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ABSTRACT
The performance of Differential Evolution for Multi-objective Optimization
(DEMO) in a nonlinear coupled transport problem, solved by a Meshless
Local Strong form Method (MLSM), is assessed from different points of
view. First, the behaviour of the optimization algorithm is tested for dif-
ferent scenarios, ranging from optimization of trivial diffusive transport to
more complex nonlinear natural convection problems. Second, a hybrid
parallel implementation of both the optimization and simulation codes, is
introduced to optimize execution time, since such simulation-based opti-
mizationmight require a vast amount of computational power. The goal of
optimization is partially to cover the differentially heated cavity with non-
permeable obstacles so as maximally to obstruct the flow with minimal
possible coverage. Different scenarios are taken into account to analyse the
optimization performance. The results are presented in terms of tempera-
ture contour plots, velocity profiles, analysis of heat losses, Pareto fronts of
optimal solutions, convergenceofoptimal solutions, and sensitivity analysis
of the optimizer and parallel execution performance.
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1. Introduction

The most straightforward approach to technological development is experimental fabrication and
testing of the products. Such an approach is, as a rule, expensive and time-consuming, and in many
cases impossible to realize. The experiments are often also limited by the measurement equipment.
The alternative is the use of appropriate computational modelling. Well tested and validated simula-
tions can provide detailed insight into the phenomena under investigation and can be easily coupled
with optimization algorithms.

This paper is focused on the numerical optimization of coupled transport phenomena described by
three coupled Partial Differential Equations (PDEs) and a supporting constitutive equation. Momen-
tum transport modelled with a Navier–Stokes equation and coupled with a mass continuity equation
form the fluid flow part of the model, which is additionally coupled with heat transport, modelled
by a diffusion–convection equation. There are many natural and technological problems that can
be tackled with similar diffusive–convective based models, e.g. weather dynamics, aerodynamics,
solidification, semiconductor simulations (Kosec and Trobec 2015), and many more.

The principalmotivation of this work is theminimization of energy losses in a differentially-heated
air-filled square cavity (de Vahl Davis 1983) by means of obstructing natural convection flow. The
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2 M. DEPOLLI AND G. KOSEC

cavity is differentially heated on two sides and thermally isolated on the other two sides. The differ-
ences in air density due to the temperature gradients drive the fluid flow into pronounced natural
convection flow patterns. The energy transport over the domain, i.e. energy losses, is therefore not
governed solely by diffusion but also convection. The most straightforward solution of the problem
at hand would be simply to fill the whole domain with a good non-permeable insulator. However, the
objectives are to minimize both the energy losses and the insulating material consumption; there-
fore, only a portion of the domain is filled with non-permeable obstacles to change the air flow, and
consequently minimize the energy losses due to convection. There are numerous examples of similar
systems where one would be interested in such optimization, e.g. designing windows or other insu-
lating elements for buildings, optimizing heat storage systems, optimizing heat distribution within
rooms, etc.

The problem is naturally not solvable in a closed form and therefore a numerical approach is
required. The Meshless Local Strong form Method (MLSM) (Kosec et al. 2014), a strong form vari-
ant of the meshless method (Šterk and Trobec 2008), is used for spatial discretization of governing
PDEs, explicit time stepping, while the artificial compressibility method is used for treating the pres-
sure velocity coupling (Malan and Lewis 2011). The simulator is coupled with an optimizer that
implements the Asynchronous Master-Slave Differential Evolution for Multi-objective Optimiza-
tion (AMS-DEMO) algorithm (Depolli, Trobec and Filipič 2013), which is a parallel evolutionary
algorithm (Eiben and Smith 2003) for multi-objective optimization (Zitzler and Thiele 1998; Coello,
Lamont and Veldhuizen 2007; Abraham, Jain and Goldberg 2005) of real-valued functions. The cou-
pling of the optimizer and the simulator is done through the cost function. With given parameters,
i.e. positions of the obstacles, the simulator computes the steady-state temperature, pressure and
velocity fields. The value of the cost function—the total heat flux through the domain with speci-
fied obstacles—can be easily determined from the computed fields. This value is then passed on to the
optimizer, which computes a new input parameter set for the simulator. The optimizer iterates as long
as the optimization convergence criterion is notmet or the number of iterations performed grows too
large.

One of the important aspects of the problem is the execution time. The simulation time can be
controlled through the complexity of the simulation, by setting the output accuracy through spatial
and temporal resolution. However, the results have to be reasonable, therefore the problem cannot
be computed with a handful of computational nodes and a few time steps, but more likely with thou-
sands of nodes and thousands of time steps, resulting in simulation times measured in, at least,
minutes. In addition, stochastic optimization, such as implemented by an evolutionary algorithm,
typically requires a vast number of iterations to converge, counted in thousands or millions. Soon,
the computational cost becomes too high for practical use. Consequently, the efficiency of computer
implementation and execution is of a grave importance when one desires to acquire adequate results
in a reasonable time frame.

