gravity acceleration, respectively. We seek the
solution of the temperature, velocity, pressure and concentration
fields at time t ¼ t0þΔt, where t0 represents initial time and Δt a
positive time increment. The problem is schematically presented
in Fig. 1. In [48] it was shown that the presented “minimal”
solidification model can be solved with the presented local
meshless based solution procedure for cases without mesosegre-
gate anomalies. In the present paper we present a solution of the
SMACS benchmark solidification exercise for the alloy Sn–10%Pb
(see Table 1 for thermo-physical properties). This case is from the
numerical point of view considerably more difficult to solve due to
the presence of mesosegregates. The case is defined for a rectan-
gular domain with dimensions 10�6 cm. However, computational
domain can be reduced to 5�6 cm due to the symmetry (Fig. 1).

The initial and boundary conditions are set to

vðpx ¼ΩW ; tÞ ¼ vðpy ¼ΩH ; tÞ ¼ vðpy ¼ 0; tÞ ¼ 0; ð11Þ

∂
∂px

vyðpx ¼ 0; tÞ ¼ 0; vxðpx ¼ 0; tÞ ¼ 0; ð12Þ

∂
∂px

Tðpx ¼ΩW ; tÞ ¼ q
λ
ðT�TextÞ ð13Þ

∂
∂px

Tðpx ¼ 0; tÞ ¼ ∂
∂py

Tðpy ¼ 0; tÞ ¼ ∂
∂py

Tðpy ¼ΩH ; tÞ ¼ 0 ð14Þ
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∂
∂px

Cðpx ¼ 0; tÞ ¼ 0; ð15Þ

Cðpx ¼ΩW ; tÞ ¼ Cðpy ¼ΩH ; tÞ ¼ Cðpy ¼ 0; tÞ ¼ C0; ð16Þ

vðp; t ¼ 0Þ ¼ 0; Tðp; t ¼ 0Þ ¼ T0; Cðp; t ¼ 0Þ ¼ C0; ð17Þ
where ΩH and ΩW stand for the rectangle height and width,
respectively. The case is schematically presented in Fig. 1.

3. Local meshless solution procedure

The main challenge that we address in this paper is solution of
a non-linear and strongly coupled system of partial differential
equations (PDE). The spatial discretization of the governing PDE is
performed by a relatively new, but well tested local meshless
numerical approach. The mass and momentum conservation
coupling, essential in fluid mechanics, is done by a local coupling.
The complete locality of the numerical scheme has several
beneficial effects. Besides simplicity and straightforward numer-
ical implementation is the approach suitable to fully exploit

modern computer architectures through different parallel com-
puting strategies [34]. It is important to point out that the typical
solidification simulations require vast amount of computational
resources; hence the efficiency of computer implementation is of
major importance. The details of LRBFCM can be perceived from
[39,48,49]. We elaborate the important basics of the method,
particularly the adaptive upwinding and pressure–velocity cou-
pling in the continuation of the present paper. The LRBFCM spatial
discretization is based on an approximation of a considered field
over the support domain with trial functions. The radial basis
functions are used for trial functions and their coefficients are
determined by collocation. The locality of the method is intro-
duced in the selection of a local support domain, i.e. only local
sub-clusters of nodes are considered in support domain. An
approximated function θðpÞ; where p represents a position vector,
is introduced as a sum of weighted basis functions

θðpÞ ¼ ∑
NBasis

n ¼ 1
αnΨnðpÞ; ð18Þ

where NBasis; αn and Ψn stand for the number of trial functions, the
approximation coefficients and the trial functions, respectively.
The approximation coefficients are obtained from collocation of
Eq. (18) in points pn; n¼ 1;2; :::; NBasis where the values of θðpnÞ are
known. In this paper we use Hardy’s Multiquadrics (MQs) as trial
functions

ΨnðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�pnÞU ðp�pnÞ=s2

Cþ1
q

; ð19Þ

where sC stands for the free shape parameter. With the con-
structed collocation function, action of an arbitrary spatial differ-
ential operator L can be computed

