
Big Data Techniques For Supporting Accurate Predictions
of Energy Production From Renewable Sources

Michelangelo Ceci
UNIBA

Via Orabona, 4, Bari Italy
michelangelo.ceci@uniba.it

Roberto Corizzo
UNIBA

Via Orabona, 4, Bari Italy
roberto.corizzo@uniba.it

Fabio Fumarola
UNIBA

Via Orabona, 4, Bari Italy
fabio.fumarola@uniba.it

Michele Ianni
UNICAL

Via P. Bucci, Rende, Italy
michele.ianni@unical.it

Donato Malerba
UNIBA

Via Orabona, 4, Bari Italy
donato.malerba@uniba.it

Gaspare Maria
GFM-Integration

Catania, Italy
gaspare.maria@gfmnet.it

Elio Masciari
ICAR-CNR

Via P. Bucci, Rende, Italy
masciari@icar.cnr.it

Marco Oliverio
ICAR-CNR

Via P. Bucci, Rende, Italy
oliverio@icar.cnr.it

Aleksandra Rashkovska
UNIBA

Via Orabona, 4, Bari Italy
aleksandra.rashkovska@uniba.it

ABSTRACT
Predicting the output power of renewable energy production plants
distributed on a wide territory is a really valuable goal, both for
marketing and energy management purposes. Vi-POC (Virtual Power
Operating Center) project aims at designing and implementing a
prototype which is able to achieve this goal. Due to the heterogene-
ity and the high volume of data, it is necessary to exploit suitable
Big Data analysis techniques in order to perform a quick and secure
access to data that cannot be obtained with traditional approaches
for data management. In this paper, we describe Vi-POC – a dis-
tributed system for storing huge amounts of data, gathered from
energy production plants and weather prediction services. We use
HBase over Hadoop framework on a cluster of commodity servers
in order to provide a system that can be used as a basis for run-
ning machine learning algorithms. Indeed, we perform one-day
ahead forecast of PV energy production based on Artificial Neu-
ral Networks in two learning settings, that is, structured and non-
structured output prediction. Preliminary experimental results con-
firm the validity of the approach, also when compared with a base-
line approach.

1. INTRODUCTION
Recently, renewable energy research is gathering a lot of attention
due to the strategic and urgent need of reducing pollution emission
and finding new revenue streams for utility companies. Indeed,
wholesale vendors lead the utility sector because those companies
provide energy to the most relevant share of private and industrial
users. Due to their dominant position, they are able to gather huge
amount of valuable information. In particular, they have access
to both external and internal data, including sensor data from pro-

ducing assets, real-time or end-of-day price data from a multitude
of related markets, counterparty credit data, position management
information, and many others. However, due to the availability of
new (low cost) technologies, also small producers are able to collect
data about their business. Indeed, data coming from small produc-
tion plants are quite heterogeneous, they arrive continuously (fast)
and their volume increases at an unprecedented growth rate. These
features pose several challenges that can be solved using Big Data
techniques [1, 2, 3, 5, 25, 26, 28, 29, 24].

In a sense, this abundance of data calls for re-thinking traditional
techniques to effectively store and efficiently analyze Big Data.
Moreover, these challenges are crucial for achieving several busi-
ness objectives, such as reducing enterprise risk and shortening de-
cision response times, thus enabling traders and decision makers
to quickly react to sudden changes of market quotations. Further-
more, Big Data techniques can help management staff to maximize
company returns both in the short and long time horizon.

Unfortunately, achieving these goals in a strategic market as the
energy one can be quite difficult due to the inherent complexity
and variety of systems that should be integrated. Indeed, as a gen-
eral consideration, we can observe that a complete data storage will
slow the analysis tasks, on the contrary discarding some informa-
tion will cause an incomplete analysis to be performed.

In this perspective, Vi-POC project has been developed in order to
support renewable energy providers with a framework for collect-
ing, storing, analyzing, querying and retrieving data coming from
heterogeneous renewable energy production plants (such as pho-
tovoltaic, wind, geothermal, Sterling engine, water running) dis-
tributed on a wide territory. Moreover, Vi-POC features an inno-
vative system for real-time prediction of the energy production that
integrates data coming from production plants and weather produc-
tion services. Indeed, a key problem for low-business energy pro-
ducers is the exact quantification of the amount of energy that can
be pushed over the power supply network. This problem arises as
energy cannot be stocked efficiently; thus, they are forced to give
it for free if they produce more energy than the network can use
or they will pay a huge penalty if they do not provide the expected



amount.

In this paper, we describe our end-to-end framework that, start-
ing from the data cleaning step, allows a better engineering of data
structures in order to support data analysis and prediction of energy
production, thus offering a good trade-off between effective storage
and efficient analysis of data. As for the prediction of the energy
production, we propose a method for long-term forecast (one-day
ahead) of photovoltaic energy production based on Artificial Neu-
ral Networks (ANN) and investigate the performance in two set-
tings - structured and non-structured output prediction. While in
non-structured output prediction a prediction model generates the
forecast for a specific hour in the future, in structured output predic-
tion, a prediction model generates the forecast for 24 hours in the
future [23][7]. In principle, the main advantage of structured output
prediction consists in the implicit consideration of the dependence
of the predictions at two consecutive hours.

In [13, 12], we described the high level architecture of our system.
In this paper, we will describe the actual implementation of the
prototype along with the implementation issues that are crucial for
building a system for Big Data management and analysis.

1.1 Plan of the paper
In Section 2, we discuss related work on Big Data systems and the
main issues described in literature for dealing with Big Data in real
life scenarios. In Section 3, we describe the building blocks of a
Big Data systems that we exploited for our prototype. In Section
4, we describe our system for renewable energy production plant
output prediction and we discuss experimental results on real data
gathered by production sites located in south of Italy. Finally, in
Section 5 we draw our conclusion.