This paper presents a coupling of parallel optimization (AMS-DEMO) and parallel simulation
(MLSM), which work together to exploit a parallel computer system with high efficiency. A shared-
memory parallel simulator is coupled with a distributed evolutionary optimizer, which are executed
on a cluster of multi-core computers.

Several different cavity setups are considered to evaluate both the simulator and the optimizer. The
results are presented in terms of temperature contour plots, velocity profiles, analysis of heat losses,
Pareto fronts of optimal solutions, convergence of optimal solutions, and sensitivity analysis of the
optimizer and parallel execution performance.

1.1. Relatedwork

Both geometry optimization and solving fluid-flow problems are well-researched topics. It is not
surprising that the combination of the two is a topic of vast interest too. This combination fits
well within a class of problems described by topology optimization (Sigmund and Maute 2013).
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ENGINEERING OPTIMIZATION 3

Topology optimization is an approach that optimizes material layout or geometry under a given set
of constraints and boundary conditions, to meet predefined performance or design goals.

Fluid-flow and optimization problems similar to this work appear in many fields of interest.
Machinery is often a centre of research, such as in case of Sterling engine optimization (Toghyani,
Kasaeian and Ahmadi 2014). In that work, an evolutionary algorithm was used for the simulation-
based optimization of a heat engine. Two objectives were optimized via four control parameters of
the simulator.

On a smaller scale, micro-machines that work with or within a fluid medium have been of interest
lately. The geometry of micro heat exchangers was optimized in Foli et al. (2006), using an analytical
technique for a simple optimization case and multi-objective evolutionary optimization for a more
profound optimization. Significant gains were discovered in heat exchanger performance and proved
the potential of evolutionary algorithms for optimization of the non-trivial relationship between
geometry and performance of micro heat exchangers. In another research on a similar size scale,
magnetically propelled microswimmers were optimized in Keaveny, Walker and Shelley (2013). A
steepest descend optimization was performed on microswimmer shapes, which was enabled by the
availability of several good initial solutions and a well designed shape derivation technique.

A numerical optimization technique—Method of Moving Asymptotes (MMA)—is often used in
topology optimization. For example, MMA was employed with great success in optimizing (both
single- and multi-objectively) several geometries composed of fluid and solid subdomains (Marck,
Nemer and Harion 2013). The finite volume method was used for the simulator, and the discrete
adjoint approach for sensitivity analysis, which was used to estimate the derivatives of given solution
design parameters required by the numerical optimization methodology.

Topology optimization and other simulation-based optimizations are recognized as very hard to
solve because of their time complexity; therefore, parallel implementations have already been consid-
ered. A parallel framework in C++ was presented in Aage and Lazarov (2013), based on any solver
that works with linear or nonlinear sparse systems, and anMMA optimizer. This work recognizes the
need to parallelize the whole simulation-based optimization framework to be able to achieve decent
speedups when the number of processing units reaches several hundred.

2. Test case definition

The natural convection is modelled by three coupled PDEs. Diffusion equation for energy trans-
port, the Navier–Stokes equation for momentum transport, and the mass continuity equation. The
Boussinesq approximation is used for coupling the heat and momentum transport. The model is a
well-known fluid flow benchmark test in the literature, usually referred to as the de Vahl Davis test
(de Vahl Davis 1983). The model is defined by the following system of equations

∇ · �v = 0, (1)

ρ
∂ �v
∂t

+ ρ∇ · (�v�v) = −∇P + ∇ · (μ∇�v) + �b, (2)

cpρ
∂T
∂t

+ cpρ∇ · (T�v) = ∇ · (λ∇T) , (3)

�b = ρ [1 − βT(T − Tref )] �g, (4)

where λ stands for the thermal conductivity, �v(u,v) for the velocity, t for the time, cp for the specific
heat,ρ for the density,P for the pressure,μ for the viscosity, �b for the body force,T for the temperature,
βT for the thermal expansion coefficient, Tref for the reference temperature, and �g for the gravita-
tional acceleration. The problem is fully characterized by two dimensionless numbers: the Prandtl
number (Pr = μcp/λ) and the Rayleigh number (Ra = |g|βT (�T) �3ρ2cp/λμ). In this paper, a 2D
quadratic air-filled cavity (Pr = 0.71) at different Rayleigh numbers is considered, where obstacles
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4 M. DEPOLLI AND G. KOSEC

Figure 1. Principal scheme of the problem, horizontal case (left) and vertical case (right).

are used to alter the flow structure (Figure 1). Besides the standard de Vahl Davis test, a test case
where the horizontal walls are differentially heated and the vertical ones isolated has also been con-
sidered—basically, a de Vahl Davis test rotated by π/2. For further discussion herein, the de Vahl
Davis case will be called the horizontal case and the rotated case will be called the vertical case. The
obstacles are rectangular with edges parallel to the edges of the cavity, built of material having proper-
ties different from those of the fluid. Most importantly, the material is non-permeable and is a better
thermal insulator. Therefore, obstacles can be used to break the fluid flow structures as well as to act
as an insulation. The thermal conductivity of the obstacles is set to 25% of the free media thermal
conductivity.