LθðpÞ ¼ ∑
NBasis

n ¼ 1
αnLΨnðpÞ ð20Þ

The implementation of the Dirichlet boundary condition is
straightforward. In order to implement Neumann and Robin
boundary conditions a special case of interpolation is needed. In
these boundary nodes the function directional derivative instead
of the function value is known and therefore the equation in the
interpolation system changes to

θBC ¼ ∑
NBasis

n ¼ 1
αn a

∂
∂n

ΨnðpÞþbΨ nðpÞ
� �

; ð21Þ

where a and b define considered boundary condition.
The well-known upwind stabilization technique, originally

developed in connection with FDM by Courant [50], is being used
to treat the completely advective solute transport. To minimize
the numerical dissipation, the upwind offset is derived from the
local field values and configuration of the influence domain. The
proposed adaptive upwind scheme [51] uses local Péclét number
to evaluate magnitude and direction of the upwind offset ðδÞ
(Fig. 2).

δ¼ v
jjvjj cthðPeÞ� 1

Pe

� �
pNRMsUW ; ð22Þ

where sUW is a parameter determining the maximum offset
normalized to the characteristic influence domain ðpNRMÞ. In the
present case pNRM is set to the maximal distance between the
support domain nodes. The sUW is used to control the magnitude
of upwind used. The described upwind has been already used in
the context of LRBFCM in simulation of turbulent fluid flow [49]. In
this work upwind is used for alleviating the instabilities of
advection term in solute transport equation (4).

Fig. 1. The setup of solidification benchmark test.

Table 1
Thermo-physical properties and process parameters.

Property symbol Sn–10%Pb Pb–18%Sn Units

Density ρ 7.00eþ03 9.25eþ03 kg/m3

Specific heat cp 2.60eþ02 1.76eþ02 J/kgK
Thermal conductivity λ 5.50eþ01 1.79eþ01 W/mK
Latent heat of fusion L 6.10eþ04 3.76eþ04 J/kg
Liquid dynamic viscosity μ 1.00e�03 1.10e�03 Pa s
Thermal expansion coefficient βT 6.00e�05 1.16e�04 K�1

Solutal expansion coefficient βC �5.30e�03 4.90e�03 %-1
Reference temperature T ref 2.20eþ02 2.85eþ02 1C
Reference concentration Cref 1.00eþ01 1.80eþ01 %
Reference density ρref 7.00eþ03 9.25eþ03 kg/m3

Permeability constant K0 2.34e�11 1.90e�10 m2

Melting temperature Tf 2.32eþ02 3.27eþ02 1C
eutectic temperature Te 1.83eþ02 1.83eþ02 1C
eutectic concentration Ce 3.81eþ01 6.19eþ01 %
Solubility at eutectic

temperature
CeS 2.49eþ00 1.92eþ01 %

Liquidus slope mL �1.28eþ00 �2.33eþ00 1C/%
Gravity acceleration g¼ gyiy gy �9.80eþ00 �9.80eþ00 m/s2

External temperature Text 25 25 1C
Heat transfer coefficient q 400 400 W/m2K

G. Kosec, B. Šarler / Engineering Analysis with Boundary Elements ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: Kosec G, Šarler B. Simulation of macrosegregation with mesosegregates in binary metallic casts by a
meshless method. Eng. Anal. Boundary Elem. (2014), http://dx.doi.org/10.1016/j.enganabound.2014.01.016i

http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1016/j.enganabound.2014.01.016


The temporal discretization is done through the use of two-
level explicit time stepping

ρ0
θ�θ0
Δt

¼∇UðD0∇θ0Þ�∇Uðρ0v0θ0ÞþS0; ð23Þ

where zero-indexed quantities stand for the values at the initial
time, and D; S for general diffusion coefficient, and source term,
respectively. The time step is denoted with Δt. The pressure–
velocity coupling is performed through the correction of the
pressure, based on the divergence on the intermediate velocity
(v̂), computed from discrete variant of Eq. (2).