2. RELATED WORKS
Nowadays, Big Data systems are key components for addressing
practical problems in several application areas. Thus, a comprehen-
sive study of the data features (volume, arrival rate and information
types) is the preliminary step for building effective Big Data sys-
tems as we will discuss in detail in next sections. As an example,
it is widely recognized that Big Data can help in prevention, pre-
paredness, response, and recovery of natural disasters [20]. More-
over, new technologies help biologist (especially the ones working
on genome sequencing) to produce massive quantity of data that
have to be handled by Big Data systems in order to perform fruitful
analysis. In [38], a survey of Big Data systems for genomics de-
veloped upon the Hadoop Framework is reported. In [18], several
studies about the use of Big Data for e-health are discussed. To the
best of our knowledge, there is no description in literature of a Big
Data system devoted to renewable energy production plants analy-
sis. However, main issues and challenges posed by such a system
are instead widely discussed by big players on the market searching
for a satisfactory solution. Indeed, the required skills for setting up
such a system, are interdisciplinary, spanning from deep domain
knowledge of renewable energy production patterns, to low level
software performance analysis. Furthermore, in a Big Data sys-
tem, data undergo to many transformation before they can lead to
knowledge discovery. Each of these transformation usually should
be performed by a specific tool. Thus, building an end-to-end Big
Data system requires the knowledge of a plethora of different tools
and a way to make them interact with each other. Indeed, it is im-
portant to exploit a wide range of different tools in order to provide
the most suited tool for each analysis task. In [4], good design
principles are shown for building high quality Big Data end-to-end

systems. These design rules take into account the above consider-
ation and summarize the key requirements for a Big Data system.
These design rules are listed below:

1. Support for a variety of analysis tools;

2. Use appropriate tool in every stage of the data manipulation
pipeline;

3. Make data accessible trough using opensource tools and web-
api services for retrieving data.

In [17], two additional design principles are added to the ones dis-
cussed above:

1. Timely analysis: as Big Data arise in a streaming way, at high
velocity and high variety, the system should be able to ana-
lyze new data in near real time without being overwhelmed;

2. Ensure Security in Big Data: even if security represents an
essential feature of enterprise information systems, tools ex-
ploited in Big Data system are not usually shipped with se-
curity out of the box.

On the contrary, in [19], the focus is posed on building a Big Data
system based on Hadoop, which will auto-tune itself for getting
better performances trough the overall data life-cycle.

Finally, as noted in [2, 5], the availability of a system that can
achieve good performance can be really valuable in context where
there is a lack of technical skills regarding system’s internals and
where a system is used on pay-as-you-go infrastructure.

3. BACKGROUND
Nowadays, dealing with a big volume of data is very challenging,
since traditional technologies, like RDBMS or classical object ori-
ented programming, are not well suited for this purpose. In this
section, we will discuss some issues related to Big Data manage-
ment which heavily affect the design of every system tailored for
dealing with huge amounts of data. As Big Data also arise at high
speed and variety, we need to cope with all these features. In this
respect, Scalability is a crucial issue to be addressed.

Scalability refers to the ability of a system to handle a growing
amount of information in an efficient and effective way. Obviously,
the system must be able to provide a proper data storage as new
data are available [11]. First of all, we must distinguish between
horizontal and vertical scalability. More in detail, vertical scal-
ing (or scaling up) refers to the upgrade of a system obtained by
adding hardware and/or other computing facilities to a single ma-
chine. Horizontal scaling (or scaling out), instead, is performed by
distributing the computational work load across several machines.
Both solutions offer some advantages and suffer some drawbacks,
thus, the choice of the right solution is influenced by the applica-
tion scenario being analyzed. Indeed, in order to deal with the huge
workload required to process Big Data calls for a highly scalable
system design. Most systems developed for Big Data analysis ex-
ploits horizontal scaling, as there is virtually no limit in process
scaling and it is less expensive than vertical scaling.

From an architectural point of view, distributed computing systems
are composed of many layers. This choice allows a great flexibility



as different technologies can be exploited for task execution within
each layer. The choice of the most suitable technology for each
layer depends on the kind of application and the amount of data
that the system will manage.

A further property of distributed systems that must be guaranteed
is fault-tolerance. The latter is defined as the ability of a system to
properly work despite the malfunction of some of its components.
This property is crucial especially for those distributed systems
composed of several computers located in different (geographical)
places. Indeed, the fact that a system can work despite the crash of
one of the machines in the computing pool is mandatory in order to
avoid overall system malfunction that can cause data loss or wrong
analysis results. Developing such distributed systems is a chal-
lenging task for system designers, even though the availability of
suitable software modules (e.g. Message Passing Interface (MPI))
providing useful abstractions for communication across machines.
Indeed, machine coordination and resource sharing among nodes,
which play an essential role in Big Data systems, are very hard to
be developed properly. Finally, the implementation of data analy-
sis algorithms applied to big energy production datasets is difficult,
since the most of these algorithms are not designed for distributed
computing.

Many open source technologies were developed in order to effec-
tively handle massive amounts of data. The majority of these tech-
nologies are based on the MapReduce programming model. This
paradigm makes easier to implement solutions based on the use of
distributed systems for executing analysis tasks. The MapReduce
framework is based on the following steps:

• Map: Each node executes the map function on its local data,
creating a set of pairs 〈key, value〉, and stores the results in
a temporary storage.

• Shuffle: Pairs 〈key, value〉 are redistributed among nodes, in
such a way that all the pairs with the same key are assigned
to the same node.

• Reduce: Each node processes its group of pairs, indepen-
dently of other nodes.

It is worth noticing that, since each mapping operation does not
depend on the others, mapping operations can be parallelized. In
a similar way, also the reduce step can be performed by multiple
nodes at the same time, if the reduction function is associative.

