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a b s t r a c t 

This paper deals with a numerical solution of an incompressible Navier-Stokes flow on non-uniform do- 

mains. The numerical solution procedure comprises the Meshless Local Strong Form Method for spatial 

discretization, explicit time stepping, local pressure-velocity coupling and an algorithm for positioning of 

computational nodes inspired by Smoothed Particles Hydrodynamics method. The presented numerical 

approach is demonstrated by solving a lid driven cavity flow and backward facing step problems, first 

on regular nodal distributions up to 315,844 (562 ×562) nodes and then on domain filled with randomly 

generated obstacles. It is demonstrated that the presented solution procedure is accurate, stable, conver- 

gent, and it can effectively solve the fluid flow problem on complex geometries. The results are presented 

in terms of velocity profiles, convergence plots, and stability analyses. 

© 2016 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved. 
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1. Introduction 

Computational fluid dynamics (CFD) is a field of a great interest

among researchers in many fields of science, e.g. studying mathe-

matical fundaments of numerical methods, developing novel phys-

ical models, improving computer implementations, and many oth-

ers. Pushing the limits of all the involved fields of science helps

community to deepen the understanding of several natural and

technological phenomena. Weather forecast, ocean dynamics, wa-

ter transport, casting, various energetic studies, etc., are just few

examples where fluid dynamics plays a crucial role. The core prob-

lem of the CFD is solving the Navier-Stokes Equation [1] or its vari-

ants, e.g. Darcy or Brinkman equation for flow in porous media.

This paper focuses on a solution of the Navier-Stokes equation in a

randomly generated domain with a local numerical approach. 

Usually, numerical methods such as the Finite Volume Method

(FVM), Finite Difference Method (FDM), or the Finite Element

Method (FEM) are typically used for solving fluid flow problems.

Although classical methods, especially FEM, offer several advanced

features, the meshing of realistic domains still remains one of the

most cumbersome and time-demanding step in the entire numer-

ical solution process, since it often involves a significant user’s as-

sistance. In past few years the coupling of Computer Aided De-

sign (CAD) and FEM analysis [2] alleviates that burning problem.

The approach is also referred to as an isogeometric analysis and
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s focused on integration of FEM into conventional Non-Uniform

ational Basis Splines (NURBS) based CAD environments. On the

ther hand, the most intuitive and straightforward to implement

s definitely the FDM approach that performs excellent as long as

he treated domain can be described with an equidistant orthogo-

al mesh, which unfortunately covers only limited spectra of prob-

ems. 

A promising alternative is a class of meshless methods (MM)

hat are based on scattered discretization nodes. MMs originate

n the seventies with Smoothed Particles Hydrodynamics (SPH)

3] and develop further with the Diffuse Element Method (DEM),

he Meshless Petrov-Galerkin method (MPG), the Element Free

alerkin method (EFG), etc. [4] . The SPH, an Eulerian kernel based

pproximation method, is an effective tool for simulations of prob-

ems where mesh-based method fail, for example breaking waves,

as problems and many more. However, SPH suffers from incon-

istency due to the combination of Eulerian kernel and Lagrangian

escription of motion. The more consistent particle method with

agrangian kernels has been later introduced for solution of solid

echanics problems [5] . 

In this paper, one of the simplest class of MMs, Meshless Local

trong Form Method (MLSM), a generalization of methods which

re in literature also known as Diffuse Approximate Method (DAM)

6] , Local Radial Basis Function Collocation Methods (LRBFCM)

7] , Generalized FDM [8] , Collocated discrete least squares (CDLS)

eshless [9] , etc., is used. Although each of the named meth-

ds poses some unique properties, the basic concept of all local

trong form methods is similar, namely, to approximate treated

http://dx.doi.org/10.1016/j.advengsoft.2016.05.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
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elds with nodal trial functions over the local support domain. The

odal trial function is then used to evaluate various operators, e.g.

erivation, integration, and after all, approximation of a considered

eld in arbitrary position. The MLSM could easily be understood as

 meshless generalization of the FDM, however much more power-

ul. The MLSM has an ambition to avoid using pre-defined relations

etween nodes and shift this task into the solution procedure. The

nal goal of such an approach is higher flexibility in complex do-

ains, moving boundaries and nodal adaptivity. 