2.1. Numerical solution

The presented transport requires numerical integration of the governing PDEs to acquire solution.
Since the goal is to construct an effective parallel implementation, the local numerical approach is
preferred, therefore a local meshless principle (Wang, Sadat and Prax 2012; Kosec and Šarler 2008)
for spatial discretization and explicit time stepping for temporal discretization are employed. The
considered fields, namely velocity, pressure, and temperature, over a local subset of computational
nodes, i.e. the support domain, are approximated as

u(�x) =
m∑
i=1

pi(�x) ai , (5)

where ai, pi = [1, x, y, x2, y2, xy, . . .] stand for the approximation coefficients and monomial basis,
respectively. The goal here is to solve the system of second order PDEs and, in order to obtain non-
trivial first and second derivatives, a minimal basis of fivemonomials is used. Therefore, to determine
the corresponding coefficients, at least five support nodes are required. In such a set-up, i.e. a set-up
with support domain size the same as the number of basis functions (m), the approximation coef-
ficients can be determined exactly by solving the local system defined by one Equation (5) for each
support node

�u = A�α, (6)

where �u = (u(�x1), . . . , u(�xm)) stands for the vector of support field values,Ai,j = pi(�xj) for the system
matrix, �xj for the position of the jth support node, and �α = (a1, . . . , am) stands for the vector of
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ENGINEERING OPTIMIZATION 5

coefficients. Now, all the required operators can be formulated
(∇ = (∂/∂x, ∂/∂y) and∇2 = ∂/∂x2 +

∂/∂y2) to solve the governing system of equations

∂

∂xε
u(�x) =

m∑
j=1

( m∑
i=1

A−1
i,j

∂

∂xε
pi(�x)

)
u(�xj), (7)

∇2u(�x) =
m∑
j=1

( m∑
i=1

A−1
i,j ∇2pi(�x)

)
u(�xj). (8)

where ε = (x, y) denotes the coordinate. To simplify the notation, local shape functions are intro-
duced:

χL
j (�x) =

m∑
i=1

A−1
i,j Lpi(�xj), (9)

where L stands for the general partial differential operator. A general Operator L can be applied sim-
ply by multiplying the shape functions with values of the corresponding field at the support domain
nodes, i.e.

Lu(�x) =
m∑
j=1

χL
j uj. (10)

All the information about the nodal topology and the differential operator is now stored in the
shape functions. The presented formulation is convenient for implementation since most of the com-
plex operations, i.e. finding support nodes and building shape functions, are computed in advance.
In the main simulation, the pre-computed shape functions are then convoluted with the vector of
field values in the support to evaluate the desired operator. The shape function construction has
asymptotical complexity O(ND��)

, where ND stands for total number of discretization nodes. In
addition, the determination of support domain nodes also consumes some time, for example, if
a kD-tree data structure is used, first the tree is built with O(ND logND

)
and then an additional

O(ND
(
logND+ �))

for collectingm supporting nodes. Two types of boundary conditions are con-
sidered in the governing system, namely Dirichlet and Neumann. The Dirichlet are trivial to apply.
The Neumann boundary conditions are computed as

v −
m∑
j=2

χ
∂/∂ε
j u(�xj)

χ
∂/∂ε
1

= u(�x1), (11)

where j= 1 node is a boundary node and v stands for boundary value.
The well-known problem of solving fluid flow problems is a pressure-velocity coupling. There

are different approaches towards coupling governing equations, namely continuity (Equation 1) and
momentum (Equation 2) equations. In general, one solves a Poisson pressure or a pressure correc-
tion equation (Ferziger and Perić 2002). Here, only the steady-state solution is of interest, and the
local approach is preferred, which can be easily parallelized. Therefore the Artificial Compressibility
Method (ACM) (Zienkiewicz, Taylor and Zhu 2005) is employed. First, the velocity and tempera-
ture are computed from the previous time step (Equations 12 and 13). Second, the velocity is driven
towards a solenoidal field by correcting the pressure equation (14),

T1 = T0 + �t
ρcp

[∇ · (λ∇T0) − ρcp∇ · (T0�v0)
]

(12)
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6 M. DEPOLLI AND G. KOSEC

Figure 2. Scheme of simulator implementation.