The most widespread implementation of the MapReduce program-
ming model is Hadoop MapReduce, part of the Hadoop frame-
work [35]. Although Hadoop is a really pervasive technology, it has
some drawbacks, especially when dealing with algorithms based on
iterative operations. The latter limitation occurs because Hadoop
MapReduce stores the results of intermediate computations on sec-
ondary storage, thus the overhead to launch each job, is very high.
Indeed, MapReduce is well suited for large distributed data pro-
cessing where fast performance is not an issue. Its high-latency
batch model, instead, is not effective for fast computations or real
data analysis.

Latest advances in Big Data processing lead to new technologies
to overcome the shortcomings of Hadoop Map Reduce implemen-
tation. One the most successful opensource framework in this new

generation of big data processing tools is Apache Spark [37], opti-
mized for low-latency tasks. Spark caches data sets in memory and
has a very low overhead in launching distributed computations. As
stated in Spark website, Spark can “run programs up to 100 times
faster than Hadoop MapReduce in memory, or 10 times faster on
disk.” In multi-step jobs, moreover, Hadoop MapReduce blocks
each job from beginning until all the preceding jobs halt. This can
lead to long computation times, even with small data sets. There
are other ways to schedule tasks, one of which is Directed Acyclic
Graphs (DAG). A graph is used, where the vertex represent the
jobs and the edges specify the order of execution of the jobs them-
selves. Since the graph is acyclic, independent nodes can run in
parallel, resulting in a much lower overhead compared to the tra-
ditional MapReduce. Spark offers capabilities for building highly
interactive, real-time computing systems using DAGs and so is very
suitable for implementing applications that require a high level of
parallelism. Spark is built against Hadoop in order to access HDFS
(Hadoop Distributed Filesystem).

A cluster is made up of two types of processes: (i) a driver pro-
gram, which most of the times runs on a master node, and (ii) ex-
ecutors, which run on worker nodes and execute the tasks specified
by the driver. The key concept beyond Spark is called Resilient Dis-
tributed Dataset (RDD) [36]. An RDD is a read-only, partitioned
collection of records. Data are partitioned across many nodes in the
cluster. Fault tolerance techniques are used to avoid data loss due
to node failures. Given an RDD, we can manipulate the distributed
data through operations called transformations and actions. Trans-
formations consist in the creation of new data set from an exist-
ing one, and actions in running a computation on the data set and
returning the results to the driver program. For instance, imple-
menting MapReduce paradigm in Spark Framework is done using
flatMap transformation and reduceByKey action.

As mentioned above, traditional RBDMS are not suitable for the
typical size and scalability requirements of Big Data. In order to
meet these requirements, column oriented databases have been pro-
posed. In our project, we exploited HBase whose features will be
described in the next section.

To summarize the above discussion, a system dealing with big data
should implement the technologies reported below:

• A distributed file-system with replication;

• A distributed resource manager;

• A Map Reduce Framework implementation;

• A distributed database storage system;

• A layer of visualization tools.

3.1 Column Oriented DBMS
Using the row oriented approach, the data storage layer contains
records (i.e. rows), while in a column oriented system it contains
families of rows (i.e. columns). The widespread use of the re-
lational approach is mainly due to its flexibility and sound theo-
retical foundation. Moreover, RDBMS users are able to access
and manipulate data without being involved in any technical as-
pects concerning data storage and access. This is a simple model
but not particularly suitable for data analysis. Indeed, row-oriented



databases are not adequate to deal with complex analysis of mas-
sive datasets because they are designed for transactional process-
ing and is very hard to make them scale horizontally. Thus, this
approach is not suitable in an analytic systems (for large scale pro-
cessing), because a lot of read operations are executed in order to
access a small subset of attributes in a big volume of data. In fact,
transactional queries are answered by (typically) scanning all the
database records, but processing only few elements of them. On
the contrary, in a column-oriented database, all instances of a sin-
gle data element, such as account number, are stored together so
they can be accessed sequentially. Therefore, aggregate operations
such as MIN, MAX, SUM, COUNT, AVG can be performed very
quickly.

Recently, NoSQL (Not Only SQL) approaches are being used to
solve the efficiency problems discussed above. The rationale to
develop and use NoSQL data stores can be summarized as follows:

• Avoidance of Unneeded Complexity: Relational databases
provide a variety of features that however must obey strict
data consistency constraints. This rich feature set and the
ACID properties implemented by RDBMSs are mandatory
while for some application scenarios they could be disre-
garded;

• High Throughput: NoSQL databases provide a significantly
higher data throughput with respect to traditional RDBMSs;

• Horizontal Scalability and Possible Running on Commod-
ity Hardware: In contrast to relational database management
systems, most NoSQL databases are designed to scale well
in horizontal way and not rely on the hardware features;

• Avoidance of Expensive Object-Relational Mapping: Most
of the NoSQL databases are designed to store data structures
that are either simple or more similar to the ones of object-
oriented programming languages compared to relational data
structures. They do not make expensive object-relational
mapping that are no longer needed.

Non-relational data stores are usually grouped according to their
data model:

1. Key-value Stores: These systems store values along with an
index based on the key defined by users;

2. Document Stores: These systems store documents. A “docu-
ment" can contain values that are nested documents or list of
values as well as scalar values. Attribute names are dynam-
ically defined for each document at runtime. Documents are
indexed and a simple query mechanism is provided through
Javascript.

3. Column Family Stores: These systems store extensible records
that can be partitioned vertically and horizontally (eventually
simultaneously on the same table) across nodes, but gener-
ally do not support secondary indexes. Rows are split across
nodes through sharding on the primary key, while columns
of a table are distributed over multiple nodes by using the so
called “column groups".

4. Graph Stores: Provide efficient storage and querying of a
graph exploiting references among nodes. Like for relational
DBMS, these systems usually support ACID transactions.

Systems belonging to categories 1 ,2 and 3 achieve scalability by
reading (potentially) out-of-date replicas obeying the constraints
fixed by CAP theorem [16]. Indeed, CAP theorem states that a sys-
tem can exhibits only two out of three of the following properties:
Consistency, Availability, and Partition-tolerance.

