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Abstract

This paper considers a numerical solution of a linear elasticity problem,

namely the Cauchy-Navier equation, using a strong form method based on a

local Weighted Least Squares (WLS) approximation. The main advantage of

the employed numerical approach, also referred to as a Meshless Local Strong

Form method, is its generality in terms of approximation setup and positions

of computational nodes. In this paper, flexibility regarding the nodal position

is demonstrated through two numerical examples, i.e. a drilled cantilever beam,

where an irregular domain is treated with a relatively simple nodal positioning

algorithm, and a Hertzian contact problem, where again, a relatively simple

h-refinement algorithm is used to extensively refine discretization under the

contact area. The results are presented in terms of accuracy and convergence

rates, using different approximations and refinement setups, namely Gaussian

and monomial based approximations, and a comparison of execution time for

each block of the solution procedure.
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1. Introduction1

Linear elasticity problems, governed by the Cauchy-Navier equation, are typ-2

ically addressed in their weak form with the Finite Elements Method (FEM) [1].3

However, the problem has also been addressed in its strong form in the past, e.g.4

component-wise iterative solution with the Finite Differences Method (FDM) [2]5

and with the Finite Volumes Method (FVM) [3]. Besides mesh based methods,6

meshless methods have also been employed for solving solid mechanics prob-7

lems in strong and weak form [4, 5]. The conceptual difference between mesh-8

less methods and mesh based methods is in the treatment of relations between9

nodes. In the mesh based methods the nodes need to be structured into polygons10

(mesh) that cover the whole computational domain, while on the other hand,11

meshless methods fully define relations between nodes through the relative inter12

nodal positions [6], with an immediate consequence of greater generality of the13

meshless methods.14

Strong form meshless methods can be understood as generalizations of FDM,15

where instead of predetermined interpolation over a local support, a more gen-16

eral approach with variable support and basis is used to evaluate partial dif-17

ferential operators [7], e.g. collocation using Radial Basis Functions [5, 8] or18

approximation with monomial basis [9]. There are many other methods with19

more or less similar methodology introducing new variants of the strong form20

meshless principle [10]. On the other hand, weak form meshless methods are21

generalizations of FEM. Probably the most known method among weak form22

meshless methods is the Meshless Local Petrov Galerkin Method (MLPG) [11],23

where for each integration point a local support is used to evaluate field val-24

ues and weight functions of a Moving Least Squares (MLS) approximation are25

used as test functions. In last few decades there have been many variants of26

MLPG introduced to mitigate numerical instabilities and to improve accuracy27

and convergence rate, etc. [10].28

In general, recent developments in meshless community are vivid, ranging29

from analyses of computer execution on different platforms [6, 12], reducing30
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computational cost by introducing a piecewise approximation [13] to implemen-31

tation of more complex multi-phase flow [14], and many more.32

This paper extends the spectra of published papers with a generalized for-33

mulation of a local strong form meshless method, termed Meshless Local Strong34

Form Method (MLSM) enriched with h-refinement [15] and ability to discretize35

arbitrary domains [7].36

The introduced meshless approach is demonstrated on a solution of a bench-37

mark cantilever beam case [16] and a Hertzian contact problem [17]. The re-38

sults are presented in terms of displacement and stress plots, comparison against39

closed form solutions, convergence analyses, and execution time analyses.40

The goal of this paper is to demonstrate generality of MLSM that is driven41

by the fact that all the building blocks of the method depend only on the rela-42

tive positions between the computational nodes. This is a very useful feature,43

especially when dealing with problems in multidimensional spaces, complex ge-44

ometries, and moving boundaries. This feature can be also exploited to write45

elegant generic code [18].46

The rest of the paper is organized as follows: in section 2 the MLSM prin-47

ciple is explained, in section 3 the governing problem is introduced, section 4 is48

focused on solution procedure, section 5 focuses on discussing the results, and49

finally, the paper offers some conclusions and guidelines for future work in the50

last section.51

2. MLSM formulation52

The core of the spatial discretization used in this paper is a local approx-53

imation of a considered field over the overlapping local support domains, i.e.54

in each node we use approximation over a small local subset of neighbouring n55

nodes. The trial function û is thus introduced as56

û(~p) =

m∑
i=1

αibi(~p) = b(~p)
Tα, (1)

