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Abstract  The simulation of macrosegregation as a conse-

quence of solidification of a binary Al-4.5%Cu alloy in a 2-

dimensional rectangular enclosure is tackled in the present 

paper. Coupled volume averaged governing equations for 

mass, energy, momentum and species transfer are considered. 

The phase properties are resolved from the Lever solidifica-

tion rule, the mushy zone is modeled by the Darcy law and 

the liquid phase is assumed to behave like an incompressible 

Newtonian fluid. Double diffusive effects in the melt are 

modeled by the thermal and solutal Boussinesq hypothesis. 

The physical model is solved by the novel Local Radial Basis 

Function Collocation Method (LRBFCM). The involved 

physical relevant fields are represented on overlapping 5-

noded sub-domains through collocation by using multiquad-

rics Radial Basis Functions (RBF). The involved first and 

second derivatives of the fields are calculated from the re-

spective derivatives of the RBFs. The fields are solved 

through explicit time stepping. The pressure-velocity cou-

pling is calculated through a local pressure correction 

scheme. The evolution of the solidification process is pre-

sented through temperature, velocity, liquid fraction and spe-

cies concentration histories in four sampling points. The fully 

solidified state is analyzed through final macrosegregation 

map in three vertical and three horizontal cross-sections. The 

results are compared with the classical Finite Volume Meth-

od (FVM). A surprisingly good agreement of the numerical 

solution of both methods is shown and therefore the results 

can be used as a reference for future verification studies. The 

advantages of the represented meshless approach are its sim-

plicity, accuracy, similar coding in 2D and 3D, and straight-

forward applicability in non-uniform node arrangements. The 

paper probably for the first time shows an application of a 

meshless method in such a highly non-linear and multi-

physics problem.  

Keywords: Solidification, binary alloy, macrosegregation, 

convective-diffusive problems, meshless method, local radial 

basis function collocation method, finite volume method. 

1 Introduction 

Solidification processing is increasingly transforming from 

art to science based on the extensive use of multi-scale and 

multi-physics numerical models [Cockcroft and Maijer, 

(2009)]. These models are becoming increasingly important 

in technology, because they help to understand a broad spec-

tra of solidification situations, such as casting, crystal growth, 

welding, etc. On the other hand, they help to mitigate several 

casting defects such as macrosegregation, cracks, shape de-

fects, porosity, hot tearing, etc. The present work deals with 

the numerical prediction of macrosegregation in cast pieces. 

Macrosegregation is an inhomogeneity of the chemical com-

position in a cast piece that forms during the solidification 

process as a consequence of coupled heat and mass transfer, 

phase change and flow phenomena. The theoretical descrip-

tion of this phenomenon started to attract researchers in the 

Sixties [Flemings and Nereo, (1967a); Flemings and Nereo, 

(1967b)] and model studies started in the Seventies [Hebditch 

and Hunt, (1974)]. Since then, this topics has been treated in 

many theoretical works and for many processes such as static 

casting [Combeau, Založnik, Hans and Richy, (2009); 

Založnik, Kumar and Combeau, (2010)], continuous casting 

of steel [Lesoult, (2005)] and direct chill casting of alumini-

um alloys [Založnik and Šarler, (2005)]. Despite the many 

different attempts by using different formulations of the 

physical system [Drew, (1983); Ganesan and Poirier, (1990); 

Ni and Beckermann, (1991); Wang and Beckermann, 

(1996a); Wang and Beckermann, (1996b); Goyeau, 

Bousquet-Melou, Gobin, Quintard and Fichot, (2004)] and 

different numerical methods [Ahmad, Combeau, Desbiolles, 

Jalanti, Lesoult, Rappaz, Rappaz and Stomp, (1998)], it is 

still very difficult to obtain accurate numerical predictions of 

macrosegregation, which would be independent of the spatial 

discretization or even of the numerical method. Only recently 

substantial efforts were invested to study [Combeau, Bellet, 

Fautrelle, Gobin, Arquis, Budenkova, Dussoubs, Duterrail, 

Kumar, Goyeau, Mosba, Quatravaux, Rady, Gandin and 

Založnik, (2011)] the behavior of different numerical meth-
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ods in the prediction of macrosegregation. However, these 

studies were made on numerical benchmark test cases, where 

instabilities develop during solidification that induce fine 

scale segregation structures (also called mesosegregations). 

These structures are very difficult to resolve because they 

require extremely fine spatial discretizations and because 

their development is strongly nonlinear. Due to this high 

complexity, grid independent solutions could not be obtained 

until now. In summary, today we do still not have a rigorous 

and clear-cut view of the convergence behavior and the pre-

cision of numerical methods in the prediction of macrosegre-

gation. 

 

The simulation of a numerical test case for macrosegregation 

that is similar to the one proposed in [Bellet, Combeau, 

Fautrelle, Gobin, Rady, Arquis, Budenkova, Dussoubs, 

Duterrail, Kumar, Gandin, Goyeau, Mosbah and Zaloznik, 

(2009)], however without the appearance of the fine 

mesosegregation structures in the solution, is treated in the 

present paper. There are two basic incitements for doing this. 

The first one is in solving the highly nonlinear macrosegrega-

tion problem by a new generation of meshless numerical 

methods, which can be generally very well suited for moving 

boundary problems. The second one is to propose a simpler 

test case for macrosegregation and show that we could be 

able to find an accurate numerical reference solution for such 

a case. We demonstrate this by solving the problem with two 

completely different methods: a novel local meshless method 

and a classical FVM for spatial discretization, with different 

time discretization schemes, and different pressure velocity 

couplings. Both of the two topics have, by the best of the 

knowledge of the present authors, not been published yet. 