As usual in a distributed system, it is Consistent if update opera-
tions performed by a writer can be seen by all users on the shared
data source. Availability refers to the property of a system to pro-
vide the proper answer for any request. Finally, Partition-tolerance
is the ability of a system to properly work even if some node in the
cluster fails or some hardware or software components are out of
work due to maintenance operations. Due to the complexity of a
satisfactory trade-off, usually NoSQL systems smooth consistency
constraints.

3.1.1 HBase
HBase is an open source, non-relational, distributed database mod-
eled as Google BigTable, and developed in Java. More in detail, it
is an Apache project and runs on top of HDFS, providing BigTable-
like capabilities for Hadoop, i.e., it provides a fault-tolerant way of
storing large quantities of sparse data. HBase main features are:

• good compression performances;

• in-memory execution of operation;

• bloom filters on a per-column basis as in BigTable specifica-
tion.

Tables in HBase are used to perform Input and Output for MapRe-
duce jobs running on Hadoop, and may be accessed through the
Java API but also through REST, Avro or Thrift gateway APIs. It
is worth noting that HBase is not a column-oriented database in
the typical RDBMS sense, but utilizes an on-disk column storage
format. Rows are composed of columns, and those, in turn, are
grouped into column families in order to build semantical or topi-
cal boundaries between the data as shown in Figure 1. Furthermore,
the latter data organization makes it possible to improve compres-
sion or specific in-memory operation.

Figure 1: HBase storage organization

Columns are referenced as family having a qualifier represented
as an array of bytes. Each column value (or cell) is either im-
plicitly timestamped by the system or can be set explicitly by the
user. Rows in the tables are sorted by a row key and this key pro-
vides access to information contained in the row. On the other side,
columns are grouped into column families and can be updated at
runtime (by specifying the column family through a prefix). In-
deed, this model turns to be efficient and scalable, thus well suited
for Big Data management as in this context a row based approach
is inefficient, simple column based approaches are efficient but not



scalable, while column family based approaches achieve both ef-
ficiency and scalability. Figure 2 summarizes the features and the
difference among the approaches.

Figure 2: Features of several storage models

At the physical level, all columns in a column family are stored
together in the same low level storage file, called an HFile. In ad-
dition to the notion of the column, table and row, HBase uses the
so called ”region”. In fact, the HBase tables are automatically par-
titioned horizontally into regions that are distributed in the cluster.
Each region consists of a subset of rows of a table and in this way a
table that is too large to be contained in a server can be distributed
in different servers in the cluster.

3.2 HBase data model
HBase data model is “sparse, distributed, persistent, multi-dimensional
sorted map". More in detail, data are sparse as they do not explic-
itly represent null values. HBase distributed and persistent features
are guaranteed by automatically storing data in a redundant way
through exploiting a specialized distributed file system as HDFS,
that spreads data across different machines usually representing dif-
ferent nodes of a given cluster. Moreover, data are stored in a multi-
dimensional map for fast indexing by row key, column and version.
Finally, data are lexicographically sorted by row key. Row-key
and column-qualifier can be of arbitrary type (i.e. raw bytes) while
column family qualifier must be composed only of standard char-
acters. Version identifier is represented as a long integer, usually
representing the time stamp of value insertion in the map.

However, this data model lacks some useful operations available
for classical RDBMS solutions, like joins, foreign keys, referential
integrity and transaction support. If the application being imple-
mented requires these features, they need to be implemented ad-
hoc. As for transaction support, although the CAP theorem holds,
that is, it is not possible to guarantee both consistency and avail-
ability while partitioning data in a distributed system, HBase is
partition-tolerant and consistent (CP).

3.3 Design Issues
HBase offers a useful set of APIs for data management. Indeed,
besides the typical CRUD operations available for querying and
inserting values, there exist some advanced features, like efficient
range scan of rows or atomic increment of counters. Regarding
data access efficiency, the map is sorted lexicographically on row
key values for quick tuple retrieval (i.e. comparable to primary in-
dexes on classical RDBMS). Furthermore, data are also partitioned
across nodes of the cluster in regions composed of a contiguous
range of row. Every region is served by only one machine, denoted
as Region Server. The above considerations clarify how row key
design is the most important issue when designing an HBase data
store.

To further understand this requirement, we briefly recall the phys-

ical representation of data. Indeed, values belonging to a column
family are stored in one or more files called HFiles. Every cell
stored in these files brings all information required for retrieving
the cell itself, i.e., its coordinates: row key and column key. As
each cell value is stored together with its row key, we can move
information from columns to row key without increasing overall
storage space required. The operation performed for storing more
information in a single key is referred as mashing and can be per-
formed in several ways, as value concatenation or by formatting
data using a suitable delimiter.

Mashing has several important advantages such as: i) Row key
ordering allows fastest query answering compared w.r.t. alterna-
tive query patters as timestamp based querying or column qualifier
based querying; ii) It allows partial scan of HBase data based on
mash ordering. For example, suppose that the row key is com-
posed of three attributes a1, a2, a3. Then, it is possible to fetch
rows based on a portion of the key, e.g we may want to retrieve
all data having a specific a1 value. In order to profitably exploit
this feature, we need to design keys in a suitable way; iii) As tables
are partitioned at region boundaries among nodes, tables should
not contain a huge number of columns w.r.t. the number of rows
in order to make the partitioning more effective. Indeed, properly
exploiting row keys allows to define tables exhibiting the above
mentioned feature as mashing causes column values to collapse in
a single row key identifier.

Finally, row key design plays a crucial role for load balancing of
region servers. For example, when tuples are inserted in the data
store, if they share a row key prefix, they will be stored in the same
region server causing an unbalanced cluster loading. Indeed, if all
tuples in the upcoming stream share the same prefix, they will be
loaded through the same cluster node. This drawback is referred as
hot spotting. However, it is possible to avoid this bad behavior by
exploiting some strategies such as salting (adding a random value
as row key prefix in order to make the value distribution uniform)
or hashing (the hash code of the key is used instead of the row key
identifier). It is also possible to apply row key identifier reversing
in order to obtain the least significant digit as prefix. The rationale
of this choice relies in the fact that often last digit changes more
frequently than the ones preceding it (e.g. the timestamp).