with m, α, b and ~p standing for the number of basis functions, approximation57

coefficients, basis functions and the position vector, respectively. In cases when58
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the number of basis functions and the number of nodes in the support domain59

are the same, n = m, the determination of coefficients α simplifies to solving60

a system of n linear equations, resulting from evaluating equation (1) in each61

support node and setting it equal to a true value u(~pj), for j from 1 to n:62

uj := u(~pj) = b(~pj)
Tα, (2)

where ~pj are positions of support nodes and uj is the actual value of considered63

field in the support node ~pj . The above system can be written in matrix form64

as65

u = Bα, (3)

where B stands for coefficient matrix with elements Bji = bi(~pj). The most66

known method that uses such an approach is the Local Radial Basis Function67

Collocation Method (LRBFCM) that has been recently used in various prob-68

lems [5, 8].69

In cases when the number of support nodes is higher than the number of basis70

functions (n > m) a WLS approximation is chosen as a solution of equation (3),71

which becomes an overdetermined problem. An example of this approach is72

DAM [9] that was originally formulated to solve fluid flow in porous media.73

DAM uses six monomials for basis and nine noded support domains to evaluate74

first and second derivatives of physical fields required to solve the problem at75

hand, namely the Navier Stokes equation. To determine the approximation76

coefficients α, a norm77

R2 =

n∑
j

w(~pj)(u(~pj)− û(~pj))2 = (Bα− u)TW 2(Bα− u), (4)

is minimized, whereW is a diagonal matrix with elements Wjj =
√
w(~pj) with78

79

w(~p) = exp

(
−
(
‖~p0 − ~p‖
σpmin

)2
)
, (5)

where σ stands for weight shape parameter, ~p0 for centre of support domain80

and pmin for the distance to the nearest support domain node. There are differ-81

ent computational approaches to minimizing (4). The most intuitive and also82
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computationally effective is to simply compute the gradient of R2 with respect83

to α and setting it to zero, resulting in a positive definite system84

BTW 2Bα = BTW 2u. (6)

The problem of this approach is bad conditioning, as the condition number of85

BTW 2B is the square of the condition number of WB, unnecessarily increas-86

ing numerical instability. A more stable and more expensive approach is QR87

decomposition. An even more stable approach is SVD decomposition, which is88

of course even more expensive. Nevertheless, the solution of equation (6) can89

be written generally in matrix form as90

α = (WB)+Wu, (7)

whereA+ stands for a Moore–Penrose pseudo inverse of matrixA. By explicitly91

inserting equation (7) for α into (1), the equation92

û(~p) = b(~p)T(WB)+Wu = χ(~p)u, (8)

is obtained, where χ = b(~p)T(WB)+W is called a shape function. Now, we93

can apply a partial differential operator L to the trial function, and get94

(Lû)(~p) = (Lχ)(~p)u. (9)

In this paper we deal with a Cauchy-Navier equation and therefore following

shape functions are needed, expressed explicitly as

χ∂x(~p) =
∂b

∂x
(~p)T(WB)+W , (10)

χ∂y(~p) =
∂b

∂y
(~p)T(WB)+W , (11)

χ∂x∂x(~p) =
∂2b

∂x2
(~p)T(WB)+W , (12)

χ∂x∂y(~p) =
∂2b

∂x∂y
(~p)T(WB)+W , (13)

χ∂y∂y(~p) =
∂2b

∂2y
(~p)T(WB)+W . (14)

The shape functions depend only on the numerical setup, namely nodal dis-95

tribution, shape parameter, basis and support selection, and can as such be96

precomputed for a specific computation.97
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3. Governing problem98

The goal in this paper is to numerically determine the stress and displace-99

ment distributions in a solid body subjected to the applied external force. To100

obtain a displacement vector field ~u throughout the domain, a Cauchy-Navier101

equation is solved, which can expressed concisely in vector form as102

(λ+ µ)∇(∇ · ~u) + µ∇2~u = 0, (15)

where µ and λ stand for Lamé constants. In two dimensions we express ~u =

(u, v) and the equation reads

(λ+ µ)
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0 (16)

(λ+ µ)
∂

∂y

(
∂u

∂x
+
∂v

∂y

)
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
= 0 (17)