P̂
mþ1 ¼ P̂

mþζ
ρ

Δt
1
f L
∇U v̂m; ð24Þ

with index m bookkeeping the iteration. The corrected pressure is
used to re-compute new intermediate velocity. The iterations take
place until a reasonably solenoidal velocity field is achieved. The
approach has been extensively tested in [22,42]. The represented
coupling is similar to the artificial compressibility method (ACM)
[52,53] or the SOLA approach [54]. However, the ACM and SOLA do
not use internal iteration for velocity correction and as such do not
assure precise transient solution.

The coupling between the conservation equations and the
phase change is also determined locally. The use of Level rule for
determination of the phase change simplifies the coupling to the

Fig. 2. Scheme of the upwind technique in the meshless context. The function value is calculated instead of in the considered node in the upwind offset position.

Table 2
Representation of the results in tabular form: values of main variables in control points throughout the solidification process.

Control point t(S) 10 90 170 250 330 410 490 570

1 T(1C) 219.14 218.11 214.88 207.19 192.34 182.03 141.33 110.05
2 219.14 215.58 206.58 197.11 185.30 169.49 136.59 106.59
3 217.45 199.82 188.33 180.80 169.73 153.24 126.43 99.16
4 219.14 218.72 216.51 207.84 191.44 181.25 141.30 110.05
5 219.14 216.49 207.47 197.36 184.72 168.70 136.57 106.59
6 217.50 200.57 188.75 180.89 169.16 152.87 126.41 99.16
7 219.14 219.01 217.62 208.45 190.84 180.61 141.28 110.05
8 219.14 217.26 208.18 197.60 184.22 168.13 136.54 106.59
9 217.70 201.18 189.09 180.91 168.65 152.54 126.39 99.16

1 fl 1.00 1.00 1.00 0.82 0.49 0.37 0.00 0.00
2 1.00 0.77 0.47 0.33 0.23 0.00 0.00 0.00
3 0.88 0.36 0.25 0.12 0.00 0.00 0.00 0.00
4 1.00 1.00 1.00 0.74 0.42 0.32 0.00 0.00
5 1.00 0.78 0.45 0.30 0.20 0.00 0.00 0.00
6 0.88 0.37 0.25 0.12 0.00 0.00 0.00 0.00
7 1.00 1.00 1.00 0.64 0.34 0.26 0.00 0.00
8 1.00 0.79 0.42 0.27 0.17 0.00 0.00 0.00
9 0.87 0.34 0.22 0.11 0.00 0.00 0.00 0.00

1 C(%) 10.00 10.97 13.31 16.10 16.09 16.09 16.09 16.09
2 10.00 9.98 10.02 10.03 10.02 10.02 10.02 10.02
3 10.01 10.05 10.05 10.05 10.05 10.05 10.05 10.05
4 10.00 10.29 12.04 14.29 14.30 14.30 14.30 14.30
5 10.00 9.61 9.32 9.24 9.24 9.24 9.24 9.24
6 9.99 9.95 9.94 9.94 9.94 9.94 9.94 9.94
7 10.00 10.09 11.19 12.16 12.16 12.16 12.16 12.16
8 10.00 9.22 8.50 8.40 8.40 8.40 8.40 8.40
9 9.79 9.14 9.08 9.08 9.08 9.08 9.08 9.08

Fig. 3. Definition of benchmark control points and cross-section lines. P stands for
control points, V for vertical and H for horizontal cross-section lines.
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following closed form solution [48]

af 2L þbf Lþc¼ 0;
a¼ ðkp�1ÞL;
b¼ ðkp�1Þ cpTF�h

� ��kpL;

c¼ kpðh�cpTF Þ�cpmLC U

ð25Þ

4. Numerical implementation

The presented numerical methodology is implemented in Cþþ
programming language and compiled with Intel compiler 13.
The numerical method, including the pressure velocity coupling,
is completely local, therefore the bulk of the computationally
demanding part of the code is parallelized through the OpenMP

Fig. 4. Concentration and velocity at different stages of solidification. Last (bottom right) plot stands for fully solidified state.
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API. All computations are done on CPU Intel(R) Xeon(R) E5520 @
2.27 GHz based computers. A detailed execution performance of
the presented numerical methodology, i.e. speedup analyses, cache
utilization, etc, has been recently presented for a shared memory
parallelization [55] and for multiple Graphics Processing Units [56].