4. RENEWABLE ENERGY CASE STUDY
The Vi-POC project aims at designing and implementing a proto-
type able to manage renewable energy production plants distributed
over national territory. Vi-POC implements an innovative system
for real-time prediction of the energy production. It exploits Big
Data techniques explained above in order to deal with the hetero-
geneity of data coming from different sources such as photovoltaic
(PV), wind, geothermal, Sterling engine, water running. efficient,
effective and reliable. Vi-POC is intended to predict real-time en-
ergy production with higher precision as it exploit historical infor-
mation about production and weather conditions. The high accu-
racy and efficiency we can achieve, will allow energy market oper-
ators to implement a more effective purchasing strategy.

We exploited a HBase storage system designed for storing weather
information and plant sensor data. The data is exploited by clients
running data mining algorithms to predict output power of plants.
Every plant sends periodically all the data collected by installed
sensors. The time granularity is set based on the type and the di-
mension of the plant.



Figure 3: System Architecture

Data coming from plants usually consists of different measures,
gathered from several sensors at a given timestamp. Indeed, the
number and the type of sensors may differ among plants. Fore-
cast data instead, consists of various predicted weather parameters
forecasted for a given time and location.

Our architecture stores the data on a HBase system consisting of
three tables: one for storing plants information, one for storing
measurements from plants and one for storing forecasting infor-
mation. To store data regarding a location, we use Geohash1. It is a
standard way to represent latitude/longitude information as a string
of characters having very useful properties. As an example, sites
close to each another share the same prefix in the string.

HBase performances heavily decrease when more than three col-
umn families are used. This is exhibited because flushing and
compaction are performed on a per-region basis, thus, if a column
family is carrying the bulk of the data being flushed, the adjacent
families will also be flushed even though the amount of data they
carry is small. As a consequence, when many column families are
exploited, the flushing and compaction interaction can heavily de-
crease system performances. In this respect, we designed column
family schemes having at most two column families.

4.1 System Architecture
As depicted in Figure 3, we can see the interactions between the
different subsystems in our architecture. As stated before, there are
many renewable energy plants that send data periodically to our
system. Separation between the plants and the computation cluster
is a key concept. The plants, in fact, do not send their measure-
ments directly to the computation cluster, but to a separated storage
level, made of several file servers. Different fault tolerance strate-
gies are applied among these levels in order to avoid the block of
the entire system due to the failure of one of the components. Data
is then taken by computation cluster’s Extract, Transform and Load
(ETL) tool and stored in a non-relational distributed database across
the nodes of the cluster itself.

The independence between computation cluster and storage level
make easier the management of the cluster, since storage level acts
as a frontend to it. The cluster can then be modified without chang-
ing the configuration of the different plants. This solution intro-
duces, moreover, the isolation of the cluster, since it has only to
communicate with the storage level, that is located in the same sub-
net.

Figure 4 shows the software architecture implemented on a cluster

1www.geohash.org

C
lo
u
d
er
a

Custom user interface

Custom ETL Tools

MapReduce

Zookeeper
HBase

HDFS

Figure 4: Architecture layers

of computing nodes. It is composed of several levels. As stated
before, we use HDFS as distributed file system. Data is stored on
different commodity machines of our computation cluster. We plan
to simplify the software setup of the computation cluster through
the use of software containers (in particular Dockers 2), thus pro-
viding platform as a service (PaaS) style deployment.

On top of HDFS we run HBase, which provides BigTable-like ca-
pabilities for Hadoop. The large quantities of data, coming from
renewable energy plants, are stored in a fault-tolerant way across
the nodes of the cluster. Tables in HBase serve as the input and out-
put for MapReduce jobs. We use Apache ZooKeeper that provides
services like distributed configuration, synchronization and naming
registry. Cloudera Distribution including Apache Hadoop 3(CDH)
offers a quick way to deploy all of the above components.

We wrote a custom ETL tool which manages the interaction be-
tween the storage level and the computation cluster. The tool peri-
odically downloads the new data from the storage servers. This data
is in csv format and needs to be transformed in order to be stored,
according to the schema discussed in Section 4.2. The ETL tool
provides this transformation and the subsequent upload to HBase
tables. The definition of queries on data and the visualization of
results are made by another custom tool that stands on top of our
architecture.

4.2 Table schemas
Based on the above considerations, we designed tables described
below (we do not report the actual name of each attribute as they are
coded by the plant owner and they are not easily understandable).

Table Plants:

• RowKey: concatenation of the type of the plant (solar, wind,
hydroelectric) and a plant identifier;

• Column family 1: contains as many attributes as the cardinal-
ity of data. Every attribute represents raw information as the
configuration parameters or the coordinates of the plant;

2https://www.docker.com/
3http://www.cloudera.com/content/cloudera/en/home.html



Figure 5: HBase table schemas

• Column family 2: stores log information about maintenance
operations for the specific plant.

Table Measure:

• RowKey: concatenation of the identifier of the plant, the re-
verse time stamp and the measurement type;

• Column family: stores all collected measures. The number
of attributes is equal to the cardinality of counters being col-
lected.

Table Predicted Measure:

• RowKey: the same structure as the Measure table;

• Column family: stores the measures predicted by mining al-
gorithms. The number of attributes is equal to the cardinality
of predicted data.

Table Weather Data:

• RowKey: concatenation of Geohash, reverse time stamp, mea-
surement type and server identifier, where server identifier is
used to trace which server senst the prediction;

• Column Family 1: used to store collected weather data.

• Column Family 2: used to store predicted weather data (weather
forecasts).