 

The meshless numerical methods represent one of the most 

vigorously developing fields of numerical mathematics and 

engineering. They are characterized by involvement of the 

nodal points only, instead of polygons. This usually makes 

these methods attractive in three dimensional situations, node 

refinement situations, and in complex geometry cases with 

moving boundaries. Undoubtedly, these methods can be of 

great advantage in solving solidification processing prob-

lems. There are many different meshless methods in devel-

opment today. Some of them are based on the weak formula-

tion and some of them on the strong one. There is a particu-

larly simple and appealing class of meshless methods, based 

on the strong formulation and collocation by radial basis 

functions [Buhmann, (2000)]. This development was initiated 

by the pioneering work of Kansa [Kansa, (1990b); Kansa, 

(1990a)]. His idea was to solve the partial differential equa-

tions by collocation of the involved fields in a global sense 

with radial basis functions (RBFs). The partial differential 

operators have been calculated through partial derivatives of 

the RBFs. This procedure has been used for solving many 

different partial differential equations. However, the proce-

dure resulted in large, increasingly ill-conditioned systems of 

equations, which prevented the problems with more than 

approx. 1000 variables to be solved in a reliable way. Šarler 

and Vertnik proposed [Šarler and Vertnik, (2006)] a local 

variant of this method, where the collocation is done locally 

over a subset (usually 5 nodes in 2 dimensions). This proce-

dure results in small systems of collocation equations for 

each node, which are less sensitive to the free parameters of 

RBFs. The method experienced extremely fast and successful 

development, by recently being applied even to simulations 

of turbulent flow in channels [Vertnik and Šarler, (2009)] and 

turbulent mixed convection [Vertnik and Šarler (2011)]. Lee 

et al. [Lee, Liu and Fan, (2003)] show that the method is ap-

proximately of the same accuracy as the global one for a 

spectrum of boundary value problems tested. In order to be 

able to simulate the posed problem of this paper, the method 

previously needed to be developed for convective-diffusive 

problems with phase change [Vertnik and Šarler, (2006)], 

thermal and solutal natural convection problems in Newtoni-

an fluids [Kosec and Šarler, (2008a)], natural convection 

problem in Darcy porous media [Kosec and Šarler, (2008b)] 

and natural convection with melting of a pure metal [Kosec 

and Šarler, (2008c); Kosec and Šarler, (2009)]. The next step 

in the order of increasing complexity is represented by the 

present problem – solidification of a binary alloy. 

 

The main complexities in solving physical models of alloy 

solidification are strong nonlinearities and strong couplings. 

The nonlinearities stem from the hyperbolic nature of the 

solute transport (completely advective transport) in the poten-

tially unstable natural convection in low-Pr liquids such as 

metals, in the jump of the enthalpy in the mushy zone and in 

the two flow regimes in free fluid and in the flow resistant 

mushy zone. On the other hand, the problem of strong cou-

pling between the momentum transport and energy and solute 

transport via buoyancy force, and between the thermal field 

and permeability, makes the solution even less stable. The 

complexity of the prediction of macrosegregation is a conse-

quence of the fact that the macrosegregation results from the 

entire history of the strongly coupled processes of mass, heat, 

momentum and solute transfer from the liquid state up to the 

end of solidification. Recent results of a numerical bench-

mark, proposed within the French SMACS [Bellet, Combeau, 

Fautrelle, Gobin, Rady, Arquis, Budenkova, Dussoubs, 

Duterrail, Kumar, Gandin, Goyeau, Mosbah and Zaloznik, 

(2009)] project, have shown the difficulties in the numerical 

solution of the macrosegregation problem, mainly linked to 

the presence of mesosegregates, i.e. instabilities that devel-

oped into channels during the advancement of the mushy 

zone, and which make the problem even more unpredictable. 

The results also show that the predictions of macrosegrega-

tion (outside the instability zone) are seemingly an easier 

problem, despite the apparent nonlinearities involved. Addi-

tional research is needed to understand all of the involved 

phenomena and their interactions. 
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2 Problem definition 

The physical model used to describe the macrosegregation in 

the present paper is based on continuum Euler description of 

the conservation laws and constitutive relations, contributing 

additional information regarding the diffusion transport, 

stresses, interfacial forces, buoyancy forces,... The governing 

equations presented in this paper are derived by the volume 

averaging procedure. The original derivation of the model 

can be found in the paper of Ni and Beckerman [Ni and 

Beckermann, (1991)] as well as in the follow-up papers 

[Drew, (1983); Ganesan and Poirier, (1990); Wang and 

Beckermann, (1996a); Wang and Beckermann, (1996b)] and 

later developments in the field [Goyeau, Bousquet-Melou, 

Gobin, Quintard and Fichot, (2004)]. To avoid the two-

domain formulation, which includes the phase change front 

tracking with the boundary conditions on the phase change 

front, a one-domain model is developed. In the first step, the 

transport equations for each phase are averaged separately 

and then summed up by taking into account the interphase 

balances. On the microscopic level, the phase change phe-

nomena are treated by the consideration of the linearized 

phase diagram and solute transport over the scale of the sec-

ondary dendritic arms [Flemings, (1974); Voller, (2001)]. 

Essentially, this paper deals with the same physical model as 

in the French SMACS [Bellet, Combeau, Fautrelle, Gobin, 

Rady, Arquis, Budenkova, Dussoubs, Duterrail, Kumar, 

Gandin, Goyeau, Mosbah and Zaloznik, (2009)] project, but 

with material and process conditions, where no headache 

with the channel mesosegregations is expected.  A first com-

parison of channel mesosegregation predictions, obtained by 

the finite volume and the finite element method, has been 

attempted in [Ahmad, Combeau, Desbiolles, Jalanti, Lesoult, 

Rappaz, Rappaz and Stomp, (1998)] and it has been found 

out that the mesosegregates are more pronounced when cal-

culated by the FVM. Unfortunately, a comparison of 

mesosegregation-free case, such as the one in the present 

paper, have not been attempted before. 