There are several publications regarding adaptive MM. The h-

efinement, i.e. the adaptivity in terms of adding and/or remov-

ng nodes on/from the domain has been demonstrated with the

lobal Radial Basis Function Collocation Method [10] in solution

f nearly singular Partial Differential Equations (PDE), as well as

ocal MMs in solution of coupled Burgers’ equation [11] and tor-

ion problem [12] . The meshless r-refinement approach, where the

ositions of the nodes are adjusted to obtain an optimal approxi-

ation with the total number of the nodes unchanged, has been

emonstrated in solution of phase field model [13] . In general, the

eshless adaptivity has been thoroughly demonstrated in crack

ropagation problems [14–17] . An important part of the adaptivity

s the error estimate that determines the nodal density that has

een discussed in [11,18] . 

Although the meshless methods do not require any topologi-

al relations between nodes and even randomly distributed nodes

ould be used [19] , it is well-known that using regularly dis-

ributed nodes leads to more accurate and more stable results

20–22] , which is also confirmed in this paper. Therefore, despite

eshless seeming robustness regarding the nodal distribution, a

ertain effort has to be invested into the positioning of the nodes

nd this paper, to some extent, deals with this problem. 

The rest of the paper is organized as follows; in Section 2 the

LSM principle is explained, in Section 3 the lid driven cavity

nd backward facing step problems together with base elements of

he solution procedure are presented, Section 4 is focused on dis-

ussion of results, and finally, paper offers some conclusions and

uidelines for future work in last section. 

This paper is extension of results presented on Ninth Interna-

ional Conference on Engineering Computational Technology [23] . 

. Numerical methodology 

.1. Meshless LOCAL STRONG FORM METHOds (MLSM) 

The core of MLSM presented in this paper is a local approxima-

ion of a considered field over the overlapping local support do-

ains, i.e. in each node a considered field is approximated over a

mall local sub-set of neighbouring N S nodes. The trial function is

hus introduced as 

(p ) = 

N B ∑ 

n =1 

αn �n (p ) , (1) 

ith N B , αn , �n , p ( p x , p y ) standing for the number of basis func-

ions, approximation coefficients, basis functions and the position

ector, respectively. The type of approximation, the size of support

omain, and the type and number of basis function can be general.

Although the selection of basis function �n is general, several

esearchers follow the results from Franke’s analysis [24] and use

ardy’s Multiquadrics, however in this work the monomials are

sed based on the results presented in [25] . The goal here is to

olve a Navier-Stokes equation, i.e. a second order PDE, and to ob-

ain non-trivial first and second derivatives a minimal basis of five

onomials ( 1 , p x , p y , p 2 x , p 
2 
y ) is used. Therefore, to determine cor-

esponding coefficients at least five support nodes are required. In

uch setup, i.e. support domain size is the same as the number

f basis functions ( N = N ) , the determination of coefficients αn 
S B 
implifies to solving a system of linear equations that results from

xpressing Eq. (1) in all support nodes. The system can be written

n vector form as 

= �α, (2) 

here θ stand for field values in support nodes, � basis matrix

( �i j = �i ( p j ) ) and α vector of coefficients. The LRBFCM that has

een recently used in various problems [26, 27] uses such colloca-

ion on different sizes of support domain, depending on the prob-

em tackled. 

If the number of support nodes is higher than the number of

asis functions N S > N B Weighted Least Squares (WLS) approxi-

ation is used to solve over-determined system ( 2 ), again, con-

tructed by expressing ( 1 ) in all support nodes. An example of such

pproach is DAM [6] that was originally formulated to solve fluid

ow in porous media. DAM uses six monomials for basis and nine

odded support domains to evaluate first and second derivatives of

hysical fields required to solve problem at hand. Note that WLS

ith a Gaussian weighting 

 ( p ) = exp 

( 

−
( ‖ 

p ‖ 

σ p min 

)2 
) 

(3) 

s used, where σ stands for weight parameter and p min for the

istance to the first support domain node. 

Our goal is to apply partial operator on a considered field 

θ ( p ) = 

N B ∑ 

n =1 

αn L �n (p ) , (4) 

here L stands for general differential operator. Considering

q. (4) by using explicit computation of approximation coefficients

= �−1 θ results in 

θ ( p ) = 

N B ∑ 

n =1 

( 

N S ∑ 

m =1 

�−1 
nm 

θm 

) 

L �n (p ) . (5) 

sing merely few summation rules the Eq. (5) can be rewritten in

 more convenient form 

θ ( p ) = 

N S ∑ 

m =1 

χ L 
m 

(p ) θ ( p m 

) , (6) 

here the shape function χ L 
m 

is introduced as 

L 
m 

(p ) = 

N B ∑ 

n =1 

�−1 
nm 

L �n (p ) , (7)

ith �−1 standing for inverse/pseudo inverse of the approximation

ystem matrix. 