Figure 5 shows the implemented Hbase schema definition for rep-
resenting the information described above.

4.3 Long-term forecast of PV energy produc-
tion

During the last years, the forecast of PV energy production has
received significant attention since photovoltaics are becoming a

major source of renewable energy for the world [15]. Forecasting
methods depend on the tools and information available, the fore-
cast horizon, the number of plants considered and the size of the
geographic area they cover [31]. Diverse resources are used to gen-
erate solar and PV forecasts, ranging from measured weather and
PV system data, satellite and sky imagery cloud observations, to
Numerical Weather Prediction (NWP) models [22]. The short-term
forecasts typically use measured weather and PV system data, and
satellite and sky imagery observations of clouds, while the long-
term forecasts use numerical weather prediction (NWP) models.
The best approaches make use of both measured data and NWP
models.

In the literature, several data mining approaches have been pro-
posed for renewable energy power forecasting. We typically dis-
tinguish between physical and statistical approaches. Physical ap-
proaches deal with refining NWP forecast with physical considera-
tions, while statistical approaches deal with building models that
establish a relationship between historical values and forecasted
variables. Methodologically, there are approaches based on time
series [14] and approaches that learn adaptive models [6][33].

It has been noted that physical (e.g. wind speed and solar irradia-
tion) property behavior exhibits a trail called concept drift, i.e., they
change characteristics over time [9]. In this respect, adaptive mod-
els are generally considered to produce more reliable predictions
regarding concept drift, but require a continuous training phase.
For example, in [27], the estimation of the model parameters is
based on an exponential weighted adaptive recursive least squares
controlled by a forgetting factor. A different solution is proposed
in [32], where a recursive method for the estimation of the local
model coefficients of a linear regression function is proposed. In
this case, the time dependence of the cost function is ensured by
exponential forgetting of past observations.

In [21], the author uses a stochastic gradient for online training of
neural networks in wind power forecasting. Another work which
uses neural networks is [8], where the authors train local recur-
rent neural networks of online learning algorithms based on the
recursive prediction error. Bacher et al. [6] propose to forecast the
average output power of rooftop PV systems by considering past
measurements of the average power and NWP forecasts as inputs
to an autoregressive model with exogenous input (ARX).

Sharma et al. [33] consider the impact of the weather conditions
explicitly and used an SVM classifier in conjunction with a RBF
kernel to predict solar irradiation. Bofinger et al. [10] propose
an algorithm where the forecasts of an European weather predic-
tion center (of midrange weathers) were refined by local statistical
models to obtain a fine tuned forecast. Other works on temporal
modeling with applications to sustainability focus on motif min-
ing. For example, Patnaik et al. [30] proposed a novel approach
to convert multivariate time-series data into a stream of symbols
and mine frequent episodes in the stream to characterize sustain-
able regions of operation in a data center. Finally, Chakraborty et
al. [14] propose a Bayesian ensemble which involves three diverse
predictors, that is, naïve Bayes, K-NN and sequence prediction.

In this case study, we propose an adaptive method for long-term
forecast (one-day ahead) of PV energy production based on ANNs.
The proposed approach exploits NWP to benefit from uncontrol-
lable factors (such as weather conditions). We investigate the pre-
dictive performance of two structured (all hours of the forecasted



Figure 6: Our learning scheme

day are outputs from a single model) and non-structured output pre-
diction models (each hour of the forecasted day is output from one
model).

4.3.1 Method
The machine learning task is to predict the PV power generation
using the following input attributes:

• the geographic coordinates of the plant: latitude and longi-
tude,

• the sun positions at the location of the plant: altitude and az-
imuth, queried by SunPosition (http://www.susdesign.
com/sunposition/index.php),

• the properties of the plant: site ID, brand ID, model ID, age
in months,

• weather data: ambient temperature, irradiance, pressure, wind
speed, wind bearing, humidity, dew point, cloud cover, de-
scriptive weather summary.

Additionally, in the case of structured output prediction, also the
day is passed as feature, while in the case of non-structured output
prediction, besides the day, also the hour. In the training phase,
we use historical weather information collected by sensors, while
for prediction purposes, we use weather forecast data provided by
NWP systems. The output is the prediction of the power produc-
tion (KWh) for the next day at one hour intervals. The prediction
models are updated on a daily basis as depicted in Figure 6.

4.3.2 Data preprocessing
Since the aim is to predict the energy production at a hourly granu-
larity, the data was aggregated so that each row represents an hour.
Additional, we addressed also the issue of missing data, irregular-
ities and outliers, and performed normalization of the data before
the learning process.

In order to fix completely missing hourly data points, we adopt
the following approach. Missing production values in kWh are re-
placed by the average value observed by sensors in the same month

at the same hour. Missing temperature values are replaced by his-
torical data. Moreover, we also observed that sometimes the irra-
diance assumes a zero value while the plant is in a productive state
(kWh>0). To correct irregularities of that type, we consider the av-
erage irradiance value in the same month of the same year at the
same hour to replace the zero value. In any other case in which the
irradiance is zero, we check if the average irradiance value in the
same month of the same year at the same hour is zero too: if not,
the resulting average value replaces the missing value.

After replacing missing values, we check the presence of outliers in
the irradiance and temperature data. For example, if the irradiance
(irr) observed by sensors is out of the range defined by [avg(irr) - 4*
stddev(irr), avg(irr) + 4* stddev(irr)], this value is replaced by the
average of the irradiance observed in the same month of the same
year at the same hour. The same approach applies also fro han-
dling outliers in the temperature data. Furthermore, we observed
that irradiance measured locally by sensors has often lower val-
ues compared to irradiance extracted by NWP models, possibly be-
cause sensors located on plants can be covered by obstacles or dirt.
Training a model by means of sensors data and using it to extract
predictions with NWP data can lead to inaccurate predictions. To
overcome this issue, we calculate the percentage of change between
monthly NWP irradiance (extracted by PVGIS) and irradiance de-
tected by sensors on historical data (same month at the same hour),
and we normalize the latter.

