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1 Problem
We test the speed of time iteration for explicit Euler method when solving the
diffusion equation. Using different types may result in different performance, due to
double indexing, size of the problem and cache-friendliness. A detailed analysis of
the topic can be seen in below attached report.

Basic code being tested is1:

for (int tt = 0; tt < t_steps; ++tt) {
for (int c : interior) {

double Lap = 0;
for (int j = 0; j < n; ++j) {

Lap += SL[c][j] * T1[SD[c][j]];
}
T2[c] = T1[c] + dt * Lap;

}
T1.swap(T2);

}

where T1, T2, SL are (one or two dimensional) arrays of integers, and SD is a 2D
array of int’s.

The outer loop performs time step iterations. The middle loop iterates over
all nodes in the domain. For each node value of Laplace operator is calculated by
looping over the support nodes (inner loop). Temperature of nodes is then updated,
and after the calculations for all nodes are complete, we swap the vectors of previous
and newly calculated temperatures.

Other parameters are:
• End time: 0.2
• Time step: 10−5

• Number of time iterations: tsteps = 20000

• Basis: 5 Gaussians
• Domain: [0, 1]2

We mark node count by N and support size by n. Total number of iterations
performed is:

I = tsteps× n× (N − 4
√
N + 4)

We tested 7 different types of containers, which will appear in the same order
throughout the report.

1. our own types: Range, Vec
2. our own operators
3. pure Eigen types
4. C arrays (1 dimensional)
5. std::vector (2 dimensional)
6. std::vector (1 dimensional)
7. our types (1 dimensional)
1Full code is avaliable at our repository (link).
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2 Environment
For mesuring time standard C++ high resolution clock was used. For measuring
number of cache accesses Intel PCM was used.

All tests were run on our clusters computers separately and independently. Hard-
ware and software specifications:
• Intel(R) Xeon(R) CPU E5520 @ 2.27GHz processor
• 256 kB of L2 cache and 8MB of L3 cache.
• 6GB of DDR3 RAM
• system: Linux k5 3.2.0-26-generic #41-Ubuntu x86_64 GNU/Linux
• g++ version: g++ (Ubuntu 4.9.2-0ubuntu1~12.04) 4.9.2
• cmake version: 3.3.2

All tests were ran using the following compile flags:

g++ -03 -DNDEBUG -DEIGEN_NO_DEBUG -std=c++14 -Wall

3 Initial measurements
Initially our types and Eigen were much slower that the rest. However, after dis-
abling the debug modes we gained first relevant measurements on figures 1 to 5.
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Figure 1: Initial running time for different types.
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Figure 2: Initial L2 cache hit ratio for different types.

n = 5

σ = 0.001

Δt = e-5

our types

our operators

Eigen

C array

std::vector

std::vector 1d

our types 1d

0 5000 10000 15000 20000

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

N

L
3
ca
ch
e
h
it
ra
ti
o

L3 cache hit ratio for different types.

Figure 3: Initial L3 cache hit ratio for different types.
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Figure 4: Initial L2 cache total access count for different types.
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Figure 5: Initial L3 cache total access count for different types.
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As the problem size is quite small, L2 cache hit ratio is important. Figure 6 plots
correlation between average cache hit ratio and running time growth coefficient,
showing strong correlation (except for Eigen).
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Figure 6: Correlation between running time and L2 cache hit ratio.

Looking at L2 total accesses graph, we see that C array uses twice as many
accesses as 1 dimensional types, and our types use 4 times as many. Operators,
which call a function in their own class, are by far the worst, which is blamed on
their general structure, as they do not assume all supports have the same size.

Running the tests with bigger support size revealed even more behaviour. The
same types of plots as before are shown on figures 7 to 11.

6



n = 25

σ = 0.001

Δt = 0.00001

our types

our operators

Eigen

C array

std::vector

std::vector 1d

our types 1d

0 2000 4000 6000 8000 10000

0

5

10

15

20

N

t[
s]

Running time for different types.

Figure 7: Initial running time with larger support size.
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Figure 8: Initial L2 cache hit ratio with larger support size.
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Figure 9: Initial L3 cache hit ratio with larger support size.
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Figure 10: Initial L2 cache total access count with larger support size.
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Figure 11: Initial L3 cache total access count with larger support size.

Of special interest is the break of time for our operators on figure 7 at around
N ≈ 5000. The time increase is believed to be the consequence of running out of L3
cache space. This also happens for some of the other types later on the graph. This
slowdowns coincide with the declines of the L3 cache hit ratio curve on figure 9.