In all computations five nodded support domains are used and
the meshless shape parameter is set to sC ¼ 90. All computations
are done with time step Δt ¼ 10�5 and pressure–velocity relaxa-
tion parameter is set to ζ¼ 10�8.

5. Results and discussion

The solidification of Sn–10%Pb alloy is considered with the
process parameters defined in Table 1. The solidification transient
starts with a well-mixed Co ¼ 10 %ð Þ, stationary over-heated liquid
T0 ¼ 220 1Cð Þ: The heat is extracted from the right side of the
domain, described by the Robin boundary conditions. As the
initial liquid cools, the thermo-solutal natural convection is set up.

The thermal and solutal natural convection (7) drives the flow
clockwise. The solidification process starts when the liquid tem-
perature reaches the Liquidus temperature (Table 2). The main
characteristics of the segregation are visible soon after the begin-
ning of the solidification. The only mechanism for solute transport
is the advection (4) thus the segregation characteristics, at least on
a global scale, depends only on the main flow behavior. A positive
segregation patch at the bottom of the enclosure and a negative
segregation patch in the upper part is clearly visible. The pattern
can be explained by combining Eq. (3) and Eq. (10) into

∂C
∂t

¼ � 1
mL

vU∇T ð26Þ

Eq. (26) shows the dependence of segregation tendency on the
direction of the flow and the isotherms (note that mLo0). The
isotherms are in both cases similar, therefore the macrosegregation

Fig. 5. Concentration horizontal (left) and vertical (right) cross-sections of the
steady state concentration profile.

Fig. 6. Temporal development of temperature in control points.

Fig. 7. Temporal development of liquid fraction in control points.

Fig. 8. Temporal development of concentration in control points.
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profile is governed by the flow only. Besides the macrosegregation,
the formation of mesosegrates starts in the mushy zone as the
solidification front advances. The channel-like anomalies in con-
centration field occur as a consequence of instabilities in the porous
mushy zone. The solidification in the channels is slowed down, i.e.
the solid fraction in the channels is lower and consequently the

hydrodynamic permeability is higher. The lower drag in the
channels makes the flow through the channels stronger, and the
stronger flow induces stronger segregation (26). The mechanisms of
the initial destabilization are still unknown. It is not yet clear what
generates the first perturbation. However, phenomenon has been
observed experimentally [57], which confirms that such behavior is
not a product of numerical instabilities but of a not yet explained
natural phenomenon. After a first perturbation the strong couplings
between transport mechanics and phase change amplify the effect
until the material is completely solidified.

The solidification process is presented in Fig. 4, where the
concentration profiles, together with the velocity fields, are plotted
for different stages of the solidification. The results are computed
with 27,000 uniformly distributed nodes and upwind magnitude
sUW ¼ 0:5. The results are further analyzed on cross-sections and
control points defined in Fig. 3. In Fig. 5 horizontal and vertical
cross-sections of steady-state concentration are presented. Further-
more, temporal developments of temperature (Fig. 6), liquid frac-
tion (Fig. 7), and concentration (Fig. 8) are presented in nine control
points. (P1-9). The adaptive upwind stabilization of the advection
term is used to solve the problem. The magnitude of the stabiliza-
tion should be minimal, since the upwind introduces artificial
numerical diffusion. The analysis of the influence of the upwind
magnitude is presented in Fig. 9. It can be clearly seen that a

Fig. 10. Convergence plots as a function of the density of spatial discretization in terms of mean (top left), maximum (top right), and minimum (bottom left) value, and
standard deviation (bottom right) of the steady state concentration.

Fig. 9. Effect of the upwind magnitude on the simulation results. The concentration
cross-sections at V1 for different upwind magnitudes.
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stronger upwind diminishes the mesosegregation patterns, but
when using too low upwind, the results diverge. Respectively, we
use a reasonably small upwind magnitude ðsUW ¼ 0:5Þ.