In order to train the neural network, data was normalized in the
range between 0 and 1. Hence, we applied a min-max normal-
ization for each feature, considering the min and max of observed
values. Actually, we considered the max increased by 30 percent,
to handle future situations in which observed values of each feature
might exceed the current maximum.

4.3.3 Experiments
In our empirical evaluation, we consider a real dataset collected
at regular intervals of 15 minutes (measurements start at 2:00 AM
and stop at 8:00 PM every day) by sensors located on 18 plants
in Italy. The time period spans from January 1st, 2012 to May
4th, 2014. The weather data is queried from Forecast.io (http:
//forecast.io/), while the irradiance is queried from PVGIS
(http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.
php). As anticipated before, the raw data are preprocessed and nor-
malized according to the z-score normalization, before using them
for learning, in order to resolve measurement errors.

In this paper, we use the encog implementation of the Resilient
Propagation (RPROP+) algorithm for training neural networks (http:
//www.heatonresearch.com/wiki/Resilient_Propagation#
Implementing_RPROP.2B). RPROP+ is one of the best general-
purpose neural network training methods implementing the back-
propagation technique. We use RPROP+ since it has been proven
effective for renewable energy prediction [9]. For the evaluation,
the dataset is randomly split into training days (85%) and testing
days (15%). Experiments are run three times and average results
are collected. For each run, the network is trained incrementally on
the training dataset until a testing day is found. Then, it is repeat-
edly first tested on the testing day and after that it is re-trained with
the sample added to the training set, together with all the training
days before the next testing day. At the end, the average perfor-
mance over all the test samples is reported as a result.

We distinguish between hourly (non-structured) and daily (struc-



Table 1: Performance results for one-day ahead PV power fore-
cast for hourly (non-structured) and daily (structured output)
settings. No spatial (Lat Lon) indicate results without (with)
geographic coordinates of the plant.

RMSE MAE Impr. [%]
No Spatial Hourly 0,120 0,079 17,410
No Spatial Daily 0,109 0,068 24,810
Lat Lon Hourly 0,120 0,078 17,443
Lat Lon Daily 0,111 0,069 23,915
Persistence model 0,146 0,085

tured output) settings. In the hourly setting, we investigate non-
structured models with single output - the production of the plant
at a specified day and specified hour. In the daily setting, we inves-
tigate structured models with 19 outputs - the productions of the
plant for the hours from 2:00 AM to 8:00 PM on a specified day.
Furthermore, we consider scenarios with and without the latitude
and the longitude of the plant taken as descriptive variables. The
later will investigate whether the geographic coordinates play an
important role for the prediction performance.

4.3.4 Results and discussion
The results for the investigated hourly and daily scenarios are re-
ported in Table 1. We consider three indicators of the predictive
performance, namely the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE) and the improvement with respect to
the persistence model (i.e., the model that forecasts the same pro-
duction observed 24 hours before).

The results clearly show improvement of the predictive performance
over the persistence model, with the structured-output prediction
model clearly outperforming the non-structured one. From Table
1, we can also notice that geographic coordinates improve the pre-
diction effectiveness, suggesting that data are subject to spatial au-
tocorrelation phenomena. [34].

The predictive performance of the model can also be graphically
inspected from Figure 7, where the predicted vs. measured power
production are presented for three consecutive typical cold (in Jan-
uary) and warm (in May) days. In both cases, we report predictions
for partially cloudy days. The predictions are obtained using the
best performing model, i.e. structured output considering the lati-
tude and longitude as input attributes.

5. CONCLUSIONS AND FUTURE WORK
Big Data analysis is a challenging task as we need to take into ac-
count the velocity, variety and volume of information to be ana-
lyzed. Indeed, such features heavily influence the design of a sys-
tem for Big Data analysis. In this respect, we analyzed several de-
sign options in order to implement a prototype for accurate predic-
tion of renewable energy production plant output. In this paper, we
have presented the project Vi-POC – a distributed system for stor-
ing, querying and analyzing data collected from renewable energy
production plants. In particular, we have described its data model
and its forecasting capabilities. As for this last aspects, we have
empirically shown its predictive capabilities and compared cases
with structured output prediction and non-structured output predic-
tion. Results confirm that predictive capabilities are better in case
of structured output prediction, probably because of the implicit
consideration of the dependence of the predictions at consecutive
hours.

(a) January 4th, 5th, 6th.

(b) May 4th, 5th, 6th.

Figure 7: Predictions (green) and measurements (red) of the
productions for three consecutive days of a single plant. The
three consecutive days are taken from January and May. Re-
sults are obtained with the daily (structured) setting. We recall
that the time intervals considered are 2:00 AM - 8:00 PM. Re-
sults are obtained including geographic coordinates.

As future work, we plan to explore further prediction techniques
based on clustering along with the integration of additional data
sources in our system in order to achieve more accurate results.
More in detail, we plan to test our system in different regions hav-
ing different weather condition w.r.t. south of Italy in order to gen-
eralize our technique for a widespread commercial use.

6. ADDITIONAL AUTHORS
7. REFERENCES

[1] Big data. Nature, September 2008.
[2] Data, data everywhere. The Economist, Feb 2010.
[3] Drowning in numbers - digital data will flood the planet - and

help us understand it better. The Economist, Nov 2011.
[4] Design Principles for Effective Knowledge Discovery from

Big Data, Helsinki, Finland, 2012. August 20-24.
[5] D. Agrawal et al. Challenges and opportunities with big data.

A community white paper developed by leading researchers
across the United States. Mar 2012.

[6] Peder Bacher, Henrik Madsen, and Henrik Aalborg Nielsen.
Online short-term solar power forecasting. Solar Energy,
83(10):1772 – 1783, 2009.

[7] Gökhan H. Bakır, Thomas Hofmann, Bernhard Schölkopf,
Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan,
editors. Predicting structured data. The MIT Press, 2007.