A columnar solidification process in two-dimensional rectan-

gular domain   with boundary  , filled with a binary sub-

stance in solid and liquid phase, is considered. The simplest 

possible description that can provide physically reasonable 

predictions, a so-called “minimal” (simplified to the largest 

possible degree) solidification model, is considered for the 

defined system. At the macroscopic scale it accounts for heat 

transfer, solute transport and for incompressible Newtonian 

flow, driven by thermosolutal natural convection. The Bous-

sinesq hypothesis is used to describe the buoyancy force. The 

solidification region (mushy zone) is a developing columnar 

grain structure with interconnected solid phase. At the mac-

roscopic scale it is described as a porous medium, which ex-

erts a Darcy drag on the moving fluid. The phase change is 

modeled assuming local thermodynamic equilibrium (Lever 

rule) at the scale of the solidification structures (microscopic 

scale – the scale of the grains or dendrites) and is fully cou-

pled with the macroscopic transport. The problem is de-

scribed by the following system of partial differential equa-

tions, identical as proposed in [Bellet, Combeau, Fautrelle, 

Gobin, Rady, Arquis, Budenkova, Dussoubs, Duterrail, 

Kumar, Gandin, Goyeau, Mosbah and Zaloznik, (2009)]. 
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,p Lh c T f L   (8) 

 1 ,L L p LC f f k C      (9) 

,F LT T mC   (10) 

The transport equations (5)-(4) describe the temporal evolu-

tion of the leading quantities, , ,h Cv : superficial liquid ve-

locity, enthalpy, and average concentration, respectively, as 

well as the pressure P . 
Lv  stands for the intrinsic liquid 

velocity. The permeability K
 

is linked to a permeability 

constant 
0K
 
and to the liquid fraction 

Lf  
by the Kozeny-

Carman relation (6). The thermal conductivity  , specific 

heat pc  and density   of the solid and the liquid phase are 

assumed to be equal and constant. The liquid density varies 

only in the buoyancy term b  (Boussinesq hypothesis), where 

it depends on the temperature T , the liquid concentration 

LC , the thermal expansion coefficient 
T , the concentration 

expansion coefficient 
C , as well as on the reference density 

ref  given at reference temperature refT  and reference con-

centration refC . The viscosity  , the liquidus slope 
Lm  and 

the binary equilibrium partition coefficient pk , are constant 

as well. The symbols , , Ft Tg stand for time, gravity accelera-

tion and the fusion temperature of the pure solvent, respec-

tively. The solute diffusion is neglected at the macroscopic 

scale. 

 

We seek the solution of the enthalpy, velocity, pressure and 

concentration field at time 0t t t  ,  where 0t  represents 

initial time and t  a positive time increment. We solve the 

transport equations (1)-(5) by integration in time. They are 

coupled to the equations (8)-(10), which describe the phase 
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change. They are solved to get the additional variables fL, T, 

and CL. 

 

The initial and boundary conditions on the considered rec-

tangle are set to 

     , , 0, 0x W y H yp t p t p t       v v v , (11)
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
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(14) 

 0, 0x

x

C p t
p


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
, (15) 

      0, , 0,x W y H yC p t C p t C p t C        , (16) 

 , 0 0t  v p , (17) 

  0, 0T t T p , (18) 

  0, 0C t C p , (19) 

where and H W  stand for the rectangle height and width, 

respectively.  

 

There are at least three reasons why this system is complex to 

solve. The first complexity is in the presence of strong cou-

plings of heat, mass and momentum transport, and across the 

scales between the microscopic and macroscopic transport. 

The second complexity lies in the fact that some of the 

transport equations are difficult to solve numerically with 

good accuracy. Finally, the third source of complexity is re-

lated to the flow of the liquid metal. 

 

We could basically decompose the couplings into three cou-

pling “loops”. The first coupling concerns the hydrodynamic 

drag force, which acts as a retarding force on the flow in the 

porous mushy zone (third term on the right-hand side of eq. 

(2)). Within the mushy zone the drag force varies by several 

orders of magnitude and depends strongly on the local liquid 

fraction (the dependence of the permeability on the liquid 

fraction is given by eq.(6)). The liquid fraction in turn de-

pends on the local phase change at the microscopic scale 

(eqs. (8)-(10)). The phase change dynamics is determined on 

the one hand by the local heat extraction, governed by the 

macroscopic heat transfer (eq.(3)), and, on the other hand, by 

the local composition, governed by the macroscopic solute 

transport (eq.(4)). Then again, the macroscopic heat and so-

lute transport are influenced by the flow, as the transport of 

heat is advective-diffusive (eq. (3)) and the transport of so-

lute is entirely advective (eq. (4)). The first coupling circle is 

thus closed. The second coupling concerns the driving force 

for the flow. While the strongest retarding force in the mushy 

zone is the Darcy drag, the strongest driving force is the 

buoyancy force (eq. (7)). This is included in the second cou-

pling “loop”, where the liquid density, and thus the buoyan-

cy, depends on the temperature and concentration (eq. (8)). In 

turn, both the heat and the solute transport are governed by 

the flow. This is basically the classical coupling of thermo-

solutal (or double-diffusive) natural convection. However, to 

make the relations between the heat and the mass transfer 

even more complex, there is the third coupling, associated 

with the phase change dynamics. This keeps the liquid at the 

thermodynamic equilibrium, and imposes a tight link be-

tween the temperature and the liquid concentration (eq. (10)). 