Finally, we present the convergence plot in terms of mean, max
and min value, and standard deviation of steady state concentra-
tion profile in Fig. 10.

Five computer codes have been recently used to simulate a similar
(Exercise 2 from in [4]) with mesosegregates, as tackled in the present
paper. Four computer codes were based on the finite volume
formulation and one code was based on the finite element method
with unstructured triangular mesh. We can observe that even though
the qualitative macrosegregation pattern with mesosegregates of the
different solutions is the same, notable differences exist in the
evolutions and local behavior. The main differences are located in
the channels and in their vicinity. The number of channels and the
intensity of segregation inside the channels vary from one computer
code to another. Even with fine meshes, it has not been possible to
find a unique solution, mesh independent and similar to all the
contributions. See the details in [4]. Respectively, also the contribution
in the present paper cannot be considered as fully converged, however
we believe the best on the involved node density. The present paper
shows that LRBFCM is capable of solving such complex problems.
Furthermore, the local pressure–velocity coupling is successfully
employed for computations of fluid-flow through the mushy zone in
the presence of instabilities.

6. Conclusions

A physical model for calculating the macrosegregation with
mesosegragates in the cast has been numerically solved in the
present paper. The conditions correspond to the numerical Exer-
cise 1 in [21]. By the best knowledge of the present authors no
other published references exist with respect to the tackled case.
Extensive tabulation of the results has been done respectively,
in order to facilitate comparisons with alternative numerical
approaches. The problem is highly nonlinear, since it includes

� completely advective transport of species that is unstable by its
nature,

� potential unstable natural convection in the low-Prandtl liquids
such as metals,

� the high jump in the enthalpy near the phase change,
� and the presence of two flow regimes; free fluid and Darcy

porous media flow in the mushy zone.

The nonlinearities are combined with the following strong
couplings:

� between the mass and momentum conservation,
� between the momentum transport and energy and solute

transport via buoyancy force,
� between the thermal field, concentration field and permeability,
� between the permeability and fluid flow.

The LRBFCM is for the first time used to solve macrosegregation
problems that exhibits mesosegregation as a consequence of the above
listed physical features. We demonstrate that such complex problems
can be tackled with the represented extremely straightforward and
intuitive meshless numerical approach that needs to include adaptive
upwind. We measure the effect of this stabilization tool on the results
and show high sensitivity of the results on the selection of the upwind
magnitude. The proposed novel meshless method shows several
convenient properties like straightforward implementation and paral-
lelization suitability, CPU effectiveness and several degrees of freedom
for optimization, which makes the method flexible. The dynamic point

adaptivity strategy [58,59] makes it a promising alternative even for
complex problems of the same kind. This might replace the need for
adaptive upwind. Related attempts are in the focus of our future
research, together with coupling of the macro-mesoscopic predictions
with the cellular automata based grain structure evolution. A compa-
tible meshless strategy, relying on points instead of polygons has been
developed recently [60].

Acknowledgment

We acknowledge the financial support from the Slovenian
Research Agency under the grant J2-4120 and program group
P2-0379.

References

[1] Flemings MC. Solidification Processing. Metall Mater Trans A 1974;B5:
2121–34.

[2] Dantzig J, Rappaz M. Solidification. Laussane: EPFL Press; 2009.
[3] Kurz W, Fisher DJ. Fundamentals of solidification. Boca Raton: CRC Press; 1998.
[4] Combeau H, Bellet M, Fautrelle Y, Gobin D, Arquis E, Budenkova O, et al.

Analysis of a numerical benchmark for columnar solidification of binary alloys.
IOP Conf Ser Mater Sci Eng 2012;33:012086.

[5] Šarler B. Stefan's work on solid-liquid phase changes. Eng Anal Bound Elem
1995;16:83–92.

[6] Douglas J, Gallie TM. On the numerical integration of a parabolic differential
equation subject to a moving boundary condition. Duke Math J 1955;22:
557–71.