Two types of boundary conditions are commonly used when solving these types103

of problems, namely essential boundary conditions and traction (also called104

natural) boundary conditions. Essential boundary conditions specify displace-105

ments on some portion of the boundary of the domain, i.e. ~u = ~u0, while traction106

boundary conditions specify surface traction σ~n = ~t0, where ~n is an outside unit107

normal to the boundary of the domain and108

σ =

σxx σxy

σxy σyy

 (18)

is the stress tensor. In terms of displacement vector ~u the traction boundary

conditions read

t01 = µn2
∂u

∂y
+ λn1

∂v

∂y
+ (2µ+ λ)n1

∂u

∂x
+ µn2

∂v

∂x
(19)

t02 = µn1
∂u

∂y
+ (2µ+ λ)n2

∂v

∂y
+ λn2

∂u

∂x
+ µn1

∂v

∂x
(20)

where t0i and ni denote the Cartesian components of ~t0 and ~n.109
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4. Solution procedure110

4.1. Discretization of the problem111

The elliptic boundary value problem at hand is discretized into a linear112

system of 2N algebraic equations by approximating the differential operations113

using MLSM, as described in section 2. A block system of linear equations for114

two vectors u and v of unknowns representing values u(~pi) and v(~pi), respec-115

tively, is constructed. This system is a discrete analogy of PDE (15) and can116

symbolically be represented as117 U1 V 1

U2 V 2

u
v

 =

b1
b2

 , (21)

where u and v stand for unknown displacements, b1 and b2 for values of118

boundary conditions and blocks U1, V 1, U2, V 2 contain precomputed shape119

functions (10–14). With N (i) standing for a list of indices of the chosen n120

neighbours of a point ~pi, as introduced in the beginning of section 2, we can,121

for all indices i of internal nodes, express122

U1i,N (i)j =
[
(λ+ 2µ)χ∂x∂x(~pi) + µχ∂y∂y(~pi)

]
j

V 1i,N (i)j =
[
(λ+ µ)χ∂x∂y(~pi)

]
j

b1i = 0

 , (22)

123

U2i,N (i)j =
[
(λ+ µ)χ∂x∂y(~pi)

]
j

V 2i,N (i)j =
[
µχ∂x∂x(~pi) + (λ+ 2µ)χ∂y∂y(~pi)

]
j

b2i = 0

 , (23)

for each j = 1, . . . , n. Note that equation (22) represents direct discrete analogue124

of (16) and, likewise, (23) of (17).125

Similarly, for all indices i of boundary nodes with traction boundary condi-126

tions we express127

U1i,N (i)j =
[
µn2χ

∂y(~pi) + (2µ+ λ)n1χ
∂x(~pi)

]
j

V 1i,N (i)j =
[
λn1χ

∂y(~pi) + µn2χ
∂x(~pi)

]
j

b1i = t0(~pi)1

 , (24)
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U2i,N (i)j =
[
µn1χ

∂y(~pi) + λn2χ
∂x(~pi)

]
j

V 2i,N (i)j =
[
µn1χ

∂x(~pi) + (2µ+ λ)n2χ
∂y(~pi)

]
j

b2i = t0(~pi)2

 , (25)

for each j = 1, . . . , n, where ni are the Cartesian components of the outside unit128

normal to the boundary in node ~pi. Again, equation (24) is a direct analogue129

of (19) and (25) of (20). And finally, for indices i of nodes with essential130

boundary condition, we express131

U1i,i = 1

b1i = u0(~pi)1

and
U2i,i = 1

b2i = u0(~pi)2

. (26)

System (21) is sparse with nonzero ratio of less then 2n/N . An example132

of the matrix of this system for the cantilever beam problem described in sec-133

tion 5.1 is shown in Figure 1, where the block structure and different patterns134

for boundary and internal nodes are clearly visible.135

4.2. Positioning of nodes in a complex domain136

Meshless methods are advertised as the methods that do not require any137

topological relations among nodes. That implies that even randomly distributed138

nodes could be used [19]. However, it is well-known that with regularly dis-139

tributed nodes one achieves much better results in terms of accuracy and sta-140

bility [20]. This has also been recently reported for MLSM in a solution of141

a Navier-Stokes problem [7]. The reason behind the sensitivity regarding the142

distribution of nodes lies in the generation of shape functions. To construct143

a stable method well balanced support domains are needed, i.e. the nodes in144

support domain need to be distributed evenly enough [7]. This condition is145

obviously fulfilled in regular nodal distributions, but when working with more146

interesting geometries, the positioning of nodes requires additional treatment.147