 

The second reason for the complexity of this system is the 

hyperbolic nature of the solute transport (eq. (4)) in the fully 

liquid zone – the solute diffusion on the macroscopic scale is 

so small that it can be neglected, which makes the solute 

transfer a completely advective problem. This class of 

transport problems is difficult to solve numerically with high 

accuracy. In the mushy zone the equation is nominally not 

hyperbolic, since the variables in the transient term (average 

concentration – C) and in the advective term (liquid concen-

tration – CL) are not the same and the liquid concentration is 

also coupled with the temperature. However, the equation 

remains completely advective. 

 

Finally, the third source of complexity is the potential insta-

bilities that can occur in the thermal and thermosolutal natu-

ral convection in liquid metals, due to their low Prandtl num-

ber ([Založnik, Xin and Šarler, (2005); Vertnik, Založnik and 

Šarler, (2006)]). Complex flow patterns and fast transients 

can occur already in laminar regimes at relatively low Ray-

leigh numbers. Speaking more mathematically, the low 

Prandtl number increases the nonlinearity of the natural con-

vection. 

 

A case similar to the Hebdtich and Hunt experiment 

[Hebditch and Hunt, (1974)] and to the SMACS benchmark 

[Bellet, Combeau, Fautrelle, Gobin, Rady, Arquis, 

Budenkova, Dussoubs, Duterrail, Kumar, Gandin, Goyeau, 

Mosbah and Zaloznik, (2009)] is considered for the numeri-

cal tests in the present paper. We are considering a binary Al-

4.5%Cu alloy solidifying in a mold of the size of 22 cm. 

Heat is extracted from both vertical walls, while the horizon-

tal walls are insulated. We consider that the problem is two-

dimensional. Due to the symmetry only one half of the do-

main is computed with symmetry boundary conditions ap-

plied on the symmetry line (Figure 1), which is the West 

boundary of the computational domain. 
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Figure 1: The binary alloy solidification benchmark test 

schematics.  

The problem is described in 2-dimensional Cartesian coordi-

nates, i.e. x x y yp p p i i , x x y yv v v i i with 
xp  and yp  

standing for Cartesian coordinates and 
xv  and yv  for veloci-

ty components. 
xi  and yi  denote the base vectors. 

 

The problem is defined with the following initial conditions 
0

0 700 CT  , 
0 1Lf  , 

0 0 m sv , 
0 4.5 %C   The North, 

and South boundaries are of the Neumann insulations type 

and the West boundary is of the Neumann type as well, due 

to the symmetry considerations. The East boundary is of the 

Robin type with the heat transfer coefficient 
2500 W m Kq  , and the reference temperature 

020 CextT  . The velocity on the entire boundary is set to 

zero, except on the West boundary, where the symmetry is 

considered and therefore the vertical velocity normal gradient 

is zero. Instead of setting the concentration gradient on the 

entire boundary to zero as required in convective-diffusive 

problems, we set the concentration on the entire boundary to 

the initial concentration
0C
 
(again the West boundary is of 

Neumann type due to the symmetry). The reason is that in the 

present case we have only the convective transport 

(
20m sD  ) and the a priori known exact solution of the 

solute transport problem at the walls (where the velocity is of 

the non-slip type) reduces Eq. (4) to 

0;
C

t


 


p .     (20) 

The absence of the diffusion term in the species transfer 

equation implies the following: (I) the adjacent Dirichlet 

boundary condition (used in the present work) does not influ-

ence the solution in the interior of the domain (also when 

valued different from C0 ), (II) insulation boundary condition 

/ 0C  n  could not be applied since it can produce consid-

erable errors due to the lack of the diffusion. 

Table 1: Thermophysical parameters  

Density   2.45e+03 kg/m
3
 

Specific heat pc  1.00e+03 J/kgK 

Thermal conductivity   1.92e+02 W/mK 

Latent heat of pure Al L  4.00e+05 J/kg 

Liquid dynamic viscosity   1.20e-03 m
2
/s 

Thermal expansion coefficient 
T  -1.30e-04 K

-1
 

Solutal expansion coefficient 
C  7.30e-03 %

-1
 

Reference temperature 
refT  4.65e+02 ºC 

Reference concentration 
refC  4.50e+00 % 

Reference density 
ref  2.50e+03 kg/m

3
 

Gravity acceleration y ygg i   yg  -9.80e+00 m/s
2
 

Permeability constant 
0K  5.56e-11 m

2
 

Pure Al melting temperature fT  6.60e+02 ºC 

Al-Cu eutectic temperature 
eT  5.48e+02 ºC 

Eutectic concentration 
eC  3.26e+01 % 

Cu solubility in Al at eutectic 
temperature eSC  5.63e+00 % 

Liquidus slope 
Lm  -3.43e+00 ºC/% 

Partition coefficient pk  1.73e-01  

3 Solution procedure 

Two completely different numerical approaches are used. 

The first approach is based on meshless spatial discretization 

and explicit Euler time stepping and a local pressure correc-

tion algorithm [Kosec and Šarler, (2008a)] for pressure-

velocity coupling, while the second approach uses the finite-

volume spatial discretization, implicit Euler time stepping 

and the SIMPLE pressure correction algorithm [Založnik and 

Šarler, (2005)]. 

3.1 Local radial basis collocation method based approach 

The LRBFCM, combined with the local pressure-correction 

and explicit time discretization, enables the consideration of 

each computational node separately from other parts of com-

putational domain. Such an approach has already been suc-

cessfully applied to several thermo-fluid problems [Kosec 

and Šarler, (2008d); Kosec and Šarler, (2008c); Kosec and 
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Šarler, (2008b); Kosec and Šarler, (2008a); Kosec and Šarler, 

(2009)] and it shows several advantages like ease of imple-

mentation, straightforward parallelization, simple considera-

tion of complex physical models and CPU effectiveness. 