[7] Cockcroft LS, Maijer DM. Modeling of casting, welding, and advanced solidi-
fication processes XII. Warrendale: The Minerals, Metals & Materials Society;
2009.

[8] Flemings MC. Nereo GE. macrosegregation, part I. Trans Soc Metals AIME
1967;239:1449–61.

[9] Hebditch DJ, Hunt JD. Observations of ingot macrosegregation on model
systems. Metall Trans 1974;5:1557–64.

[10] Založnik M, Kumar A, Combeau H. An operator splitting scheme for coupling
macroscopic transport and grain growth in a two-phase multiscale solidifica-
tion model: Part II application of the model. Comp Mater Sci 2010;48:11–21.

[11] Lesoult G. Macrosegregation in steel strands and ingots: characterisation,
formation and consequences. Mat Sci Eng A-Struct 2005;413-414:19–29.

[12] Založnik M, Šarler B. Modeling of macrosegregation in direct-chill casting of
aluminum alloys: estimating the influence of casting parameters. Mater Sci
Eng 2005;A413-414:85–91.

[13] Ni J, Beckermann C. A volume-averaged two-phase model for transport
phenomena during solidification. Metall Mater Trans A 1991;22B:349–61.

[14] Drew DA. Mathematical modeling of two-phase flow. Annu Rev Fluid Mech
1983;15:261–91.

[15] Wang CY, Beckermann C. Equiaxed dendritic solidification with convection:
Part I. multiscale/multiphase modeling. Metall Mater Trans A 1996;A27:
2754–64.

[16] Goyeau B, Bousquet-Melou P, Gobin D, Quintard M, Fichot F. Macroscopic
modeling of columnar dendritic solidification. Comput Appl Math 2004;23:
381–400.

[17] Voller VR, Mouchmov A, Cross M. An explicit scheme for coupling temperature
and concentration fields in solidification models. Appl Math Model 2002;28:
79–94.

[18] Voller VR. On a general back-diffusion parameter. J Cryst Growth 2001;226:
562–8.

[19] Swaminathan C, Voller VR. Towards a general numerical scheme for solidifica-
tion scheme. Int J Heat Mass Transfer 1996;40:2859–68.

[20] Combeau H, Bellet M, Fautrelle Y, Gobin D, Arquis E, Budenkova O, et al.
A numerical benchmark on the prediction of macrosegregation in binary
alloys. In: Proceedings of frontiers in solidification science. Warrendale, USA:
TMS2011.

[21] Bellet M, Combeau H, Fautrelle Y, Gobin D, Rady M, Arquis E, et al. Call for
contributions to a numerical benchmark problem for 2D columnar solidifica-
tion of binary alloys. Int J Therm Sci 2009;48:2013–6.

[22] Kosec G, Šarler B. Solution of a low Prandtl number natural convection
benchmark by a local meshless method. Int J Numer Method H 2013;23:22.

[23] Sarazin JR, Hellawell A. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy
ingots and comparison with the system NH4CI-H2O. Metall Trans 1988;19:
1861–71.

[24] Quillet G, Ciobanas A, Lehmann P, Fautrelle Y. A benchmark solidification
experiment on an Sn–10% wtBi alloy. Int J Heat Mass Transfer 2007;50:
654–66.

[25] Kansa EJ. Multiquadrics - a scattered data approximation scheme with
application to computational fluid dynamics, part I. Comput Math Appl
1990;19:127–45.

[26] Chen W. New RBF collocation schemes and kernel RBFs with applications.
Lecture Notes in Computer Science 2002;26:75–86.