�̂v1 = �v0 + �t
ρ

[
−∇P0 + ∇ · (μ∇�v0) + �b0 − ρ∇ · (�v0�v0)

]
. (13)

P1 = P0 − ς�t∇�̂v, (14)

where �t and ς stand for the time step and the relaxation parameter, respectively. Indices 0 and 1
stand for the current and the next time step, respectively. Note that no special boundary conditions
for pressure are used, i.e. the pressure on boundaries is computed with the same approach as in the
interior of the domain. When all the computations have been done for all the computational nodes,
the simulation proceeds to the next time step, i.e. the values of the fields in the next time step override
the values of the current time step. The simulation proceeds as long as the convergence criterion, i.e.
the difference |T1 − T0|, is not below a threshold value in all nodes. A scheme of implementation is
presented in Figure 2.

2.2. Optimization

The global optimization requires the use of a stochastic optimization procedure. Furthermore, since
both the amount of material used for obstacles and the energy losses are to be minimized, a multi-
objective optimization technique has to be employed. In this work theAMS-DEMOalgorithm is used,
a parallel evolutionary algorithm for the multi-objective optimization of real-valued functions. Evo-
lutionary algorithms are a subgroup of stochastic optimization algorithms (Burke and Kendall 2003)
and can solve problems for which the analytical form of the cost function is unknown, but the func-
tion can be numerically evaluated for any given set of input parameters. In the presented problem,
the numerical simulation serves as the cost function evaluator.
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ENGINEERING OPTIMIZATION 7

The description of optimization methodology starts with a subsection that focuses on the
multi-objective optimization methodology, and continues with a subsection on the AMS-DEMO
algorithms.

2.2.1. Multi-objective optimization
Multi-objective optimization problems are tasks that require optimizing a vector function

y = f(x), (15)

where x is a vector of n decision variables defined over R, and y is a vector ofm objectives:

x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , ym).

There are two Euclidean spaces associated with multi-objective optimization. These are the n-
dimensional decision variable space of solutions to the problem, and the m-dimensional objective
space of their images under f . Feasible solutions are vectors x in decision variable space that satisfy I
inequality and J equality constraints:

gi(x) ≥ 0, i = 1, 2, . . . , I,

hj(x) = 0, j = 1, 2, . . . , J.

The objective space is partially ordered according to the Pareto dominance relation (Abraham, Jain
and Goldberg 2005). Given two objective vectors, a and b, a is said to dominate b if and only if a is
not worse than b in all objectives and is better than b in at least one objective. Formally, assuming a
minimization problem, this can be written as

a ≺ b iff

∀k ∈ {1, 2, . . . ,m} : ak ≤ bk and

∃l ∈ {1, 2, . . . ,m} : al < bl.

Note that, for a pair of solutions a and b, there are three Pareto dominance relation combinations
possible:

a ≺ b and b ⊀ a or

a ⊀ b and b ≺ a or

a ⊀ b and b ⊀ a.

Namely, either a dominates b, b dominates a, or neither dominates the other, thus making them not
comparable. The solution to a multi-objective optimization problem, called the Pareto optimal set
(Abraham, Jain and Goldberg 2005), is a set of feasible solutions whose images in the objective space,
called the Pareto front, are not comparable with each other and are not dominated by any other fea-
sible solution. The Pareto optimal front forms a hyper surface in the objective space. The task of
multi-objective optimization is to find a non-dominated set of solutions, representing an approxima-
tion for the Pareto front, rather than finding one absolutely best solution. This is to assist the user of
multi-objective optimization in deciding on the final solution, using additional preferences.

2.2.2. AMS-DEMO
Differential Evolution forMulti-objectiveOptimization (DEMO) (Robič and Filipič 2005) is an evolu-
tionary strategy for solvingmulti-objective optimization problems (Price, Storn and Lampinen 2005).
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8 M. DEPOLLI AND G. KOSEC

It is an iterative algorithm operating on a set of solutions called the population. In each iteration,
every solution from the population acts as a parent p to a newly created trial solution (also called
candidate) c. To arrive at trial solutions, parents are modified by the application of differential muta-
tion and uniform crossover. Differential mutation takes three or more members of the population
x1, x2, x3, [x4, . . . , xnp] ∈ P, where np is the population size, to help construct a mutation vector v by
vector operations, such as addition, subtraction and scalarmultiplication. A commonway of calculat-
ing themutation vector, and also used here, is using the formula v = x1 + F · (x2 − x3), where F ∈ R

is a constant, most often from the interval (0, 2]. The mutation is followed by uniform crossover,
which either takes the elements of the parent vector or the mutation vector, with a fixed probability
Pc, creating a trial solution:

∀i ∈ {1, 2, . . . , n} : ci =
{
pi with probability 1 − Pc
vi with probability Pc.