The presented formulation is convenient for implementation

ince most of the complex operations are performed only when

odal topology changes, i.e. when the system ( 2 ) has to be re-

valuated. In the main simulation, the pre-computed shape func-

ions are then convoluted with the vector of values in the support

o evaluate the desired operator, refer to Eq. (16) for example. The

resented MLSM approach is even easier to handle than the FDM,

owever despite its simplicity it offers many possibilities for treat-

ng challenging cases, e.g. nodal adaptivity to address regions with

harp discontinuities or p-adaptivity to treat obscure anomalies in

hysical field. The stability versus computation complexity and ac-

uracy can be regulated simply by changing number of support

odes, etc. All these features can be controlled on the fly during

he simulation. 
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Fig. 1. Distribution of nodes within a randomly generated domain. The example support domains nodes are marked with red circles. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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2.2. Positioning of computational nodes 

To construct stable and reliable shape functions the matrix �
has to be well-conditioned . To achieve that, the support domains

need to be non-degenerated [28] , i.e. the distances between sup-

port nodes have to be balanced. Naturally, this condition is fulfilled

in regular nodal distributions, but when working with complex ge-

ometries, the nodes have to be positioned accordingly. There are

different algorithms designed to optimally fill the domain with dif-

ferent shapes [29,30] . However, in this paper the intrinsic feature

of the MLSM is used to take care of that problem. The goal is to

minimize the overall support domain degeneration in order to at-

tain stable numerical solution. In other words, a global optimiza-

tion problem with the overall deformation of the local support

domains acting as the cost function is tackled. The quality of the

nodal distribution is measured as 

 = 

min (d ) 

max (d ) 
, (8)

where d stands for vector of distances between each node at its

closest neighbour. We seek the global minimum by a local iterative

approach. In each iteration, the computational nodes are translated

according to the local derivative of the weight function 

δp ( p ) = −σk 

N S ∑ 

n =1 

∇W ( p − p n ) , (9)

where δp , p n and σ k stand for the offset of the node, position of

n th support node and relaxation parameter, respectively. After off-

sets in all nodes are computed, the nodes are repositioned as 

p ← p + δp ( p ) . (10)

Presented iterative process procedure begins with positioning of

boundary nodes, which is considered as the definition of the do-

main, and then followed by the positioning of internal nodes ac-

cording to the Eqs. (9) and ( 10 ). In Fig. 1 the example of domain
enerated with presented procedure is demonstrated on rectangu-

ar domain filled with 90 randomly generated circular obstacles.

he quality of nodal distribution in Fig. 1 is C = 0.75. Note that

uality of uniform nodal distribution is C = 1.00. Besides nodes few

upport domains of different sizes are also presented. 

.3. Numerical examples 

The presented numerical approach is first tested on a lid driven

avity problem that stands for a standard benchmark test for val-

dation of the fluid flow solvers. It has been proposed in 1982

31] and since then solved by many researchers with wide spectra

f different numerical methods. The test is still widely studied and

sed for validation of novel methods and numerical principles, for

xample, recently for adaptive Finite-Volume Method [32] as well

s meshless methods [33–35] . The problem is governed by follow-

ng equations 

∇ · v = 0 , (11)

∂v 

∂t 
+ ∇ · ( vv ) = −∇ P + 

1 

Re 
∇ 

2 v (12)

here v , t, P , and Re stand for dimensionless velocity, time, pres-

ure, and Reynolds number, respectively. Non-permeable and no-

lip velocity boundaries are assumed. The lid velocity is set to

 and initial pressure and velocity are set to zero. Problem is

chematically presented in Fig. 2. 

In addition to the lid driven cavity a Backward-Facing Step

roblem [36] is tackled to increase the confidence in the presented

LSM approach. The case is also used as a standard benchmark

est [36] , where the model ( 11 ) ( 12 ) is solved on an open domain

ith prescribed inlet velocity 

 x ( p y ) = 

3 

2 

(
1 − p y − 0 . 75 

0 . 25 

)2 

. (13)
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Fig. 2. Scheme of the lid driven cavity problem. 
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he Neumann boundary conditions for velocity components are

rescribed at the outlet boundary. The problem is schematically

resented in Fig. 3. 