G. Kosec, B. Šarler / Engineering Analysis with Boundary Elements ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

Please cite this article as: Kosec G, Šarler B. Simulation of macrosegregation with mesosegregates in binary metallic casts by a
meshless method. Eng. Anal. Boundary Elem. (2014), http://dx.doi.org/10.1016/j.enganabound.2014.01.016i

http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref1
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref1
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref2
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref3
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref4
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref4
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref4
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref5
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref5
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref6
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref6
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref6
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref7
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref7
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref7
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref7
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref8
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref8
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref9
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref9
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref10
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref10
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref10
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref11
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref11
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref12
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref12
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref12
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref13
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref13
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref14
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref14
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref15
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref15
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref15
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref16
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref16
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref16
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref17
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref17
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref17
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref18
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref18
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref19
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref19
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref20
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref20
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref20
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref21
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref21
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref22
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref22
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref22
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref23
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref23
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref23
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref24
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref24
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref24
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref25
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref25
http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1016/j.enganabound.2014.01.016


[27] Atluri SN, Shen S. The meshless local Petrov-Galerkin (MLPG) method: a
simple & less-costly alternative to the finite element and boundary element
methods. CMES-Comp Model Eng 2002;3:11–52.

[28] Liu GR. Mesh free methods. Boca Raton: CRC Press; 2003.
[29] Liu GR, Gu YT. An introduction to meshfree methods and their programming.

Dordrecht: Springer; 2005.
[30] Atluri SN, Shen S. The meshless method. Encino: Tech Science Press; 2002.
[31] Kansa EJ. Multiquadrics - a scattered data approximation scheme with

application to computational fluid dynamics, part II. Comput Math Appl
1990;19:147–61.

[32] Fasshauer G. Radial basis functions and related multivariate meshfree approx-
imation methods: theory and applications – preface. Comput Math Appl
2006;51:1223–366.

[33] Monaghan JJ. An Introduction to SPH. Comput Phys Commun 1988;48:89–96.
[34] Trobec R, Šterk M, Robič B. Computational complexity and parallelization of

the meshless local Petrov-Galerkin method. Comput Struct 2009;87:81–90.
[35] Šterk M, Trobec R. Meshless solution of a diffusion equation with parameter

optimization and error analysis. Eng Anal Bound Elem 2008;32:567–77.
[36] Wang JG, Liu GR. A point interpolation meshless method based on radial basis

functions. Int J Numer Meth Eng 2002;54:1623–48.
[37] Buhmann MD. Radial basis functions. Cambridge: Cambridge University Press;

2000.
[38] Šarler B. From global to local radial basis function collocation method for

transport phenomena. Advances in meshfree techniques. Berlin: Springer;
2007; 257–82.

[39] Šarler B, Vertnik R. Meshfree explicit local radial basis function collocation
method for diffusion problems. Comput Math Appl 2006;51:1269–82.

[40] Vertnik R, Šarler B. Meshless local radial basis function collocation method for
convective-diffusive solid-liquid phase change problems. Int J Numer Method
H 2006;16:617–40.

[41] Divo E, Kassab AJ. Localized meshless modeling of natural-convective viscous
flows. Numer Heat Transfer 2007;B129:486–509.

[42] Kosec G, Šarler B. Solution of thermo-fluid problems by collocation with local
pressure correction. Int J Numer Method H 2008;18:868–82.

[43] Mramor K, Vertnik R, Low Šarler B. and Intermediate Re solution of Lid driven
cavity problem by local radial basis function collocation method. CMC-Comput
Mater Con 2013;1:1–21.

[44] Kosec G, Šarler B. Solution of phase change problems by collocation with local
pressure correction. CMES-Comp Model Eng 2009;47:191–216.

[45] Yao G, Šarler B. Assessment of global and local meshless methods based on
collocation with radial basis functions for parabolic partial differential
equations in three dimensions. Eng Anal Bound Elem 2012:36.

[46] Siraj Ul I, Vertnik R, Šarler B. Numerical solution of the two-dimensional
transient nonlinear coupled burgers' equations. Appl Math Model 2012:36.

[47] Siraj Ul I, Šarler B, Vertnik R. Local radial basis function collocation method
along with explicit time stepping for hyperbolic partial differential equations.
Appl Numer Math 2013;67:136–51.