In literature one can find several algorithms for distributing the nodes within148

the domain of different shapes [21, 22]. In this paper we will use an extremely149

simple algorithm, introduced in [7] to minimize the variations in distances be-150

tween nodes in the support domain. The basic idea is to “relax” the nodes based151
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Figure 1: Matrix of the final system of equations in cantilever beam case with N = 39 and

22% nonzero elements.

on a potential between them. Since a Gaussian function is a suitable potential152

and already used as weight in the shape functions, the nodes are translated153

simply as154

δ~p(~p) = −σk
NS∑
i=1

∇w(~p− ~pi), (27)

where δ~p, ~pi, σk and NS stand for the translation step of the node, position155

of i-th support node, relaxation parameter and number of support nodes, re-156

spectively (Figure 2a). After offsets in all nodes are computed, the nodes are157

repositioned as158

~p← ~p+ δ~p(~p). (28)

Presented iterative process procedure begins by positioning the boundary nodes,159

which are considered as the definition of the domain and are kept fixed through-160

out the process.161
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4.3. h-refinement162

Besides flexibility regarding the shape of the domain, nodal refinement is of-163

ten mandatory to achieve desired accuracy in cases with pronounced differences164

in stress within the domain. A typical example of such situation is a contact165

problem [17]. To mitigate the error in areas with high stresses the h-refinement166

scheme is used., which has already been introduced into different meshless solu-167

tions [23, 24]. In context of local RBF approximation the h-refinement has been168

used in the solution of the Burger’s equation [15], where a quad-tree based algo-169

rithm has been used to add and remove child nodes symmetrically around the170

parent node in transient solution of Burgers’ equation. However, the algorithm171

presented in [15] supported only regular nodal distribution. In this paper we172

generalize it also to irregular nodal distribution.173

In each node to be refined, new nodes are added on the half distances between174

the node itself and its support nodes175

~p new
j =

~p+ ~pj
2

, (29)

where index j indicates j-th support node. When adding new nodes, checks are176

performed if the newly added node is too close to any of the existing nodes;177

in that case the node is not added. Moreover, if the refined node and support178

node are both boundary nodes, newly added node is positioned on the boundary179

(Figure 2b). This procedure can be repeated several times if an even more180

refined domain is desired. These subsequent refinements will be called levels of181

refinement and will be denoted as level i for the refinement that resulted from182

i applications of the described algorithm.183

The described algorithm follows the concept of meshless methods and as184

such does not require any special topological relations between nodes to refine185

a certain part of the computation domain. It is also flexible regarding the186

dimensionality of the domain, i.e. there is no difference in implementation of 2D187

or 3D variant of the algorithm.188

An example on a non-trivial refinement is demonstrated in Fig. 3, where a189

domain with a hole is considered. The vicinity of the hole is four times refined190
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(a) Scheme of the relax algorithm. (b) Scheme of the h-refinement algo-

rithm.

Figure 2: Schemes of algorithms used to improve the quality of the discretization.

and then, to mitigate possible irregularities during refinement, relaxed.191

level 1 – internal

level 1 – boundary

level 2 – internal

level 2 – boundary

level 3 – internal

level 3 – boundary

level 4 – internal

level 4 – boundary

Figure 3: Four levels of the refinement algorithm applied around a hole in a domain after

relaxation.

4.4. Asymptotic complexity of MLSM192

The asymptotic complexity analysis begins with an assumption that eval-193

uations of basis functions, weights, linear operators and boundary conditions194

take O(1) time. For simple domain discretization, such as the uniform grid in195
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a rectangle or random positioning, O(N) time is required, where N stands for196

number of computational nodes. To find the neighbours of each point, a tree197

based data structure such as kd-tree [6], taking O(N logN) time to construct198

and O(n logN) time to query n closest nodes, is used. The relaxation of nodal199

positions (see section 4.2) with I iterations costs additional O(InN log2N) time.200