The well-known problem of solving a problem at hand is a

ressure-velocity coupling. There are different approaches towards

oupling Eqs. (11) and ( 12 ) [1,37] . In general, one solves a Poisson

ressure or pressure correction equation [1] . In this work the local

pproach is preferred. A possible way to complete the task is to use

he false time transient method [38] for solving a Poisson equation.

n artificial time dependency is added to the Poisson equation in

rder to transform it to a parabolic equation that can be solved

ocally through explicit stepping. Another approach is to use Arti-

cial Compressibility Method (ACM) that has been recently under

ntense research [39] . Although basic assumptions seem different,

oth approaches lead to the same coupling. With the explicit tem-

oral discretization the problems is formulated as 

ˆ  = v 0 + 	t 

(
−∇ P 0 + 

1 

Re 
∇ 

2 v 0 − ∇ · ( v 0 v 0 ) 
)

(14) 

 = P 0 − ς 	t F ∇ ̂  v + ς 	t F 	t ∇ 

2 
� 

P 0 , (15)

here ˆ v , 	t, ς , 	t F and P stand for intermediate velocity, time

tep, relaxation parameter, artificial time step, and pressure respec-

ively, and v 0 and P 0 stand for velocity and pressure from previ-

us time step. First, the intermediate velocity is computed from

revious time step ( 14 ). Second, the velocity is driven towards

olenoidal field by correcting the pressure ( 15 ). Note that no spe-

ial boundary conditions for pressure are used, i.e. the pressure on

oundaries is computed with the same approach as in the interior

f the domain. In general, the internal iteration with an artificial

ime step is required until the divergence of the velocity field is

ot below required criteria. However, if one is interested only in

 steady-state solution, the internal iteration can be skipped and

t equals 	t F . Without internal stepping the transient of the so-

ution is distorted by artificial compressibility effect. This approach

s also known as ACM with Characteristics-based discretization of
Fig. 3. Scheme of the Backwa
ontinuity equation, where the relaxation parameter relates to the

rtificial speed of sound [40] . 

The most computationally demanding parts of the code are the

patial loops, i.e. computation of new velocity and pressure cor-

ection. Spatial loops are incorporated into the temporal loop and

dditionally into pressure pressure-velocity coupling iteration loop,

hen dealing with transient problems. In each spatial loop one

quation is computed. Each equation comprises different partial

ifferential operations that are evaluated as a convolution of the

orresponding shape functions and support domain values of the

reated field. For example, a new iteration of pressure ( 15 ) is com-

uted as 

 ( p n ) = P 0 ( p n ) − ς 	t F 

[ 

N S ∑ 

m =1 

χ∂x 
m 

v x ( p m 

) + 

N S ∑ 

m =1 

χ∂y 
m 

v y ( p n ) 

] 

︸ ︷︷ ︸ 
∇·v 

+ ς 	t F 	t 

N S ∑ 

m =1 

χ∇ 

2 

m 

P 0 ( p m 

) ︸ ︷︷ ︸ 
∇ 

2 P 

(16) 

he computation takes place in all nodes. The χ∇ 

2 
and χ∂ x, ∂ y stand

or pre-computed shape functions and its derivatives, refer to

quation (7) . The computation of velocity field follows the same

rinciples. 

. Results of numerical integration 

.1. Comparison with published data and convergence analysis 

First the lid driven cavity problem is solved. At low Re num-

ers one global vortex appear approximately at the centre of the

omain. With increasing Re the complex structure of eddies near

avity corners evolve. The present MLSM solution of the problem is

ompared at three different Re = [100,1000,3200] numbers against

hree different solutions, namely, Mramor [33] , Sahin [41] and Ghia

42] . In Fig. 4 comparison of MLSM and Mramor in terms of mid-

lane velocity profile v y ( p x , 0.5) is presented together with a MLSM

ontour plot of velocity magnitude for Re = 3200 case. 