[48] Kosec G, Založnik M, Šarler B, Combeau H A. Meshless approach towards
solution of macrosegregation phenomena. CMC-Comput Mater Con 2011;580:
1–27.

[49] Vertnik R, Šarler B. Solution of incompressible turbulent flow by a mesh-free
method. CMES-Comp Model Eng 2009;44:66–95.

[50] Courant R, Isaacson E, Rees M. On the solution of nonlinear hyperbolic
differential equations by finite differences. Commun Pure Appl Math 1952;5:
243–55.

[51] Lin H, Atluri SN. Meshless local Petrov Galerkin method (MLPG) for
convection-diffusion problems. CMES-Comp Model Eng 2000;1:45–60.

[52] Malan AG, Lewis RW. An artificial compressibility CBS method for modelling
heat transfer and fluid flow in heterogeneous porous materials. Int J Numer
Meth Eng 2011;87:412–23.

[53] Arpino F, Massarotti N, Mauro A, Nithiarasu P. Artificial compressibility based
CBS solutions for double diffusive natural convection in cavities. Int J Numer
Method H 2013;23:205–25.

[54] Hong CP. Computer modelling of heat and fluid flow materials processing.
Bristol: Institute of Physics Publishing; 2004.

[55] Kosec G, Depolli M, Rashkovska A, Trobec R. Super linear speedup in a local
parallel meshless solution of thermo-fluid problems. Comput Struct
2013;11:016 (2014:10.1016/j.compstruc.).

[56] Kosec G, Zinterhof P. Local strong form meshless method on multiple Graphics
Processing Units. CMES-Comp Model Eng 2013;91:377–96.

[57] Asai S, Sahara T, Muchi I. Theoretical analysis and model study of the
formation of A-type segregation in ingots. Tetsu-To-Hagane/J Iron Steel Inst
Japan 1977;63:1512–9.

[58] Kosec G, Šarler B. H-adaptive local radial basis function collocation meshless
method. CMC-Comput Mater Con 2011;26:227–53.

[59] Kovačević I, Šarler B. Solution of a phase-field model for dissolution of primary
particles in binary aluminum alloys by an r-adaptive mesh-free method. Mater
Sci Eng 2005;A413-A414:423–8.

[60] Lorbiecka AZ, Šarler B. Simulation of dendritic growth with different orienta-
tion by using the point automata method. CMC-Comput Mater Con 2010;18:
69–103.

G. Kosec, B. Šarler / Engineering Analysis with Boundary Elements ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: Kosec G, Šarler B. Simulation of macrosegregation with mesosegregates in binary metallic casts by a
meshless method. Eng. Anal. Boundary Elem. (2014), http://dx.doi.org/10.1016/j.enganabound.2014.01.016i

http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref26
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref26
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref26
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref26
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref27
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref28
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref28
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref29
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref30
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref30
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref30
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref31
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref31
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref31
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref32
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref33
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref33
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref34
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref34
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref35
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref35
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref36
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref36
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref37
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref37
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref37
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref38
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref38
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref39
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref39
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref39
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref40
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref40
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref41
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref41
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref42
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref42
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref42
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref43
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref43
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref44
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref44
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref44
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref45
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref45
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref46
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref46
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref46
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref47
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref47
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref47
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref48
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref48
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref49
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref49
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref49
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref50
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref50
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref51
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref51
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref51
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref52
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref52
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref52
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref53
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref53
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref54
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref54
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref54
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref55
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref55
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref56
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref56
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref56
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref57
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref57
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref58
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref58
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref58
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref59
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref59
http://refhub.elsevier.com/S0955-7997(14)00029-0/sbref59
http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1016/j.enganabound.2014.01.016

	Simulation of macrosegregation with mesosegregates �in binary metallic casts by a meshless method
	Introduction
	Governing equations
	Local meshless solution procedure
	Numerical implementation
	Results and discussion
	Conclusions
	Acknowledgment
	References