The trial solution is then evaluated, i.e. the value of the cost function is calculated using Equation (15).
Finally, the selection is performed by testing Pareto dominance in objective space between the trial
solutions and their parents in a pair-wise manner. The dominated solutions are discarded while the
dominating solutions form the population of the next iteration. In a case where neither solution dom-
inates the other, both of the involved solutions are added to the population. Since more than one
solution is sometimes added to the population, population size increases with time. To oppose this
increase, the population is reduced back to its original size at the end of every iteration by applying
the non-dominated sorting and the crowding distance metric from the algorithm NSGA-II (Deb et
al. 2002) to discard the worst solutions. The algorithm finishes either after a fixed number of cost
function evaluations performed, after a solution of predefined quality is found, after the solutions
have converged with a satisfactorily high confidence, or after a similar terminating condition is met.

AsynchronousMaster-Slave DEMO (AMS-DEMO) (Depolli, Trobec and Filipič 2013) is a parallel
extension of DEMO. AMS-DEMO distributes the tasks of DEMO between the slave processes, which
are evaluating trial solutions in parallel and asynchronously, and the master process, which is per-
forming all other tasks of DEMO and management of the slave processes. The master first generates
trial solutions and sends them to slaves into asynchronous evaluation until all slaves are busy. Then
it waits until one of the evaluations is complete. When a slave finishes the evaluation of a solution,
it sends the results to the master. The master performs a selection on the solution and then gener-
ates a new trial solution, which it returns to the same slave. The slave then starts evaluating the newly
received solution, while themaster goes back towaiting. AMS-DEMO is able to exploit heterogeneous
computer architectures with a large number of compute nodes, while retaining very good parallel effi-
ciency. Its only real limitation is that to gain any benefits of parallel execution it requires non-trivial
cost functions, i.e. the time it takes to evaluate the cost function is at least several milliseconds.

3. Results

Four problem cases of varying difficulty are devised to test the performance of the coupling of the
optimizer and simulator. Within each case, all the fluxes are normalized relative to the flux through
an empty domain governed solely by diffusion (Šterk and Trobec 2008), thus the solutions for vertical
cases can be compared across cases but not to the solutions for the horizontal case, and vice versa

3.1. Experimental setup

Experiments are executed on a homogeneous cluster of 20 computers interconnected with a Gigabit
Ethernet network. The heart of each computer is single quad-core processor Intel R© Xeon R© E5520.
The execution of simulation-based optimization is parallelized on two levels. First, the simulation
exploits amulti-core architecture of cluster nodeswith shared-memory parallelism, usingOpenMP R©.
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ENGINEERING OPTIMIZATION 9

Second, the optimization (AMS-DEMO)makes use of all the available cluster processors by distribut-
ing separate simulations among the nodes of the cluster, using a Message Passing Interface (MPI).
Both simulator and optimizer executables are written in C++, compiled with GCC 4.8 with opti-
mizations enabled by -O3 switch . The code for the AMS-DEMO program is the same as described in
Depolli, Trobec and Filipič (2013), while the code for the simulator is the same as used in Kosec and
Šarler (2008). OpenMP R© is built into the compiler while the MPI is implemented through the Open
MPI library. Optimizer and simulator communicate via a file system, bash scripts, and the Ubuntu R©

12.04 operating system.
All simulations were executedwith the following parameters: 81 × 81 uniformly distributed nodes

on the edges and inside a cavity of dimensionless size 1 × 1, MLSM time step dt = 2.5 × 10−5, max-
imal allowed dimensionless time tmax = 20 and steady state criteria |T1 − T0| < 10−7. The variable
parameters, i.e. the x- and y-coordinates and widths and lengths of obstacles, are provided by the
optimizer via a text file. If an obstacle is placed in such a way that its surface is outside the cavity, e.g.
its x-coordinate equals one, then such an obstacle is not used in the calculations.

All the optimizations (unless specified otherwise) were performed with the parameters set to
‘rand/1/bin’ schema, F= 0.5, cp = 0.2 and stopping criterion set to the maximum number of
evaluations performed (which differ between cases).

3.2. Case 1—Fill whole domainwith obstacles

For the first case, a simplified model without fluid flow is used. The optimizer is given a differentially
heated square cavity and the option to place one or several pieces of better insulator (obstacles) in
the domain. Obstacle positions are unconstrained, while their size is constrained upwards by the size
of the cavity divided by the number of obstacles. Since the solution of diffusion does not comprise
nonlinear responses, it is relatively easy to understand, numerically solve, and—most importantly—to
optimize. The diffusion problem can be also understood as building an insulator out of two solid
materials with different thermal properties.