Results, presented in Fig. 4 , are computed on a regularly dis-

ributed N = 22,801 (151 ×151) nodes with support domain of size

, time step 0 . 5 · 10 −4 , and relaxation parameter set to 1. In

ig. 5 more precise spatial convergence in terms of maximal v y 
n a range from N = 121 (11 ×11) to N = 315,844 (562 ×562) uni-

ormly distributed nodes is demonstrated. It can be seen that

he Re = 3200 case cannot be computed with less than N = 6561

81 ×81) nodes, otherwise, the results converge towards reference

olutions. Note that the reference solutions do not represent the

onvergence behaviour and are added only for the sake of com-

arison. The tabular form of results is presented in Table 1 . It can
rd-Facing Step problem. 
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Fig. 4. Contour plot of velocity magnitude for Re = 3200 (left) and comparison of horizontal mid-plane velocity profile v y ( p x , 0.5) against recently published solution Mramor . 

Fig. 5. The maximal mid-plane velocity max ( v y ( p x , 0.5)) with respect to the number of computational nodes for different Re numbers. Blue, black and green lines stand for 

reference solutions Mramor, Sahin and Ghia , respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 1 

Tabular comparison of MLSM against reference solutions in terms of positions and values of 

maximal and minimal v y mid-plane velocities( p x , v y ). 

RE MLSM Mramor Sahin Ghia 

max ( v y ) 

100 (0 .2367, 0.1790) (0 .2379, 0.1788) (0 .2354, 0.1809) (0 .2344, 0.1752) 

10 0 0 (0 .1584, 0.3754) (0 .1665, 0.3560) (0 .1573, 0.3769) (0 .1563, 0.3709) 

3200 (0 .0961, 0.4270) (0 .10 0 0, 0.3861) (0 .0972, 0.4324) (0 .0938, 0.4276) 

min ( v y ) 

100 (0 .8096, -0.2524) (0 .8102, -0.2526) (0 .8127, -0.2560) (0 .8047, -0.2453) 

10 0 0 (0 .9093, -0.5233) (0 .9070, -0.5082) (0 .9087, -0.5284) (0 .9100, -0.5263) 

3200 (0 .9466, -0.5526) (0 .9471, -0.5290) (0 .9491, -0.5691) (0 .9453, -0.5405) 

 

 

 

 

 

 

 

 

 

 

 

3

 

f  

a  

d

p  

w  

i  

s  

t  
be seen that MLSM agree well with Sahin and Ghia while Mramor

deviate a bit more. From Fig. 4, Fig. 5 and Table 1 it can be con-

cluded that the presented MLSM methodology provides accurate,

convergent and stable results. 

To increase confidence into the MLSM solution procedure ad-

ditional tests are performed on a backward-facing step problem.

In Fig. 6 the MLSM solution of the backward-facing step problem

at Re = 800 on 6615 uniformly distributed nodes is presented in

terms of velocity magnitude contour plot. Note that although the

computation is done for p x = [0 , 15] figure is, for the sake of better

presentation, limited to p x = [0 , 10] . Furthermore, on Fig. 7 a com-

parison of vertical velocity profiles solved by MLSM and reference

data [36] is presented. 
o  
.2. Computations on irregular nodal distributions 

Next analysis is focused on the impact of support domain de-

ormation on the computation efficiency. To test MLSM behaviour,

 randomized nodal distribution is used, i.e. the initially uniformly

istributed nodes are translated by random offsets 

 i ← p i + D r 	p, (17)

here r = ( r x , r y ) is vector of random numbers within [ −1 , 1] , D

s deformation magnitude, p i is position of i th node, and 	p is

patial step of original uniform nodal distribution. In Fig. 8 con-

our plots of maximal horizontal cross-section velocity computed

n N = 10 4 nodes with respect to the deformation magnitude and
D 
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Fig. 6. Velocity magnitude contour plot for backward-facing step problem. 

Fig. 7. Comparison of vertical velocity profiles at p x = 7 and p x = 15 for backward-step facing problem. 

Fig. 8. The maximal horizontal cross-section velocity with respect to deformation magnitude and number of support nodes for different weight parameters. 
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Fig. 9. The impact of nodal deformation on the performance of the method with respect to the support domain size and weight parameter (left) and the impact of the time 

step, weight parameter and number of computational nodes on the results (right). 

Fig. 10. max ( v y ( p x , 0.5))for lid driven problem (left) and max ( v x ( p x , 7))for backward facing step problem (right) with respect to the number of nodes and deformation of 

nodal distribution. 
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number of support nodes for different weight parameters is pre-

sented. 