 

An Euler explicit time stepping scheme is used for time dis-

cretization and the spatial discretization is performed by the 

local meshless method. The general idea behind the local 

meshless numerical approach is the use of a local influence 

domain for the approximation of an arbitrary field in order to 

evaluate the differential operators needed to solve the partial 

differential equations. The principle is represented in Figure 

2.  

 
Figure 2: Scheme of the influence domain schematics and 

node in which the solution is sought in a local meshless 

method. 

Each node uses its own support domain for spatial differen-

tial operations; the domain is therefore discretized with over-

lapping support domains. The approximation function is in-

troduced as 
1

( ) ( )
BasisN

n n

n

 


 p p ,   (21) 

where , , andBasis n nN    stand for the interpolation func-

tion, the number of basis functions, the approximation coeffi-

cients and the basis functions, respectively. The basis could 

be selected arbitrarily, however in this paper only Hardy’s 

Multiquadrics (MQs) 

      2/ 1n n

n C     p p p p p ,  (22) 

with 
C  standing for the free shape parameter of the basis 

function, are used. By taking into account all support domain 

nodes and equation (21), the approximation system is ob-

tained. In this paper the simplest possible case is considered, 

where the number of support domain nodes is exactly the 

same as the number of basis functions. In such a case the 

approximation simplifies to collocation. With the constructed 

collocation function an arbitrary spatial differential operator  

( L ) can be computed  

 
1

( )
BasisN

n n

n

L L 


 p p .    (23) 

In this work only five-node support domains are used and 

therefore a basis of five MQs is used as well.  

 

The implementation of the Dirichlet boundary condition is 

straightforward. In order to implement Neumann and Robin 

boundary conditions, however, a special case of interpolation 

is needed. In these boundary nodes the function directional 

derivative instead of the function value is known and there-

fore the equation in the interpolation system changes to 

1

( )
BasisN

BC n n

n

 



 


 p

n
,    (24) 

in the Neumann boundary nodes and to  

1

( ) ( )
BasisN

BC n n n

n

a b 


 
    

 
 p p

n
,  (25) 

in the Robin boundary nodes. 

 

With the defined time and spatial discretization schemes, the 

general transport equation can under the model assumptions 

be written as  

   0

0 0 0 0 0 0 0D S
t

 
   


    


v

  
(26) 

Where zero-indexed quantities stand for the values at the 

initial time, and ,D S for general diffusion coefficient, and 

source term, respectively. 

 

To couple the mass and momentum conservation, a special 

treatment is required. The intermediate velocity v̂  is com-

puted 

  0 0 0 0 0 0
ˆ ( )

t
P  




       v v v b v v  (27) 

The equation (27) did not take into account the mass continu-

ity and so the pressure and the velocity corrections are added 

to correct it  

1ˆ ˆm m  v v v ,  
1ˆ ˆm mP P P   ,   (28) 

where , andm v P  stand for pressure velocity iteration index, 

velocity correction and pressure correction, respectively. By 

combining the momentum and the mass continuity equations 

the pressure correction Poisson equation emerges 

2ˆ m t
P




  v .     (29) 

Instead of solving the global Poisson equation problem, the 

pressure correction is directly related to the divergence of the 

intermediate velocity. 

2 ˆ mP
t


 


v .     (30) 

The proposed assumption enables direct solving of the pres-

sure velocity coupling iteration and thus is very fast, since 

there is only one step needed in each node to evaluate the 

new iteration pressure and the velocity correction. With the 
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computed pressure correction the pressure and the velocity 

can be corrected as  

1ˆ ˆm m t
P



 
  v v     1ˆ ˆm mP P P   , (31) 

where   stands for relaxation parameter. The iteration is 

performed until the criterion ˆ· V v  is met in all computa-

tional nodes.  

 

The radial basis function shape parameter has been set to 

90C   for all computations. The value of shape parameter 

has been determined by analysis of the interpolation system 

condition number (eq. (21)). It has been shown that using 

more sensitive interpolation system results in better accuracy 

of the method. This phenomenon has been reported in numer-

ical observations [Lee, Liu and Fan, (2003); Kosec and 

Šarler, (2008a)] and theoretical work [Schaback, (1995)], as 

well. Schaback [Schaback, (1995)] showed the uncertainty 

relation between attainable error and the condition number of 

the interpolation matrix. However, the condition number of 

the interpolation matrix should be kept below critical value, 

where the system becomes ill-conditioned. However, the 

selection of 90C   stands for optimal choice regarding the 

accuracy and stability. The time step is set to 
510 st    for 

computations on node distributions up to 10011 nodes 

(71x141) and 
50.5 10 st    for computations on finer node 

distributions (up to 29161 nodes for the 121x241 distribu-

tion). Numerical value of the pressure velocity coupling re-

laxation parameter has been set to 
310 t    for all compu-

tations. Computations have been performed on the uniform 

node distributions of 21x41, 51x101, 71x141, 101x201 and 

121x241 nodes, where the four corner nodes have not been 

considered.  