Since the obstacle material is a better insulator than the cavity material, the optimal result is
achievedwhen the obstacles fill the whole cavity. Although the optimal solution is obvious to humans,
the same does not hold for the stochastic optimization logic and this test serves as a benchmark of the
optimization procedure. In other words, a ‘closed form’ solution exists, against which the solutions
obtained by the optimization procedure can be compared, i.e. the performance of the optimization
can be objectively assessed. This task is further divided into four increasingly difficult subtasks, each
given a different number and size of obstacles to work with, listed in Table 1. For each subtask, the
single optimum solution is to set obstacle sizes to their maximum and to arrange them in a grid. The
best solutions (out of 10 runs) are plotted in Figure 3.

It should be noted that increasing the number of obstacles results in a more complex scenario. The
scenarios with more obstacles are therefore optimized with increased population size, which should
help counter their increased complexities. Yet, as the results show, this is insufficient, and for themore
complex scenarios, the optimization finds less optimal solutions, i.e. it covers the cavity less.

The optimization procedure can place one obstacle almost optimally and it performs verywell with
four obstacles. For a higher number of obstacles, i.e. Figures 3(c) and 3(d), a slight drop in solution

Table 1. Settings of the optimizer.

Sub-cases

Number of obstacles 1 4 9 16

Maximum obstacle size 1×1 1/2×1/2 1/3×1/3 1/4×1/4
Number of cost function parameters 4 16 36 64
Population size 20 30 40 50
Number of simulations 2,000 6,000 12,000 18,000
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10 M. DEPOLLI AND G. KOSEC

Figure 3. Temperature contour plot and obstacle positions for Case 1.

quality is noticeable. Although optimization settings could be optimized to produce better results,
the fine tuning of several optimization parameters is beyond the scope of this work. It should also be
be noted that better results could be obtained by running the optimization longer.

The convergence of solutions is shown in Figure 4, and is slower for the sub-cases withmore obsta-
cles than for the sub-cases with fewer obstacles. Much larger populations would probably help in
obtaining better results in terms of heat flux, but at the price of an even higher number of simulations
performed for a single optimization run.

3.3. Case 2—Efficiently obstruct the fluid inside a cavity

For the second experiment, a two-objective problem with conflicting criteria is tackled. The cavity
is filled with fluid, which can be obstructed by non-permeable obstacles. The optimizer is given the
freedom of positioning 10 obstacles within the cavity with no restriction on their sizes. Six sub-cases
are prepared (see Table 2), where the Rayleigh number and heat flow direction are varied. This time
a search for the best insulator with minimal material consumed is performed; therefore the solutions
are measured using two criteria for minimization: the area covered by obstacles and the heat flux
through the cavity.
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ENGINEERING OPTIMIZATION 11

Figure 4. Convergence of the optimal solution expressed by the heat flux as a function of the number of simulations performed.
Statistics are made over 10 repetitions of the optimization task.

Table 2. Settings of the optimizer.

Sub-cases

Heat flow direction Horizontal Vertical

Rayleigh number 104 105 106 104 105 106

Number of obstacles 10
Maximum obstacle size 1 × 1
Number of parameters 40
Population size 50
Number of simulations 5000

A few examples of dominant solutions are presented in Figure 5. The plots are arranged in rows,
one row for each sub-case. Within rows, seven trade-off solutions from the Pareto front are plotted,
from the one with the minimal area coverage and the greatest flux on the left to the one with the
maximal area coverage and the smallest flux on the right.

From the figure it follows that the optimization favours long and thin obstacles placed either verti-
cally for limiting horizontal flux or horizontally for limiting vertical flux while keeping coverage low.
Note that the heat flux itself is governed by the convective air flow, which always follows circular pat-
terns, and thus the direction of obstacles is not directly implied by the heating direction. To limit flux
even more, coverage is sacrificed and obstacles get thicker until they fill the cavity almost completely.
Usage of several obstacles is less pronounced, in most cases only one or two obstacles are used. To get
the full picture of how the results cover the flux and coverage trade-off, the Pareto optimal fronts are
plotted on Figure 6.

For the two lower Rayleigh numbers (Ra)—which should translate to an easier problem—the
Pareto front shows a seemingly even distribution of solutions with variable trade-off between the
obstacle coverage or the heat flux optimization. For Ra = 106, however, the solutions are clearly
not evenly distributed, which hints at an incomplete convergence of the algorithm due to the more
difficult problem.

For this two-objective case, the convergence of results is checked via a hypervolume indicator
(Zitzler and Thiele 1998), which transforms a set of objective vectors into a single number, which
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12 M. DEPOLLI AND G. KOSEC

Figure 5. Obstacle positions for Case 2. Plots (a) through (c) represent the horizontal flux sub-cases for different trade-offs between
the coverage and flux optimization, while plots (d) through (f ) do the same for the vertical flux sub-cases.

in essence summarizes the coverage and distribution of the set of solutions in the objective space.
It is a dimensionless number on the interval [0, 4] for the two-objective cases, with higher numbers
indicatingmore optimal solutions. The hypervolume indicator is used to visualize the convergence of
solutions for Case 2 in Figure 7. To emphasize the different convergence rates, the number of simula-
tions performed before the solution front converged is also summarized in Table 3. The criterion for
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ENGINEERING OPTIMIZATION 13

Figure 6. Pareto fronts discovered by the optimization.