Re-finding the support nodes by rebuilding the tree and querying for support201

nodes once again, requires another O((N + n) logN) time. Calculation of the202

shape functions requires N SVD decompositions, each taking O(nm2) time, as203

well as some matrix and vector multiplication of lower complexity. Assembling204

the matrix takes O(nN) time and assembling the right hand side takes O(N)205

of time. Then, the system is solved using BiCGSTAB iterative algorithm. The206

final time complexity is thus O(InN log2N+(N+n) logN+m2nN)+T , where207

T stands for the time spent by BiCGSTAB.208

For comparison, the complexity of a well-known weak form Element Free209

Galerking method (EFG) [25] differs from MLSM in construction of the shape210

functions, whose computation requires O(Nnqm
2n) time using EFG method,211

with nq standing for the number of Gauss integration points per node. Addi-212

tionally, the number of nonzero elements in the final system of EFG is of order213

nq times higher than that of MLSM, again increasing the complexity of EFG.214

5. Numerical examples215

5.1. Cantilever beam216

First, the standard cantilever beam test is solved to assess accuracy and

stability of the method. Consider an ideal thin cantilever beam of length L and

height D covering the area [0, L]×[−D/2, D/2]. Timoshenko beam theory offers

a closed form solution for displacements and stresses in such a beam under plane

stress conditions and a parabolic load on the left side. The solution is widely

known and derived in e.g. [16], giving stresses in the beam as

σxx =
Pxy

I
, σyy = 0, σxy =

P

2I

(
D2

4
− y2

)
, (30)
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and displacements as

u =
Py
(
3D2(ν + 1)− 4

(
3L2 + (ν + 2)y2 − 3x2

))
24EI

, (31)

v = −
P
(
3D2(ν + 1)(L− x) + 4(L− x)2(2L+ x) + 12νxy2

)
24EI

,

where I = 1
12D

3 is the moment of inertia around the horizontal axis, E is217

Young’s modulus, ν is the Poisson’s ratio and P is the total load force.218

In the numerical solution, traction free boundary conditions are used on the

top and bottom of the domain, essential boundary conditions given by (31) are

used on the right and traction boundary conditions given by (30) on the left

u(L, y) =
Py(2D2(1 + ν)− 4(2 + ν)y2)

24EI
(32)

v(L, y) = −LνPy
2

2EI
(33)

µ
∂u

∂y
(x,D/2) + µ

∂v

∂x
(x,D/2)) = 0 (34)

λ
∂u

∂x
(x,D/2) + (λ+ 2µ)

∂v

∂y
(x,D/2) = 0 (35)

−µ∂u
∂y

(x,−D/2)− µ∂v
∂x

(x,−D/2)) = 0 (36)

−λ∂u
∂x

(x,−D/2)− (λ+ 2µ)
∂v

∂y
(x,−D/2) = 0 (37)

−λ∂v
∂y

(0, y)− (λ+ 2µ)
∂u

∂x
(0, y) = 0 (38)

−µ∂u
∂y

(0, y)− µ∂v
∂x

(0, y) =
P

2I
((D/2)2 − y2). (39)

The problem is solved using MLSM method with n = 9 or n = 13 support219

nodes and Gaussian weight with σ = 1 (see (5)). Two sets of basis functions are220

considered, 9 monomials221

b = {1, x, y, x2, y2, xy, x2y, xy2, x2y2} (40)

and 9 Gaussian basis functions (see (5) for definition) centred in support nodes.222

In the following discussions these two choices of basis functions will be referred223

to as M9 and G9, respectively.224
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System (21) is solved with BiCGSTAB iterative algorithm [26] with ILUT225

preconditioning [27]. Values of L = 30m, D = 5m, E = 72.1GPa, ν = 0.33226

and P = 1000N/m were chosen as physical parameters of the problem.227

The acquired numerical solution of the cantilever beam problem is shown in228

Figure 4.229

Figure 4: Numerical solution of cantilever beam case. Note that for the sake of visibility the

displacements are multiplied by factor 105.

The error of the numerical approximation of stresses and displacements is

measured in relative discrete L∞ norm, using

e∞(~u) =
maxx∈X{max{|u(x)− û(x)|, |v(x)− v̂(x)|}}

maxx∈X{max{|u(x)|, |v(x)|}}
and (41)

e∞(σ) =
maxx∈X{max{|σxx(x)− σ̂xx(x)|, |σyy(x)− σ̂yy(x)|, |σxy(x)− σ̂xy(x)|}}

maxx∈X{max{|σxx(x)|, |σyy(x)|, |σxy(x)|}}
,

(42)

as error indicators, with X representing the set of all nodes. Convergence with230

respect to the number of computational nodes is shown in Figure 5. The nu-231

merical approximations converge towards the correct solution in stress (e∞(σ))232

norm as well, with approximately the same convergence rate.233

It can be seen that monomials converge very regularly with order 1 as234
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Figure 5: Accuracy of different MLSM setups compared to EFG per number of computational

nodes (left) and number of MLS evaluations (right).