We have to answer a few questions:
1. Why do we have significantly different times for different types with 1d struc-

ture?
2. Why do we have significantly different times for different types with 2d struc-

ture?
3. What accounts for the difference between 1d and 2d types and how relevant

is it?
4. Do slowdowns happen at expected node counts and are they well correlated

with cache size?
5. Why do different types experience slowdowns at smaller node counts than

others?
6. Why the hell are operators so much slower?

4 Fixes and second round of measurements
Measurements helped us bind a few inconsistencies in our code. C-array was using a
wrong swap technique, which accounted for more memory accesses than necessary.
Some types used size_t for indexes and other used int. This was one of the causes
for different slowdowns, as array of size_t-s takes twice more space than an array
of int-s. We fixed the whole code to use ints (and plan to do so throughout the
whole library).
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We also used Eigen suboptimally, not using their own ArrayXii class, which is
implemented as 1d array. We also changed all matrices used to be row-major, to
ensure cache friendliness, as we only do row traversals.

For every time, we copied support domain data SD and shape functions SL to
local variables of the same type.

We believe the above accounts for differences among the similar types and an-
swers questions 1 and 2.

Assuming that slowdowns are caused because we ran out of cache space, we
looks at out memory use. Our fixes included using consistent types for indexes and
decimal numbers, copying all data to locally variables, and always allocating arrays
of the same size on the heap. This helped smooth the differences in slowdown starts
for different types, answering question 5.

We currently have around 10 local int or double variables, two 1d arrays of N
double-s, one 2d N × n array of int-s and one 2d array of double-s. This sums up
to approximately

[N × n× (8 + 4) +N × 8 + 64] bytes

To answer question 4, we check at which node count do we fill the L2 or L3 cache
memory and we expect that the slowdown will appear around the same node count.
The expected results are calculated in table 1.

n L2 L3
5 3 350 105 000
13 1 500 46 500
25 800 23 300

Table 1: Expected node counts at which slowdowns should happen.

To answer question 6 we need to look at operators structure a bit closer. Opera-
tors are a class, repsresenting a collestion of operators (of which we only use laplace).
The compute and store all first derivatives and laplace shape functions. When called
for a certain node, they perform the innermost for loop in code above. As they were
planned to be as general as possible, we assumed that we do not know the size of
the shape functions and used our 2d types for storage. We changed that to 1d heap
allocated C-arrays, storing only pointers, changed all methods to be constant and
make appropriate variables static. With some loss of generality (that we never even
had elsewhere), we have made them comparable to the other types.

Measurements after changes above for 3 different support sizes, can be seen on
figures 12 to 26.

We see that L3 and L2 cahce declines coincide very nicely with slowdowns on time
graphs. The decline of L3 cahce hit ration in the n = 25 case in figure 24 happens
at approximately the same node cont as we predicted. Similarly, our predictions
match in the n = 13 case as well (fig. 19). All 1d types are grouped together and 2d
types are grouped together, with only alight difference between them. We believe
that this difference is due to an additional work of another lookup / dereference,
which is large, compared to simple addition and multiplication used in 1d arrays.
Operators are now the fastest (which is surprising. . . )

All solutions have also been tested and they return identical and correct results.

10



n = 5

σ = 0.001

Δt = 0.00001

our types

our operators

Eigen

C array

std::vector

std::vector 1d

our types 1d

0 20000 40000 60000 80000 100000

0

5

10

15

20

25

30

35

N

t[
s]

Running time for different types.

Figure 12: Final running time for n = 5.
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Figure 13: Final L2 cache hit ratio for n = 5.
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Figure 14: Final L3 cache hit ratio for n = 5.

n = 5

σ = 0.001

Δt = 0.00001

our types

our operators

Eigen

C array

std::vector

std::vector 1d

our types 1d

0 20000 40000 60000 80000 100000

0

2×108

4×108

6×108

8×108

N

L
2
ca
ch
e
tr
ie
s

Total L2 cache tries

Figure 15: Final L2 cache total access count for n = 5.
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Figure 16: Final L3 cache total access count for n = 5.
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Figure 17: Final running time for n = 13.
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Figure 18: Final L2 cache hit ratio for n = 13.
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Figure 19: Final L3 cache hit ratio for n = 13.
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Figure 20: Final L2 cache total access count for n = 13.
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Figure 21: Final L3 cache total access count for n = 13.
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Figure 22: Final running time for n = 25.
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Figure 23: Final L2 cache hit ratio for n = 25.
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Figure 24: Final L3 cache hit ratio for n = 25.
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Figure 25: Final L2 cache total access count for n = 25.
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Figure 26: Final L3 cache total access count for n = 25.
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5 Conclusions
Overall, we are satisfied with the results. We learned some things. Details matter.
Caches are important.
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