Figure 7. Convergence of the optimal solution expressed by the hypervolume indicator as a function of the number of simulations
performed. Statistics are gathered over 10 repetitions of the optimization.

Table 3. Convergence of solutions in sub-cases expressed as the number of sim-
ulations performed before the convergence criterion is met.

Flow direction
Rayleigh
number Horizontal Vertical

104 1850 1650
105 1800 1350
106 5000+ 4650

convergence is set to a hypervolume indicator change of less than 0.1% per 100 simulations; but the
results are robust to small changes in the criterion—the relative differences between sub-cases remain
similar. From the figure and the table it is clear that the convergence is still incomplete for the case
with horizontal flow and Ra = 106 after 5000 evaluations.
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14 M. DEPOLLI AND G. KOSEC

3.4. Sensitivity analysis of the optimizer

The optimizer has several parameters and they are quite difficult to set up in an optimal manner.
To make things worse, there is no known mapping between the problem definition and the optimal
parameter set for the optimizer. Therefore, the optimal parameter set cannot be determined prior to
the actual optimization runs. Fortunately, though, the optimizer will work well enough with almost
any combination of parameter values, except for themost extreme ones. Thismeans that the solutions
will converge, but the convergence rate will not be optimal, and optimization runs will have to be
very long to reach sufficient solution quality. In the worst case of sub-optimal parameter selection,
the convergence could even be premature, which basically means that the optimizer will get stuck in
a local optimum. Therefore, one can start experimenting with all the parameters set to the middle
of their ranges and then tweak their values, until the gains from tweaking become too small to be
worthwhile.

To shed some light on the problem of parameter selection, a local sensitivity analysis of the param-
eters is performed. The task of filling the whole cavity with four obstacles is selected as the test case for
the optimizer. Note that the results would differ if either a different number of obstacles were selected
or the task of optimization were different.

The three most important parameters of the optimizer are taken into consideration for the one-at-
a-time analysis: crossover probability cp, scaling factor F, and population size np. For both cp and F,
the input set of values is set to [0.1, 0.2, . . . , 0.9], while for np, the input set of values is [10, 20, . . . , 50].
Each of the parameters is varied across its input set of values individually with five optimization
runs executed for each value. The convergence of the mean solution as a function of the number
of simulations performed is used to show the difference between the parameter selections.

Firstly, the results of varying cp are shown in Figure 8. The parameter cp has the greatest influence
on the convergence rate of the solutions and on the quality of the best solutions found. Low values lead
to the best results (lowest heat flux), with the minimum being around 0.3. Only the highest values,
namely 0.8 and 0.9, are extremely bad choices.

Secondly, the results of varying F are shown in Figure 9. In contrast to the previous figure, this one
is much less dynamic, which implies that the optimizer is far more robust to the selection of F than
it is to the selection of cp. There is no clear pattern in the figure, which is most probably caused by
a very low number of repetitions. Given more repetitions, one value might peak as the best and, less
likely, there could be more than one near-optimal peak hiding in the value of F. However, the results
are clear enough in showing that just about any value of F between 0.2 and 0.9 works well.

Figure 8. Convergence of the optimal solution for varying crossover probability, cp .
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ENGINEERING OPTIMIZATION 15

Figure 9. Convergence of the optimal solution for varying scaling factor, F.

Figure 10. Convergence of the optimal solution for varying population size.

Lastly, the results of varying np are shown in Figure 10. Population size is known to have a pro-
nounced effect on evolutionary algorithms, and AMS-DEMO is no exception. Although almost any
value works, low values represent a trade-off of faster convergence rate for the price of finding less
optimal solutions. Raising the value moves the trade-off towards slower convergence rate but con-
vergence to better solutions. There is of course a sensible limit to the value of np—the value at which
the absolute optimal solution or a solution below a certain cost threshold is found, depending on
how the optimizer is used. Raising np above this limit would only make the algorithm converge
more slowly, since it makes it more random. The final limit of np is the total number of simulations
performed, when the algorithm degenerates into ordinary Monte Carlo optimization. The experi-
mental results confirm all the expectations, with the exception of np = 20 being worse than np = 30.
This exception is almost certainly the result of noise caused by the low number of optimization
repetitions.
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16 M. DEPOLLI AND G. KOSEC

3.5. Parallel speedup and efficiency

The efficiency of parallelization is measured through parallel speedup. Since solver and optimizer are
parallelized separately, the parallel speedup is also two part. The first part of speedup is due to the
execution of the parallel simulator on multiple cores of a single cluster node, while the second part
is due to the distributed execution of simulations on the cluster. Speedup s is computed as s = t1/tn,
where t1 is the execution time on one unit and tn is the execution time on n units. The unit is either
core, for the simulation speedup, or computer, for the optimizer speedup. The two parts of speedup
are tested in separate experiments and the total speedup is then calculated.