expected, while Gaussian functions exhibit slightly worse convergence. Such235

behaviour has already been reported in solution of diffusion equation, where236

MLSM with Gaussian basis failed to obtain accurate solution with a high num-237

ber of computational nodes. More details about the phenomenon and further238

reading can be found in [28].239

The method was compared to the standard Element Free Galerkin (EFG)240

method [29]. The EFG method used circular domains of influence with radius241

dI equal to 3.5 times internodal distance, a cubic spline242

w(~p) = w̃

(
‖~p− ~pi‖
dI

)
, w̃(r) =


2
3 − 4r2 + 4r3 0 ≤ r < 1

2

4
3 − 4r + 4r2 − 4

3r
3 1

2 ≤ r < 1

0 1 ≤ r

(43)

for a weight function, nq = 4 Gaussian points for approximation of line integrals243

and nq = 16 points for approximating area integrals. Lagrange multipliers were244

used to impose essential boundary conditions.245

The performance of EFG with respect to the number of nodes is much better246

than MLSM. However, a more fair comparison would take into account also a247

higher complexity of the EFG. This can be achieved by comparing error with248

respect to the number of MLS evaluations, which is the most time consuming249

part of the solution procedure. In Figure 5 it is demonstrated that although250
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EFG provides much better results in comparison to MLSM at a given number of251

nodes, its accuracy becomes comparable to MLSM, when compared per number252

of MLS evaluations.253

To asses the stability of the method regarding the nodal distribution, the254

following analysis was performed. A regular distribution of points as used in255

the solution in Figure 4 was distorted by adding a random perturbation to each256

internal node. Its position is altered by257

~̂p← ~p+ σ~U, ~U ∼ Uniform([0, δ]2), (44)

where δ is the distance to the closest node, and measuring the accuracy of the258

solution with respect to σ, representing magnitude of the perturbation. An259

example of original and perturbed node distributions are shown in Figure 6.260

Accuracy of the solution with respect to the perturbation magnitude is pre-261

sented in Figure 7. It is demonstrated that using monomials as a basis with 9262

support nodes results in an unstable setup. On the other hand monomials with263

13 support nodes are much more stable and equally accurate, while using Gaus-264

sian basis with high shape parameter is the most unstable setup. To mitigate265

the stability issue, a lower shape parameter can be chosen, however, at the cost266

of accuracy. Regardless of the setup one can expect the solution to be stable267

at least up to σ ≈ 0.1. Note that using more nodes in support domain can also268

increase stability. Refer to [7] for more details.269
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Figure 6: Regular and perturbed node positions, as used in stability analysis.
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Figure 7: Stability of MLSM with respect to nodal perturbations.

Time spent on each part of the solution procedure is shown in Figure 8.270

All measurements were performed on a laptop computer with an Intel(R)271

Core(TM) i7-4700MQ @2.40GHz CPU and with 16GiB of DDR3 RAM. MLSM272

is implemented in C++ [18] and compiled using g++ 7.1.7 for Linux with273

-std=c++14 -O3 -DNDEBUG flags. It can be seen that solving the system (21)274

makes up for more than 50% of total time spent. Around 70% of that time275

is spent on computing the preconditioner. The only other significant factor is276

computing the shape functions taking approximately 40% of total time. Domain277

construction and matrix assembly take negligible amounts of time, matching the278

predictions made by complexity analysis in section 4.4.279

To emphasize the generality of MLSM method, a “drilled” domain is consid-280

ered in the next step. Arbitrarily positioned holes are added to the rectangular281

domain. The positioning algorithm described in section 4.2 and h-refinement282

algorithm described in section 4.3 are used to distribute the nodes inside the283

domain and refine the areas around the holes. The boundary conditions in this284

example are ~u = 0 on the right, traction free on the inside of the holes and on285
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Figure 8: Execution time for different parts of the solution procedure with respect to the

number of computational nodes.

top and bottom and uniform load of P/D on the left. The computed solution286

is shown in Figure 9 along with the ordinary cantilever beam example. Both

Figure 9: Numerical solution of a drilled cantilever beam case using N = 177618 nodes. Note

that for the sake of visibility the displacements are multiplied by factor 105.