[8] T. G. Barbounis and J. B. Theocharis. Locally recurrent
neural networks for wind speed prediction using spatial
correlation. Inf. Sci., 177(24):5775–5797, December 2007.

[9] R.J. Bessa, V. Miranda, and J. Gama. Entropy and
correntropy against minimum square error in offline and
online three-day ahead wind power forecasting. Power
Systems, IEEE Transactions on, 24(4):1657–1666, 2009.

[10] S. Bofinger and G. Heilscher. Solar electricity forecast -
approaches and first results. In 20th Europ. PV conf., 2006.

[11] A. B. Bondi. Characteristics of scalability and their impact
on performance. In Proceedings of the 2Nd International
Workshop on Software and Performance, WOSP ’00, pages



195–203, New York, NY, USA, 2000. ACM.
[12] M. Ceci, N. Cassavia, R. Corizzo, P. Dicosta, D. Malerba,

G. Maria, E. Masciari, and C. Pastura. Innovative power
operating center management exploiting big data techniques.
In 18th International Database Engineering & Applications
Symposium, IDEAS 2014, Porto, Portugal, July 7-9, 2014,
pages 326–329, 2014.

[13] Michelangelo Ceci, Nunziato Cassavia, Roberto Corizzo,
Pietro Dicosta, Donato Malerba, Gaspare Maria, Elio
Masciari, and Camillo Pastura. Big data techniques for
renewable energy market. In Sergio Greco and Antonio
Picariello, editors, 22nd Italian Symposium on Advanced
Database Systems, SEBD 2014, Sorrento Coast, Italy, June
16-18, 2014., pages 369–377, 2014.

[14] Prithwish Chakraborty, Manish Marwah, Martin F. Arlitt,
and Naren Ramakrishnan. Fine-grained photovoltaic output
prediction using a bayesian ensemble. In AAAI, 2012.

[15] EPIA European Photovoltaic Industry Association. Global
Market Outlook for Photovoltaics 2014-2018.
http://www.epia.org/news/publications/global-market-
outlook-for-photovoltaics-2014-2018, June
2014.

[16] A. Fox and E. A. Brewer. Harvest, yield, and scalable
tolerant systems. In Proceedings of the The Seventh
Workshop on Hot Topics in Operating Systems, HOTOS ’99,
pages 174–, Washington, DC, USA, 1999. IEEE Computer
Society.

[17] Anjana Gosain and Nikita Chugh. Article: New design
principles for effective knowledge discovery from big data.
International Journal of Computer Applications,
96(17):19–23, June 2014. Full text available.

[18] M. Herland, T. M. Khoshgoftaar, and R. Wa. A review of
data mining using big data in health informatics. Journal of
Big Data, 2014.

[19] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko
Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath
Babu. Starfish: A self-tuning system for big data analytics. In
In CIDR, pages 261–272, 2011.

[20] C. K. Joseph and S. Kakad. Predicting impact of natural
calamities in era of big data and data science. In 7th Intl.
Congress on Env. Modelling and Software, pages 90–98,
2014.

[21] George Kariniotakis. Contribution to the development of an
advanced control system for the optimal management of
wind-diesel power systems. PhD thesis, 1996.

[22] Jan Kleissl. Solar Resource Assessment and Forecasting.
Elsevier, 2013.

[23] Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski.
Tree ensembles for predicting structured outputs. Pattern
Recognition, 46(3):817–833, 2013.

[24] A. Labrinidis and H. V. Jagadish. Challenges and
opportunities with big data. PVLDB, 5(12):2032–2033, 2012.

[25] S. Lohr. The age of big data. nytimes.com, Feb 2012.
[26] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,

C. Roxburgh, and A. H. Byers. Big data: The next frontier
for innovation, competition, and productivity. McKinsey
Global Institute, May 2011.

[27] H. A. Nielsen, P. Pinson, L. E. Christiansen, T. S. Nielsen,
H. Madsen, J. Badger, G. Giebel, and H. F. Ravn.
Improvement and automation of tools for short term wind
power forecasting. In EWEC, 2007.

[28] Y. Noguchi. Following digital breadcrumbs to big data gold.
National Public Radio, Nov 2011.

[29] Y. Noguchi. The search for analysts to make sense of big
data. National Public Radio, Nov 2011.

[30] Debprakash Patnaik, Manish Marwah, Ratnesh K. Sharma,
and Naren Ramakrishnan. Temporal data mining approaches
for sustainable chiller management in data centers. ACM
Trans. Intell. Syst. Technol., 2(4):34:1–34:29, July 2011.

[31] Sophie Pelland, Jan Remund, Jan Kleissl, Takashi Oozeki,
and Karel De Brabandere. Photovoltaic and solar forecasting.
Technical report, IEA PVPS, 2013.

[32] Pierre Pinson, Henrik Aa. Nielsen, Henrik Madsen, and
Torben S. Nielsen. Local linear regression with adaptive
orthogonal fitting for the wind power application. Statistics
and Computing, 18(1):59–71, March 2008.

[33] Navin Sharma, Pranshu Sharma, David E. Irwin, and
Prashant J. Shenoy. Predicting solar generation from weather
forecasts using machine learning. In SmartGridComm, pages
528–533. IEEE, 2011.

[34] Daniela Stojanova, Michelangelo Ceci, Annalisa Appice,
Donato Malerba, and Saso Dzeroski. Dealing with spatial
autocorrelation when learning predictive clustering trees.
Ecological Informatics, 13:22–39, 2013.

[35] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M.J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[37] M. Zaharia, M. Chowdhury, M.J Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA, 2010. USENIX Association.

[38] Quan Zou, Xu-Bin Li, Wen-Rui Jiang, Zi-Yu Lin, Gui-Lin
Li, and Ke Chen. Survey of mapreduce frame operation in
bioinformatics. Briefings in Bioinformatics, 2013.