3.2 The FVM solution 

The finite volume code used for the computations follows a 

more conventional approach. It implements a QUICK (quad-

ratic upwind-oriented) interpolation for convection in all 

equations except in the energy equation, where we used the 

linear interpolation scheme, and a second-order centred 

scheme for diffusion. This treatment makes the discretization 

theoretically second-order accurate overall (contrarily to 

first-order discretization schemes, still widely used in codes 

for solution of this kind of solidification problems). The reso-

lution of the velocity-pressure coupling is performed by the 

SIMPLE (semi-implicit method for pressure-linked equa-

tions) algorithm, on a collocated pressure-velocity arrange-

ment, using the Rhie-Chow momentum interpolation. For 

integration in time, implicit Euler (first order) timestepping is 

used. The approach has been already successfully used in 

[Založnik and Šarler, (2005); Založnik, Xin and Šarler, 

(2005)].  

 

Computations have been performed on grids of 21x41, 

51x101, 71x141, 101x201 and 121x241. These include nor-

mal interior control volumes and additional nodes (with zero 

volume) on the boundary. A time step of 410 st    was 

used in all computations. 

3.3 Solution of phase change and micro-macro coupling 

Our description of solidification requires the coupling of 

phenomena that occur on two different length scales. On the 

one hand the macroscopic transport of heat, momentum and 

solute is described by transport equations, which give the 

variation of enthalpy (eq. (3)), pressure and velocity (eq. (5) 

and (2)), and average concentration (eq. (4)). The additional 

variables needed to solve the system (liquid fraction – fL, 

liquid concentration – CL and temperature – T) are deter-

mined by the phase change phenomena occurring at the mi-

croscopic scale. In the present “minimal” solidification mod-

el these are obtained assuming full thermodynamic equilibri-

um locally, which is represented by eq. (8)-(10). By substitu-

tion (eq. (8)-(10) are combined into a quadratic equation, 

which is solved analytically for the liquid fraction fL 

 

  

 

2 0,

1 ,

1 ,

.

L L

p

p p f p

p p F p L L

af bf c

a k L

b k c T h k L

c k h c T c m C

  

 

   

  

  (32) 

The liquid concentration CL and temperature T are then com-

puted by substituting fL into eq. (10) and (8). This approach 

was already described in [Založnik and Šarler, (2005)].  

3.4  The solution procedure overview 

The local meshfree approach can be summarized in the fol-

lowing steps: 

(1) Solve the velocity (eq. (5)) from previous time step val-

ues. 

(2) Force the velocity to a divergence-free field with the pre-

sented local pressure-velocity coupling algorithm (eq. (31)). 

(3) Solve energy and solute transport equations using the 

velocity, liquid fraction, concentration and temperature from 

previous time step.   

(4) Solve the local phase change (eq. (8)-(10)) by the afore-

mentioned procedure and obtain the new liquid fraction, 

(5) Update all variables and proceed to the next time step 

 

In the finite volume code the coupling is done by the follow-

ing iterative procedure: 
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(1) Solve the velocity and pressure (eq. (5) and (2)) in a 

SIMPLE step using the liquid fraction, concentration and 

temperature from the previous iteration. 

(2) Solve the enthalpy and concentration using the new ve-

locity, and the liquid fraction, concentration and temperature 

from the previous iteration. 

(3) Solve the local phase change (eq. (8)-(10)) by the afore-

mentioned procedure and obtain the new liquid fraction, liq-

uid concentration and temperature. 

(4)Steps 1–3 are iterated until convergence, and then the al-

gorithm advances to a new time step. 

4 Results 

4.1 The solidification process 

Before presenting the comparison of the results, we will 

show the evolution of the solidification. Figure 5 and Figure 

6 show the temperature field, the streamlines, and the liquid 

fraction and solute concentration fields during solidification 

at t = 5 s, t = 10 s and after completed solidification at t = 50 

s. The liquid metal is initially superheated by about 55 K (T0 

– TLQ = 55.508 K) (TLQ stands for liquidus temperature). 

When it starts to cool down, a natural convection is set up, 

reaching an effective Rayleigh number of ~ 2500 and veloci-

ties of the order of ~ 1 cm/s at times between 3 s and 4 s. As 

the initial superheat of the bulk liquid zone is gradually ex-

tracted, the thermal natural convection flow calms down. At 

the right wall solidification starts a bit before t = 4 s, and the 

whole superheat from the bulk liquid (up to the left wall) is 

extracted at about t = 5 s. We can see that the main features 

of the macrosegregation develop early through the solidifica-

tion process. After about t ~ 10 s the principal characteristics 

can be recognized: a positive segregation patch at the bottom 

of the enclosure and a negative segregation zone in the cen-

tral upper part. This pattern is easily explained by combining 

eq. (3) and eq. (4). We obtain  

1

L

C
T

t m


  


v , (33) 

which shows that the segregation tendency depends on the 

direction of the flow with respect to the isotherms (note that 

mL < 0). The solidification, and thus the advancement of the 

mushy zone, is retarded at the bottom due to local enrich-

ment, and accelerated at the top due to local depletion in so-

lute. The time evolution of the average concentration versus 

the liquid fraction in the four test points, shown in Figure 4, 

shows that the macrosegregation continues to evolve down to 

liquid fractions of 0.4Lf  (this limiting value of course de-

pends of the permeability constant K0). The segregation field 

stays relatively smooth, there is no destabilisation of the 

mushy zone and channel mesosegregates do not develop. 

The numerical solution is presented in terms of temperature 

and concentration contour plots, streamlines, concentration 

cross sections, time evolutions of liquid fraction, concentra-

tion, velocity and temperature, and grid convergence analy-

sis. In Figure 3 the sampling points and cross sections are 

presented.  

 
Figure 3: Sampling points and cross section lines. 

 
Figure 4: Evolutions of the average concentration versus 

liquid fraction in the four sampling points. 
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Figure 5: Temperature (solid) and streamlines (dashed) contour plots at t=5 s, t=10 s and t =50 s with a temperature contour 

step of 0.25 K and a streamline contour step of 1e-4 m
2
/s at t=5 s and 5e-6 m

2
/s at t=10 s. At t=50 s a fully solidified state is 

depicted (note the absence of the streamline contours).  