287

18



solutions are coloured using von Mises stress σv, computed for the plane stress288

case as289

σv =
√
σ2
xx − σxxσyy + σ2

yy + 3σ2
xy. (45)

To further illustrate the generality of the method, an even more deformed290

domain is considered (Figure 10).

Figure 10: Numerical solution of a irregular cantilever beam using N = 67887 nodes. Note

that for the sake of visibility the displacements are multiplied by factor 105.

291

5.2. Hertzian contact292

Another more interesting case arises from basic theory of contact mechanics,293

called Hertzian contact theory [30]. Consider two cylinders with radii R1 and294

R2 and parallel axes pressed together by a force per unit length of magnitude295

P . The theory predicts they form a small contact surface of width 2b, where296

b = 2

√
PR

πE∗
(46)

and

1

R
=

1

R1
+

1

R2
, (47)

1

E∗
=

1− ν12

E1
+

1− ν22

E2
. (48)
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Elastic modulus and Poisson’s ratio for the first material are denoted with E1297

and ν1, and with E2 and ν2 for the second material. The pressure distribution298

between the bodies along the contact surface is semi-elliptical, i.e. of the form299

p(x) =

p0
√
1− x2

b2 ; |x| ≤ b

0; otherwise
, p0 =

√
PE∗

πR
. (49)

A problem can be reduced to two dimensions using plane stress assumption. A300

special case of this problem is when E1 = E2, ν1 = ν2 and R2 →∞, describing301

a contact of a cylinder and a half plane. This is the second numerical example302

tackled in this paper. The setup is ideal for testing the refinement, since a303

pronounced difference in behaviour of numerical solution near the contact in304

comparison to the rest of the domain is expected.305

A displacement field ~u satisfying (15) on (−∞,∞)× (−∞, 0) with boundary

conditions

~t(x, 0) = −p(x)~ (50)

lim
x,y→∞

~u(x, y) = 0. (51)

is sought. Vector ~t represents traction force on the surface and ~ = (0, 1) the

upwards direction. Analytical solution for internal stresses in the plane in gen-

eral point (x, y) is calculated using the method of complex potentials [31] and

the stresses are given in terms of m and n, defined as

m2 =
1

2

(√
(b2 − x2 + y2)

2
+ 4x2y2 + b2 − x2 + y2

)
, (52)

n2 =
1

2

(√
(b2 − x2 + y2)

2
+ 4x2y2 − (b2 − x2 + y2)

)
, (53)

where m =
√
m2 in n = sgn(x)

√
n2. The stresses are then expressed as

σxx = −p0
b

[
m

(
1 +

y2 + n2

m2 + n2

)
+ 2y

]
(54)

σyy = −p0
b
m

(
1− y2 + n2

m2 + n2

)
(55)

σxy = σyx =
p0
b
n

(
m2 − y2

m2 + n2

)
. (56)
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Numerically the problem is solved by truncating the infinite domain to a rect-306

angle [−H,H]× [−H, 0] for large enough H and setting the essential boundary307

conditions ~u = 0 everywhere but on the top boundary. The top boundary has a308

traction boundary condition with normal traction given by p(x) and no tangen-309

tial traction. An illustration of the problem domain along with the boundary310

conditions is given in Figure 11.311

Figure 11: Domain and boundary conditions of considered contact problem.

The described contact problem is solved numerically and the error is mea-

sured between calculated and given stresses in relative L∞ norm as before, using

e∞ = max
x∈X
{max{|σxx(x)− σ̂xx(x)|, |σyy(x)− σ̂yy(x)|, |σxy(x)− σ̂xy(x)|}}/p0

as an error indicator. Values P = 543N/m, E1 = E2 = 72.1GPa, ν1 = ν2 =312

0.33, R1 = R = 1m were chosen for the physical parameters of the problem.313

These values yield contact half-width b = 0.13mm and peak pressure p0 =314

2.6MPa. A value of H = 10mm for domain height is chosen, approximately 38315

times greater than width of the contact surface. Convergence of the method is316

shown in Figure 12.317

It is clear that the convergence of the method is very irregular and slow. This318

is to be expected, as N = 106 means only approximately 30 nodes positioned319

within the contact surface, and that naturally leads to large changes as a change320

of a single node bears a relatively high influence. Another problem is that the321
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Figure 12: Convergence of MLSM when solving the described Hertzian contact problem.