In the first experiment, a robust speedup measurement of the simulator is obtained, rooted in the
experiments made so far. One hundred parameter sets are randomly taken from one of the optimiza-
tion runs performed in each case, and used as input for the speedup experiment. This experiment
comprises simulator executions that are set to execute on 1–4 cores of a single computer with each
run repeated on the one hundred inputs. Since results do not differ significantly between the cases,
only the joined results are shown in Figure 11(a). Speedups are calculated from total execution times,
which include serial pre-processing, post-processing, and input and output operations. The simula-
tor is capable of much higher speedups than shown here, especially when more complex, in terms of
spatial resolution, simulations take place, reducing the relative ratio of the serial algorithm portion
over the parallel portion (Kosec et al. 2014).

In the second experiment, AMS-DEMO speedup is estimated. AMS-DEMO attempts to minimize
computer idle time by allowing a non-deterministic execution, causing the convergence of solutions
to differ for different numbers of computers used. The detailed statistical analysis of a large number
of runs of AMS-DEMO has been performed in Depolli, Trobec and Filipič (2013), with the main
finding of no statistically significant differences in the convergence rate of solutions produced by
different runs as long as the number of processing units is lower than the population size. A justified
simplification can thus be made to ease the speedup measurements for the number of processing
units less than the population size. For each tested number of processing units—cluster nodes in this
case—AMS-DEMO is left to run until a predefined number of simulations is executed. Amodification
of Case 2 is devised, set to stop after 1000 simulations to shorten the execution time, while keeping
the overhead of the sequential parts of the algorithm similarly low, as it would be in a longer run.
This experiment depends very little on the choice of case and other details of the simulation and
is therefore performed only once. Although the experiment respects the rule of running on fewer
computers than the population size, the calculated speedup is called weak speedup, to account for

Figure 11. Speedup of the simulation and the optimization execution.
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ENGINEERING OPTIMIZATION 17

the fact that the solutions of different runs are not completely equivalent. Figure 11(b) shows the
weak speedup calculated as the fraction of the total execution time on n computers relative to the
execution time on a single computer, with input, output, MPI environment setup and other serial
overheads included. To eliminate noise introduced by the large variation in simulation times (the
standard deviation is 35% of the mean simulation time), the individual run times were normalized
by the mean simulation time of the run. The result is a near-linear weak-speedup of the optimizer
that scales well over the number of computers tested.

Finally, the two independentlymeasured speedups aremultiplied to get the theoretical speedup on
80 cores relative to a single core. This is done by taking the speedup mean value with four cores and
multiplying it by the speedup with 20 computers (both are available on Figure 11). The total speedup
is thus approximately 3.25 × 19.73 = 64.12.

4. Discussion and conclusions

The paper is focused on displaying the potential of simulation-based optimization using AMS-
DEMO. The presented case of obstructing air-flow with simple obstacles shows interesting arrange-
ments resulting in optimal obstruction that would be hard to predict without the synergy between the
numerical simulator and themulti-objective optimization. The test case could be extended in various
areas of design: insulation, large living and working spaces, air conditioning, heat storage and heat
engines.

Furthermore, a simulation-based optimization is executed in a parallel manner on a computer
cluster. Although a modestly sized cluster is used, the parallel optimization can be executed on a
much larger number of computers, and is not limited by the population size (Depolli, Trobec and
Filipič 2013). Simulation exploits the shared-memory model of a multi-core computer, and could
be migrated to GPUs, which was demonstrated in Kosec and Zinterhof (2013), or, theoretically, to
other computer accelerators that proliferate in modern high performance computing hardware. The
combination of the two is efficient at utilizing modern hardware resources and providing a tool for
handling physics-based optimization problems of much larger scale.

The presented optimization technique might seem crude for the problem at hand and several
improvements seem reasonable. The first improvementwould be a better parametrization of the prob-
lem, since current parametrization contains several symmetries (e.g. the order of obstacles is irrelevant
and the cavity is symmetric). Next would be to extend the optimizer by including local optimization
of good solutions after the stochastic optimization has converged. Finally, the connection between
optimizer and simulator could be improved by allowing the simulator to reuse past similar simula-
tions and allowing the optimizer to monitor the running simulations and stop those with obviously
sub-optimal setups in advance.
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