 
Figure 6: Liquid fraction (solid) and concentration (dashed) contour plots at t=5 s, t=10 s and t=50 s. The concentration and 

liquid fraction contour steps are 0.01% and 0.02, respectively. At t=50 s a fully solidified state is depicted (note the absence 

of the liquid fraction contours). 
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4.2 Comparison and analysis of the numerical results 

The results of numerical integration are presented in Figures 

5-9, which are representative for all the computations that 

were done on several grids, since the differences are rather 

small. For more detailed demonstrations we show the com-

parisons between the finite-volume and the meshless results 

in Figures 7-10. In Figure 7 and Figure 8 time evolutions of 

liquid fraction, concentration, velocity and temperature in 

four sampling points are shown. In Figure 9 we compare pro-

files of the final concentration field along three horizontal 

and three vertical cross-sections. An additional numerical 

comparison of these profiles is presented in Tables 2 and 3. 

These comparisons are done on results computed with the 

finest spatial discretization of 29161 uniformly distributed 

nodes (grid 121x241). 

 

 
Figure 7: Evolution of the liquid fraction, temperature in the 

four sampling points (See Fig. 3 right) as calculated by the 

LRBFCM and FVM methods. 

 

 

 
Figure 8: Evolution of the concentration and velocity during 

solidification in the four sampling points (See Fig. 3 right) as 

calculated by the LRBFCM and FVM methods. 

Table 2: The LRBFCM and FVM computed vertical cross 

sections. 

 V1 V2 V3 

yp  
RBFC  

FVMC  
RBFC  

FVMC  
RBFC  

FVMC  

0 4,5 4,5 4,5 4,5 4,5 4,5 

0,002 4,5125 4,5127 4,5982 4,6018 4,5279 4,5276 

0,004 4,5327 4,5332 4,5144 4,5149 4,5311 4,5298 

0,006 4,5402 4,5405 4,5026 4,5028 4,5266 4,5260 

0,008 4,5390 4,539 4,4895 4,4894 4,5033 4,5034 

0,01 4,5340 4,5337 4,4775 4,4771 4,4911 4,4913 

0,012 4,5279 4,5278 4,4650 4,465 4,4815 4,4822 

0,014 4,5224 4,5221 4,4495 4,4494 4,4702 4,4709 

0,016 4,5166 4,5162 4,4229 4,4225 4,4540 4,4548 

0,018 4,5074 4,5069 4,3737 4,3725 4,4332 4,4339 

0,02 4,5 4,5 4,5 4,5 4,5 4,5 
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Table 3: The LRBFCM and FVM computed horizontal cross 

sections. 

 H1 H2 H3 

xp  
RBFC  

FVMC  
RBFC  

FVMC  
RBFC  

FVMC  

0 4,5125 4,5127 4,5340 4,5337 4,5074 4,5069 

0,001 4,5569 4,5557 4,5245 4,5246 4,4887 4,4889 

0,002 4,6040 4,6059 4,5060 4,5059 4,4490 4,4484 

0,003 4,5791 4,5805 4,4909 4,4906 4,4122 4,4108 

0,004 4,5744 4,5764 4,4813 4,4809 4,3868 4,3852 

0,005 4,5982 4,6018 4,4775 4,4771 4,3737 4,3725 

0,006 4,6382 4,6398 4,4794 4,4789 4,3730 4,3720 

0,007 4,6282 4,6287 4,4835 4,4833 4,3833 4,3825 

0,008 4,5717 4,5715 4,4863 4,4863 4,4030 4,4071 

0,009 4,5279 4,5276 4,4911 4,4913 4,4332 4,4339 

0,01 4,5 4,5 4,5 4,5 4,5 4,5 

 

 
Figure 9: Horizontal and vertical cross-sections of the final 

concentration. 

As we can see, the differences between the solutions by the 

two methods become extremely small at fine grids. Therefore 

we investigated the behavior of the solutions during grid re-

finement from the very coarse 21x41 to the fine 121x241 

grid. We analyzed the convergence of representative charac-

teristics of the final segregation field. The final segregation 

field is at the same time the result upon which our interest is 

focused, and is also the most sensitive quantity. The whole 

evolution of the solution, from the onset until the completion 

of the solidification, is reflected in the final concentration 

field in the domain. We looked closer at the convergence of 

the maximum value of the macrosegregation in the domain  

 max

0maxC C C  , (34) 

and of the standard deviation of the concentration
C , some-

times also called “global segregation index”, defined as 

 
2

0

1

1
( )

N

C i

i

C C
N




  p . (35) 

In the computation of 
C  for the LRBFCM method, all com-

putational nodes have been included, while in the FVM 

method, the boundary nodes have been excluded, since they 

correspond to finite volumes with a zero volume and can 

therefore not contribute to the variance of the field. Let us 

recall that the node distributions in the LRBFCM computa-

tions and the volume sizes in the FVM computations are uni-

form.  

 

Figure 10 shows the grid convergence of the final segregation 

field in terms of these two functionals. Both show convergent 

behavior. We can also see that the maximum concentration 

reaches the convergent regime sooner than the standard devi-

ation of the macrosegregation field. Both solutions behave 

strikingly similar with respect to the maximum segregation, 

although a shift between them persists, but becomes smaller 

with finer grids. The standard deviation appears to converge 

faster with the LRBFCM method, but the method shows 

larger errors than the FVM at coarse node arrangements. 