boundary conditions are only continuous, and exhibit no higher regularity, not322

even Lipschitz continuity. The accuracy of the approximation may seem bad,323

but is in fact comparable to the cantilever beam case. Using the comparable324

value of N = 30 · 15 = 450 nodes in the contact area [−b, b] × [−b, 0] it can325

be seen from Figure 5 that the approximation using this number of nodes in326

cantilever beam case achieved very similar results.327

The total error of the approximation is composed of two main parts, the328

truncation error due to the non-exact boundary conditions and the discretization329

error, due to solving a discrete problem instead of the continuous one. First, we330

analyse the total error in terms of domain height H. A graph showing the total331

error with respect to domain height H is shown in Figure 13.332

The total error decreases as domain height increases, regardless of the dis-333

cretization density used. However, as soon as truncation error becomes lower334

than discretization error, increasing the height further yields little to no gain335

in total error. The higher the discretization density is, the later this happens.336

When convergence of a method stops or significantly decreases in order, an error337

limit imposed by the truncation error was reached.338

It soon becomes impossible to uniformly increase discretization density due339
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Figure 13: Total error with respect to domain size at different discretization densities.

to limited resources, and the immediate solution is to refine the discretization340

in the contact area with the h-refinement algorithm introduced in section 4.3.341

A domain of height H = 1m ≈ 75 000b is chosen. Primary refinement is done342

in rectangle areas of the form343

[−hb, hb]× [0, hb], for h ∈ {1000, 500, 200, 100, 50, 20, 10, 5, 4, 3, 2},

and secondary refinement around points ±b on the surface is done in rectangle344

areas345

[c− hb, c+ hb]× [−hb, 0], for c = ±b and h ∈ {0.4, 0.3, 0.2, 0.1, 0.05, 0.0025}.

The refined domain as described above is shown in Figure 14. This domain346

was used to solve the considered contact problem. Different levels of secondary347

refinement were tested to prove that refinement helps with accuracy. Conver-348

gence of the method on the refined domain is shown in Figure 15.349

Comparing Figure 15 to Figure 12, it can be seen that refinement greatly350

improves the accuracy of the method. Using N = 106 nodes without refinement351

yields worse results than N = 104 nodes with only primary refinement. Each352

additional level of secondary refinement helps to decrease the error even further353

while keeping the same order of convergence. A solution of the problem on the354

final mesh is shown in Figure 16.355
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(a) A part of the refined domain. (b) Discretization density of the refined

domain.

Figure 14: An example of 17-times refined domain used in solution of the described Hertzian

contact problem.

6. Conclusions356

A MLSM solution of a linear elasticity problem on regular and irregular do-357

mains with a refined nodal distribution of two different numerical examples is358

presented in this paper. The method is analysed in terms of accuracy by com-359

parison against available closed form solutions and by comparison against weak360

form EFG method. The convergence of the method is evaluated with respect361

to the number of computational nodes, selection of different basis functions,362

different refinement strategies and different boundary conditions. MLSM is also363

analysed from complexity point of view, first, theoretically, and then also ex-364

perimentally by timing the computer execution time of all main blocks of the365

method. It is clearly demonstrated that the method is accurate and stable.366

Furthermore, it is demonstrated that nodal adaptivity is mandatory when solv-367

ing contact problems in order to obtain accurate results and that the proposed368

MLSMmethod can handle extensive refinement with the smallest internodal dis-369

tance being 217 times smaller than the initial one. It is also demonstrated that370

proposed MLSM configuration can handle computations in complex domains.371

In our opinion the presented meshless setup can be used, not only to solve372

academic cases with the sole goal to show excellent convergences, but also in373

more complex engineering problems. The C++ implementation of presented374
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Figure 15: Convergence of MLSM at different refine levels.

Figure 16: Numerical solution of the described Hertzian contact problem. Note that for the

sake of visibility the displacements are multiplied by factor of 5 · 103.

MLSM is freely available at [18].375

In future work we will continue to develop a meshless solution of a contact376

problem with a final goal to simulate a crack propagation due to the fretting377

fatigue [17] in a general 3D domain with added p-adaptivity to treat singularities378

near the crack tip.379
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