It can be clearly seen that increasing the deformation gravely

affects the results, especially; when the support is small, i.e. small

number of nodes influences the approximation function, as a con-

sequence of a small number of support nodes and/or the small

weight parameter. With a small support domain MLSM starts to di-

verge already at deformation D = 0.1. Increasing the support, i.e. in-

creasing the weight parameter as well as number of support nodes,

improves results. Fig. 8 serves mainly to determine the stability

limit for given setup, where the instable setups are represented

with zero values, shown as white areas on the figure. More quanti-

tative representation of phenomenon is presented in Fig. 9 , where

it can be also seen that the wider supports result in a lower ve-

locities due to the fact that WLS approximation with wide support

domains fails to capture all the details in the field, which intro-

duces additional approximation error. The impact of the time step

on results for different discretizations and weight parameters with

N S = 15 is also presented in Fig. 9 , where the stability limit due to

the explicit stepping can be clearly seen. 

The number of support nodes influences the computational

time since the generation of shape functions can be estimated to

complexity O ( N 

3 
s ) and the evaluation of partial operators to O ( N s ) .

In many practical cases, when temporal loop presents majority of

the execution time, the construction of shape function can be con-

sidered as a pre-process. In such cases the execution time and

memory consumption are linearly dependant on the support size. 
From above results a general conclusion can be drawn, namely,

ncreasing the support domain stabilizes the MLSM with respect to

he nodal deformation, at the cost of accuracy and computational

omplexity. Ultimately, a setup with σ = 0 . 75 and support size of

5 nodes is chosen as a reasonable trade-off between stability, ac-

uracy and computation cost that provides stable results on nodal

istribution up to D = 0.3 that corresponds to the C = 0.54. 

To finally confirm the MLSM performance convergence plots for

id driven cavity and BFS problems at Re = 100 are presented for

egular and irregular nodal distributions in Fig. 10 . We can see that

or both problems MLSM shows convergent behaviour. It can be

lso seen that, when working with low number of nodes, irregu-

arity of nodal distribution destabilizes computations. However, the

roblem diminishes with increasing the number of nodes. For both

roblems approximately 10 4 nodes suffices for stable solution on

egular as well as irregular nodal distributions. 

Previous analyses confirmed that MLSM with support size 15

s stable up to C = 0.54 and that we can build a nodal distribu-

ion within a randomly generated domain with C of order 0.75.

lthough the quality of generated domain depends on the input

eometry, the difference between the stability limit and the qual-

ty of the generated domain is high enough for practical computa-

ions. This is confirmed by applying the presented methodology on

id driven cavity problem in different irregular domains. In Fig. 11

olution of a Re = 10 0 0 case problem solved in domain filled with

niformly distributed circular obstacles and in Fig. 12 in domain

lled with randomly distributed circular obstacles are presented.
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Fig. 11. Solution of lid driven problem in a domain filled with uniformly distributed circular obstacles: left 30 obstacles, right 72 obstacles. 

Fig. 12. Solution of lid driven problem in a domain filled with randomly distributed circular obstacles: left 20 obstacles, right 50 obstacles. 
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n all figures computational nodes are marked with white dots,

oundary nodes with black dots while velocity field is represented

ith velocity magnitude contour plot. 

. Conclusions 

In this paper it is demonstrated that MLSM coupled with a local

ressure-velocity, and a local nodal positioning algorithm can ef-

ectively solve Navier Stokes problem in complex domains. The so-

ution procedure is first tested on an uniform domain for lid driven

avity problem at Re = [100,1000,3200] with good agreement with

ublished data as well as good convergence achieved. The solution

rocedure is further tested also on backward facing step problem

t Re = 800, again good agreement with published data is demon-

trated. The numerical approach is finally applied on the domain

lled with randomly generated holes. It is demonstrated that pre-

ented MLSM with five monomials and support size of 15 with

LS used for construction of shape functions can effectively solve

uch problems. This conclusion is supported with several analyses.

The complete locality of the introduced numerical scheme has

everal beneficial effects. One of the most attractive is the sim-

licity since it could be understood as a generalized FDM method.

he presented methodology is relatively simple to understand and

mplement, which makes it potentially powerful tool for engineer-

ng simulations. Besides simplicity and straightforward implemen-

ation, there are many opportunities to fully exploit modern com-

uter architectures through different parallel computing strategies

25, 43–46] . More detailed comparison of MLSM, FEM and FDM
lso in context of implementation and parallel execution perfor-

ances can be found in [20] . 

Future work will be focused on implementation of more com-

lex physical models, more detailed analysis of MLSM application

n complex 3D domains. 
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