Looking into more detail at the convergence shown in Figure 

10, we can see that the relative differences between the re-

sults on the densest grids are of the order of 10
-3

 for both 

methods. Despite that, the difference between the two meth-

ods remains larger, of the order of 10
-2

 even on dense grids. It 

is not entirely clear to what asymptotical values the solutions 

should converge as the grid distance x  approaches zero. It 

is also not obvious whether the two methods converge to-

wards the same asymptotical solution or how large their dif-

ference is. However, if we imagine an extrapolation of the 

convergence plots to 0x  , we could estimate the errors as 

well as the differences between the two extrapolated solu-

tions to be within a relative band of 10
-2

. We do not show the 

extrapolations in the plots, since we believe that it was not 

possible to perform them unambiguously and to sufficient 

precision with the present results. A possible source of error 

that could become important at dense grids, when the spatial 

discretization errors decrease, is the error of the temporal 

discretization, which should be ordered in the timestep. Note 
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that both methods used a first-order time integration scheme. 

However the time steps used were different. A timestep of 

10
-4

 s was used for the FVM solutions with a time-implicit 

algorithm. For the LRBFCM solution much smaller timesteps 

(10
-5

 s for the coarse grids and 5x10
-6

 s for the two densest 

grids) were used due to stability limitations of the time-

explicit algorithm, as well as stability issues due to the local 

pressure-velocity coupling. The dependence on the timestep 

appears to be an important property of the solution of mac-

rosegregation, which should be investigated in the future. 

However, in the present paper it is not our goal to character-

ize the grid convergence in detail or to perform an extrapola-

tion to estimate an exact solution. 

 

Our most important conclusion from the convergence study 

is that the observed grid convergence behavior of both solu-

tions is fundamentally different from previously studied solu-

tions, which included mesosegregations [Kumar, Dussoubs, 

Založnik and Combeau, (2009); Combeau, Bellet, Fautrelle, 

Gobin, Arquis, Budenkova, Dussoubs, Duterrail, Kumar, 

Goyeau, Mosba, Quatravaux, Rady, Gandin and Založnik, 

(2011)]. In solutions with mesosegregations the convergence 

was often observed to slow down considerably at dense grids. 

The most probable reason for this seemed to be that at finer 

grids the solutions started to capture fine-scale (mesoscopic) 

features of the solution fields (such as flow in the remelted 

channels), which the coarser grids did not adequately de-

scribe. In the present case the solution appears to be smooth 

and the grid convergence is therefore simpler to investigate. 

Nevertheless, the couplings and the nonlinearities of the 

problem remain strong. It is not easy to obtain a highly pre-

cise solution and dense node distributions are needed. There-

fore the presented case can be a suitable benchmark test case 

for rigorous testing of numerical codes dedicated to the simu-

lation of macrosegregation, an alternative or a preliminary to 

the physically and numerically more complex cases proposed 

in [Bellet, Combeau, Fautrelle, Gobin, Rady, Arquis, 

Budenkova, Dussoubs, Duterrail, Kumar, Gandin, Goyeau, 

Mosbah and Zaloznik, (2009)]. The convergence behavior of 

both applied methods also indicates that it should be possible 

to obtain a highly precise reference solution of this case. This 

will require a more extensive convergence study with respect 

to grid distance and timestep and detailed error estimation. 

 

We used the proposed case to demonstrate the first applica-

tion of a meshless method for the solution of the macrosegre-

gation problem. In first comparisons we can observe that it 

behaves comparably to a classical, nominally second-order 

accurate finite-volume method. Both numerical approaches 

give very close predictions even for such a highly nonlinear 

problem. Let us point out that the proposed novel meshless 

approach is one of the simplest possible. It employs an entire-

ly local solution procedure, using local pressure-velocity 

coupling and explicit timestepping. Thanks to this it shows 

several convenient properties like straightforward implemen-

tation and parallelization, CPU effectiveness and several de-

grees of freedom for optimization, which makes the method 

flexible. 

 
Figure 10: Convergence plots.   

5 Conclusions and perspectives 

The present paper deals with the simulation of macrosegrega-

tion. Two completely different numerical approaches are 

used in order to predict phenomena during the solidification 

of a binary alloy in order to confirm correct behavior of nu-

merical solution. The classical FVM based solution proce-

dure with SIMPLE pressure-velocity coupling and implicit 

time stepping is compared against and a completely local 

meshless based solution procedure with local pressure-

velocity coupling and explicit time stepping.  
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The evaluation of the results has been performed by compar-

ing computations done by both numerical methods on several 

different node distribution densities. It has been shown that 

both numerical approaches perform similar in terms of the 

quantitative results and the grid convergence. The solution 

thus properly depicts the posed minimal solidification system 

and gives us an insight and improved understanding of the 

respective system dynamics. It has been shown in the paper 

that it is possible to get consistent results of this highly non-

linear and coupled problem. However, it is still an open ques-

tion if a similar sharp focus of the prediction can be achieved 

also in case of the presence of the mesoscopic instabilities. 

 

The second focus of the present work is on the meshless 

method itself, as it is for the first time used in such problems. 

The proposed novel meshless method shows several conven-

ient properties like straightforward implementation and paral-

lelization suitability, CPU effectiveness and several degrees 

of freedom for optimization, which makes the method flexi-

ble. The flexible point adaptivity strategy [Kosec and Šarler, 

(2010)] makes it a promising alternative even for more com-

plex problems of the same kind (mesoscopic instabilities). 

The solution of these, even more difficult problems, is in the 

focus of our future research, together with coupling of the 

macro-mesoscopic predictions with the cellular automata 

based grain structure evolution. A compatible meshless strat-

egy, relying on points instead of polygons has been devel-

oped very recently [Lorbiecka and Šarler, (2010)]. 
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